The Administrator Crash Course

Windows PowerShell v2

PowerShell Crash Course Don Jones

Introduction to Realtime Publishers

by Don Jones, Series Editor

For several years now, Realtime has produced dozens and dozens of high-quality books
that just happen to be delivered in electronic format—at no cost to you, the reader. We've
made this unique publishing model work through the generous support and cooperation of
our sponsors, who agree to bear each book’s production expenses for the benefit of our
readers.

Although we’ve always offered our publications to you for free, don’t think for a moment
that quality is anything less than our top priority. My job is to make sure that our books are
as good as—and in most cases better than—any printed book that would cost you $40 or
more. Our electronic publishing model offers several advantages over printed books: You
receive chapters literally as fast as our authors produce them (hence the “realtime” aspect
of our model), and we can update chapters to reflect the latest changes in technology.

[want to point out that our books are by no means paid advertisements or white papers.
We're an independent publishing company, and an important aspect of my job is to make
sure that our authors are free to voice their expertise and opinions without reservation or
restriction. We maintain complete editorial control of our publications, and I'm proud that
we’ve produced so many quality books over the past years.

[want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially
if you've received this publication from a friend or colleague. We have a wide variety of

additional books on a range of topics, and you're sure to find something that’s of interest to
you—and it won'’t cost you a thing. We hope you’ll continue to come to Realtime for your
educational needs far into the future.

Until then, enjoy.

Don Jones

Realtime i

http://nexus.realtimepublishers.com/

PowerShell Crash Course Don Jones
|

Introduction to Realtime PUDIiShers...... s i
PowerShell Crash Course WEEK 1 ... ceeeecseeseeeesesssssesssessesssssessesssessesssssssssssssssssssssssssessesssesans 1
Pre-REQUISITES ..ottt 2
Week 1, Day 1: Commands, Cmdlets, and AlIaSes.......cenenmeenesseensesneesesnsessssssssssssesssssssssesssens 2
WEEK 1, DAY 2: OULPUL..ciiiirirrreseessessessesssesssnes 4
SEEP 1: FINA ATETIDULES. oottt sses e s s es s s s s s s s 4
StEP 2: PICK @ LAYOUL w.ovueecereteiesses et sesssssssssss s ssssss s ssssssssssss s ssssssssssssssssssssssssassssssssssas 5
Step 3: Add YOUT PrOPEIties....inineeriesesssssssssisssssesessssssssssessesssssssss s ssssssssssssssssssssssssssssessssess 5
FOrmat, Then YOU'TE DO sesssesssesssessssssssssssssssssssssssssssesssesssesssssesssesssssssssssssssssnssens 6
Week 1, Day 3: The PIPEIINE ..t sses s sses s sasessneas 6
Step 1: Determine YOUTr OUEPUL ..o ssssss s ssssssssssssssssssass 7
Step 2: Find Matching INPUL TYPES ..ceeeeereereereereesseesesseesssesessesssesseessesssessesssessesssessessssssssssssssessssssesans 7
Step 3: When Types Aren’'t ENOUZH ...ttt sesssssesesssssssessessssssssssssssssssssans 8
Week 1, Day 4: COTe CIMAIELS ... ueerererseessesssssssesssssessssssssesssssssessssssssssssssssesssssssssssssssssssssssssssssssssssssns 9
Week 1, Day 5: Configuration BaSEliNes ... sssssssssssssssssssssssssssssees 10
Download Additional Books from Realtime NeXus!coenenmerneemeenneeseeseeseesseesessessesseeanes 11

Realtime i

PowerShell Crash Course Don Jones
|

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime iii

mailto:info@realtimepublishers.com

PowerShell Crash Course Don Jones

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

PowerShell Crash Course Week 1

By now you've probably gotten the message loud and clear that Windows PowerShