The Administrator Crash Course

Windows PowerShell v2

PowerShell Crash Course Don Jones

Introduction to Realtime Publishers

by Don Jones, Series Editor

For several years now, Realtime has produced dozens and dozens of high-quality books
that just happen to be delivered in electronic format—at no cost to you, the reader. We've
made this unique publishing model work through the generous support and cooperation of
our sponsors, who agree to bear each book’s production expenses for the benefit of our
readers.

Although we’ve always offered our publications to you for free, don’t think for a moment
that quality is anything less than our top priority. My job is to make sure that our books are
as good as—and in most cases better than—any printed book that would cost you $40 or
more. Our electronic publishing model offers several advantages over printed books: You
receive chapters literally as fast as our authors produce them (hence the “realtime” aspect
of our model), and we can update chapters to reflect the latest changes in technology.

[want to point out that our books are by no means paid advertisements or white papers.
We're an independent publishing company, and an important aspect of my job is to make
sure that our authors are free to voice their expertise and opinions without reservation or
restriction. We maintain complete editorial control of our publications, and I'm proud that
we’ve produced so many quality books over the past years.

[want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially
if you've received this publication from a friend or colleague. We have a wide variety of

additional books on a range of topics, and you're sure to find something that’s of interest to
you—and it won'’t cost you a thing. We hope you’ll continue to come to Realtime for your
educational needs far into the future.

Until then, enjoy.

Don Jones

Realtime i

http://nexus.realtimepublishers.com/

PowerShell Crash Course Don Jones
|

Introduction to Realtime PUDIiShers...... s i
PowerShell Crash Course WEEK 2 ... eeeeercsseeseesessessessessssssesssssessesssessssssssssssssssssssssssssssessesssesans 1
Week 2, DAy 1: Variables ... ceceseeeeseeeesseeseseessessessesse s essesssssssssessssssssssssss e ssssssssssssssssssssssasssssas 1
Week 2, Day 2: Operators and Filtering......sessssssssssssesssssssssssssssssssssssssssssssssnas 4
Week 2, DAy 3: FOTMAtUNGc.ovueeueererreesresseessesssesseessesseessesssessesssessesssesssessesssessesssssssssssssssssesssesssessesssssssssnes 6
Week 2, Day 4: GELLNG “OUL” ..ot reesesseessesse s ssessessse s sssessssss s s s s s ssssssneas 8
Week 2, Day 5: Extending the Shell ... 9
WEEKENA WIAP-UP.cuiisieereressieseessissssssssessessessessesssssssss s ssssssessessesssssssssssssssssssssessssssssssssssssssssssssesssssssssssssnes 10
Download Additional Books from Realtime NeXus!coenenneeneeneenneseeseeseesseesessessesseennes 10

Realtime i

publishers

PowerShell Crash Course Don Jones
|

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime iii

mailto:info@realtimepublishers.com

PowerShell Crash Course Don Jones

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

PowerShell Crash Course Week 2

Hopefully, you're ready for the second week of your crash course. The previous five lessons
should have you comfortably running medium-complex commands from the command-
line. This week, we’re going to focus on fine-tuning those skills and giving you some
additional options and capabilities.

Remember, [encourage you to continue exploring beyond this crash course. For example,
visit http://windowsitpro.com/go/DonJonesPowerShell to find tips and tricks, FAQs, and
to ask questions, or drop by the PowerShell team’s own blog at
http://blogs.msdn.com/powershell for “insider” information. You'll also find a lot of in-
person PowerShell instruction at events like TechMentor
(http://www.techmentorevents.com) and Windows Connections
(http://www.winconnections.com). Finally, you’re welcome to subscribe to my Twitter
feed, @concentrateddon. I focus almost exclusively on PowerShell, and I'll pass along any
tips or articles that I find especially useful.

How to Use this Crash Course

[suggest that you tackle a single crash course item each day. Spend some
time practicing whatever examples are provided and trying to complete tasks
that make sense in your environment. Don’t be afraid to fail: Errors are how
we learn. Just do it in a virtual environment (I recommend a virtualized
domain controller running Windows Server 2008 R2) so that you don’t upset
the boss! Each “Day” in this crash course is designed to be reviewed in under
an hour, so it’s a perfect way to spend lunch for a few weeks. This book will
be published in five-day increments, so each chapter corresponds to a single
week of learning.

Week 2, Day 1: Variables

So far, we’ve just been running commands and allowing the output to show up on the
screen. But sometimes you might want to preserve command output for a while and re-use
it, or even persist some other bit of information. That’s where variables come in. No, we're
not going to be doing programming—variables are just a named storage area in memory.
Think of PowerShell’s memory space as a warehouse. The warehouse is full of boxes, and
we can put stuff into the boxes. To make them easier to find, the boxes each have a name.
Those boxes are variables.

Realtime 1

http://nexus.realtimepublishers.com/
http://windowsitpro.com/go/DonJonesPowerShell
http://blogs.msdn.com/powershell
http://www.techmentorevents.com/
http://www.winconnections.com/

PowerShell Crash Course Don Jones
|

Variable names can include almost any character, including spaces, although you’ll
probably want to stick with letters, numbers, and the underscore character. When you
want PowerShell to use the contents of a variable, you precede the variable’s name with a $.
That’s a special character that simply tells the shell, “Hey, what comes next is a variable
name—I want you to use the contents of that variable.” For example Computer might be a
variable name, and $Computer tells PowerShell that you want to reference its contents.
${This is a variable} is valid, too. Normally, a white space indicates the end of the variable
name, but in this case the variable name “This is a variable” contains spaces. Surrounding
the name in curly braces helps keep it all together. I'm not a fan of variable names that
contain spaces simply because that syntax is harder to read, but you can do whatever you
like.

Read This Bit if You're Experienced with VBScript

At this point, VBScript folks usually ask if there’s a way to declare variables in
advance. Yes, there is. There’s actually a whole raft of -Variable cmdlets,
including New-Variable, for that purpose. Note that those cmdlets accept a -
name parameter, which specifies the name of the variable. The variable name
does not include the $. If you ran New-Variable -name $mine -value 7, it
would attempt to create a new variable using the contents of $mine as the
variable name.

The next question is always: “Is there a way to require advance variable
declaration?” As in, “How do I do Option Explicit in PowerShell?” No, there
isn’t. You can’t. Sorry. Yes, I'm aware that this lack can make debugging
harder, but the PowerShell team hasn’t implemented this. There is something
similar—read the help for Set-StrictMode—but it's not the same as Option
Explicit.

You put stuff into variables using the = assignment operator:

$var = Get-Services

You don’t need to create the variable in advance; the first time you use it, PowerShell will
create it. The previous command retrieves all the service objects and sticks them into $var.
Technically, $var is now an array, or collection (in PowerShell, they’re close to being the
same thing). If you want to display them, just tell the shell to display the variable:

$var

You can also access individual elements. Try these:

$var[0]
$var[1]
$var[-1]
$var[-2]

PowerShell Crash Course Don Jones
|

The square brackets contain the zero-based index number of the element you want out of
the collection; negative numbers start at the end of the collection. Go on, try it. You'll see.

Variables can also store simple values like strings and numbers—although these are,
technically, also objects.

$var = 5

$var = 'Hello'

$var2 = "$var World"
$var3 = '$var World'

$var | Get-Member

Now try to figure out what $var2 and $var3 contain. Better yet, run those commands in the
shell. You'll learn a few things:

¢ You can easily change the contents of a variable anytime you like. Just because it
started out containing services doesn’t mean it can’t switch to contain a simple
string. It’s just a box, after all—you can replace its contents.

e In double quotes, PowerShell looks for variables—keyed by the $—and replaces
them with their contents. That doesn’t happen in single quotes.

e When you pipe a variable to Get-Member, you see information about whatever’s
inside the variable. We don’t care about the box itself—we only care about what’s in
the box. Ask any kid at Christmastime—they’ll explain that concept to you!

PowerShell stores all of its variables in the Variable drive.

Dir Variable:

You'll see a lot of the built-in variables that control PowerShell’s operation and behavior,
too. You can delete variables by using the Del command right in that drive, or the Remove-
Variable cmdlet. Variables don’t persist between shell sessions, and the built-in variables
(which can be deleted, if you want) always return with their default values when you open
a new shell window.

PowerShell keeps track of what kind of object or objects a variable contains, but it doesn’t
normally enforce any rules around them. In other words, this is valid:

$x 5
$x = "Realtime"

You can start out with one type of thing (an integer, in this case) in the box, then replace it
with something else (a string). You can, however, tell PowerShell what type of data you
want a variable to contain. Once you do so, PowerShell will enforce it. Try this:

[int]$x = 5
$x = 'Hello'

Realtime 3

PowerShell Crash Course Don Jones
|

You get an error on the second line because $x can now only contain an [int] and there’s no
way to convert “Hello” into an integer. Other variable types include [string], [xml],
[Boolean], [double], and so on.

Finally, variable names—Ilike cmdlet names—aren’t case-sensitive. $X and $x are the same
thing.

Week 2, Day 2: Operators and Filtering

PowerShell has the ability to compare bits of information to each other. It does so using a
set of comparison operators:

e -eq = equality

e -ne =inequality

e -ge = greater than or equal to

e -le =less than or equal to

e -lt=lessthan

e -gt=greater than

e -like = wildcard (use * wildcard character)
e -notlike = opposite of -like

Here’s how you might use these:

$x = 5

$y = 10

$x -gt sy

$y -eq $x

$a = "Hello"

$b = "Hello World"
$a -eq $b

$b -like '*Wo*'

Note that string comparisons are case-insensitive; use -ceq, -clike, and -cnotlike for case-
sensitive comparisons.

One way to use these comparison operators is in filtering items out of the pipeline. Let’s
quickly revisit how this all works. I'm going to use some different terminology than in the
previous chapter, and this terminology glosses over some technical fine details, but I think
it makes the basic concept a lot clearer.

Realtime 4

PowerShell Crash Course Don Jones
|

When you run a command like Get-Service, it produces a table of information. Thanks to
some formatting defaults provided by Microsoft, however, you only see a portion of this
table on the screen. To see all of its possible columns, pipe the table to Get-Member:

Get-Service | Get-Member

Anything in that output that says “Property,” including things like “NoteProperty” and
“AliasProperty,” are table columns. You can use those column names, along with
comparison operators, to filter items out of the pipeline. Use the Where-Object cmdlet (or
its alias, Where) to do so:

Get-Service | Where { $_.Status -eq 'Running' }

Those {curly braces} represent something called a script block; in this instance, it’s actually
something more specific: a filter block. You can put basically whatever code you like in
there, so long as the final result is either True or False. Within that block and only within
that block, PowerShell is designed to look for a special $_ placeholder. This is like a “fill in
the blank” area on your tax form, and the shell “fills in the blank” with whatever was piped
into Where-Object. In this case, then, $_represents that table of service information.

The period tells the shell that you don’t want to deal with the entire table but instead want
to access the information in a single column. You then follow the period with the column
name: Status. So I'm comparing the Status column to the string “Running;” table rows that
match will be retained, and ones that don’t will be dropped. Try running the command to
see the results.

You can do complex comparisons, too:

Get-WmiObject -class Win32_Service | Where { $_.State -ne 'Running' -and
$.StartMode -eq 'Auto' }

This is grabbing (from WM], this time) all the services that are set to auto-start but which
aren’t yet started. The -and operator combines the two comparisons. There are also an -or
operator and a -not operator that reverse the logic. Keep in mind that $_isn’t globally
present throughout the shell: It’s only valid in places where PowerShell is explicitly looking
for it, and this is one of the few places where the shell does so.

This syntax can be a bit difficult at first, but this is one of the most important concepts in the
shell. Don’t proceed until you’re comfortable with it. To practice, try some of these tasks:

e Getalist of processes that have an ID greater than 1000

e Getalist of event log entries (Get-EventLog is the cmdlet to start with) that have an
event ID greater than 1500

e Geta list of processes that have “svchost” in their name

e Getalist of services that have “win*” in their name

Donltirao
lh'_ﬁllllllli_ 5

PowerShell Crash Course Don Jones
|

Once you can accomplish those tasks, you're good to go. If you get stuck, drop by
http://connect.concentratedtech.com where you can post a question directly to me. When
you register, you'll be asked where you took a class with me—enter “Realtime Publishers”
for that field.

Week 2, Day 3: Formatting

So far, we’ve been happy to use the formatting that the shell gives us by default, although in
the first chapter of this book, I did show you a few alternatives for formatting output as
tables and lists. Now, we need to jump in and take full control. This can get a bit complex, so
bear with me. First, know that you have three basic formatting cmdlets that you’ll use most
of the time:

e Format-Table, which produces a columnar table
e Format-List, which produces a simpler list
¢ Format-Wide, which displays a single piece of information in a multi-column list

You should read the help on all of these for a quick overview of what each can do. Format-
Wide is the simplest: You can specify the property (table column) you want displayed, and
it defaults to the “name” property because most objects have a Name property. You can also
change the number of columns displayed or specify -autosize to let it display as many as it
thinks it can. Read the help and see if you can figure out how to display a four-column list of
process names. Go on, I'll wait for you.

Did you get it? Well, I'm not giving away any answers. Again, if you're stuck, hop on
http://connect.concentratedtech.com and I'll help you out.

Format-List is probably the next-most-complicated. With it, you can specify a list of
properties to display, and that list can include wildcards. For example, try these:

Get-Process | Format-List *
Get-Process | Format-List *Memory*
Get-Process | Format-List Name,ID,VM

Get the idea?

Format-Table is the most fun. Some of the options I'm going to explore also exist for
Format-List, but I think they’re more impressive when used with Format-Table.

First, be aware that Format-Table normally tries to fill your entire screen with text, edge to
edge, even if that means putting a lot of space in the middle. You can, however, tell it to try
and automatically size each table column for whatever that column needs to contain. Notice
the difference in these:

Get-Service | Format-Table Name,Status
Get-Service | Format-Table Name,Status -autosize

Realtime 6

http://connect.concentratedtech.com/

PowerShell Crash Course Don Jones
|

If you've sorted your objects, you can have Format-Table group them. Each group gets a
new set of column headers. For example:

Get-Service | Sort Status | Format-Table Name,Status -autosize
-groupby Status

Neat, right?

You can also create custom columns. These might simply translate one kind of value to
another. For example, the Win32_LogicalDisk class includes a Size property that contains a
disk’s size in bytes; we could make that megabytes in our output by adding a custom
column. The syntax for doing so is a bit complicated, though. You need to create something
called a hashtable. These are also known as dictionary objects. They can contain multiple
entries, and each entry consists of a key and a value (or, as I like to think of them, a word
and a definition). Making one looks like this:

@{'Key'="'Value'; 'Word'="Definition'}

That hashtable has two items. The items are separated by a semicolon, the whole thing is
contained in {curly braces}, and an @ sign tells the shell that we’re defining a hashtable.
When making custom columns in Format-Table, you're not quite so freeform. You have to
specify exactly two keys: Label (which can also be called Name), and Expression. These can
be shortened to just “1” and “e,” which are a lot easier to type. The Label is what you want
your custom column to be titled, and the expression is a script block that calculates the
column’s content. Within that script block—just as with Where-Object, which I showed you
earlier in this chapter—you can use the $_ placeholder to refer to the remainder of the
current table row.

Here’s an example. This is all meant to be typed on one line, by the way.

Get-WmiObject -class Win32_ LogicalDisk -filter 'DriveType=3' |
Format-Table DeviceID,@{l='Size(MB)';e={$_.Size / 1MB -as [int]}}

Yeah, [know—complicated. Told you so. Focus on that hashtable: I've set a label of
“Size(MB),” which is straightforward enough. The expression (“e”) goes into a {script block}
rather than in quotation marks. Within that script block—and only within that script
block—you can use that $_ placeholder to refer to the row of information. Follow it with a
period, then the piece of information you want—*“Size.” I divided by 1MB (yup, PowerShell
recognizes KB, MB, GB, TB, and PB). I used the -as operator to convert the result to an [int]
(integer), forcing it to drop the fractional portion of the result so that I get a whole number.
I'll leave you with that. Play with it, practice with it. Hit me up on

http://connect.concentratedtech.com if you get stuck.

>altime 7

.__.
P
F aw

PowerShell Crash Course Don Jones
|

One caution: The output of a Format- cmdlet is very specialized, and it can only be used by
some very specific PowerShell cmdlets, which I'll discuss next. In short, the Format cmdlet
generally needs to be the last thing on the command line. You can’t do this:

Get-Service | Format-Table | ConvertTo-HTML > services.html

Although I invite you to try. The results may surprise you.

Week 2, Day 4: Getting “Out”

Once you've formatted data, you might be interested in looking at it. By default, anything
left in the pipeline at its end will be sent to a built-in, hardcoded cmdlet called Out-Default.
In the PowerShell console host and ISE, Out-Default simply forwards to Out-Host. Out-Host
is the cmdlet responsible for putting information on the screen (“host” means “screen,”
here).

There are other Out cmdlets you can play with: Out-File and Out-Printer are two common
ones. Together, these four Out cmdlets have one thing in common: They only consume the
output of a Format cmdlet. That is, if you run this:

Get-Service

What's really happening under the hood looks something like this:

Get-Service | Out-Default | Format-Table | Out-Host

That’s not exactly what’s happening, but it’s an illustration. Anyway, I told you earlier that a
Format cmdlet, if used, needs to be the last thing on the command line. The only exception
is that a Format cmdlet can be followed by Out-Host, Out-Printer, or Out-File. In fact, these
two commands are identical because > is just an alias (sort of) to Out-File:

Dir > files.txt
Dir | Out-File files.txt

Read the help for Out-File, by the way. You'll find a number of really useful options.

There’s also Out-GridView, which only works if you have the PowerShell ISE and .NET
Framework 3.5 installed. Try this:

Get-Process | Out-GridView

I'll leave you with that. Experiment with some of the Out- cmdlets and see what you can
come up with.

Realtime 8

PowerShell Crash Course Don Jones
|

Week 2, Day 5: Extending the Shell

Stop thinking about PowerShell for a second and start thinking about the MMC. When you
open a new, blank MMC, it isn’t very useful, is it? You have to add snap-ins to it in order to
add actual functionality. You can add as many snap-ins as you like, from whatever
administrative tools you've installed on your computer.

PowerShell is the same way. Now, there’s a bit of confusion going around about this. Install
the Exchange Server admin tools and you'll get an “Exchange Management Shell” icon.
SharePoint does something similar. Windows Server 2008 R2 has an “Active Directory”
shell icon. These aren’t different versions of PowerShell. Like the MMC, these are just icons
that load the same old PowerShell, with a particular extension pre-loaded. You can also
load those same extensions into the normal shell yourself, and if you open one of these
“pre-loaded” shells, you can still load whatever other extensions you like. It’s your choice.

When you do load an extension, it only stays loaded for the duration of that shell session.
When you open a new shell window, you're starting from scratch. A bit later, I'll introduce
you to profiles, which give you a way to have the same extensions loaded in every new shell
window. For now, you need to know that there are two ways of extending the shell:

e PSSnapins (or “snap-ins”) is the old-school, vl way of doing it. Snap-ins have to be
installed (generally, install the administrative tools for a product and you’ll get the
snap-in). Run Get-PSSnapin -registered to see which ones are installed; with that
list of names, you can run Add-PSSnapin to load a particular snap-in by name. You’ll
still find new snap-ins being produced—even Windows Server 2008 R2 shipped
with a new snap-in or two.

e Modules are the new, v2 way of extending the shell. Run Get-Module -list to see a
list of what’s available on your computer, and Import-Module (along with the
module name) to load a module into memory.

Once you've loaded an extension, you can ask the shell to show you what was added:

¢ Run Get-Command -pssnapin name to see the commands added by the PSSnapin
you specified; replace name with the snap-in’s actual name.

¢ Run Get-Command -module name to see the commands added by the module you
specified.

The Windows 7 Remote Server Administration Toolkit (RSAT) adds a bunch of modules,
and Windows 7 ships with a few pre-installed. Windows Server 2008 R2 installs modules
along with their associated roles, so a domain controller will have the ActiveDirectory
module. Third parties can also produce modules and snap-ins:

¢ (Quest.com/PowerShell—alternate AD cmdlets

e (CodePlex.com/powershellcx—open-source community extensions

[maintain a directory of the higher-quality stuff at http://ShellHub.com. Drop by and see
what tickles your fancy.

5 PRI
l{}’aa'_(_lll_llllfﬂ-_ 9

http://shellhub.com/

PowerShell Crash Course Don Jones
|

Weekend Wrap-Up

If you're sticking with the one-lesson-per-day regimen, then you're probably ready for the
weekend. Take a couple of days off! The next installment will have another week of lessons
for you. Until then, keep practicing what you’ve learned!

By the way, if you got this chapter as a pass-along from a friend, thanks for reading it. Hop
on http://nexus.realtimepublishers.com for more chapters from this book, and for a lot of
other free books. Registration is required, but you'll be able to download PDF versions of
all their books at no charge. Speaking as an author, that's very important: Your registration
lets the publisher know that you're interested in this book, and that keeps the publisher
engaging authors like myself to write more for you. I appreciate it.

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

Realtime 10

http://nexus.realtimepublishers.com/
http://nexus.realtimepublishers.com/

	Introduction to Realtime Publishers
	PowerShell Crash Course Week 2
	Week 2, Day 1: Variables
	Week 2, Day 2: Operators and Filtering
	Week 2, Day 3: Formatting
	Week 2, Day 4: Getting “Out”
	Week 2, Day 5: Extending the Shell
	Weekend Wrap-Up
	Download Additional Books from Realtime Nexus!

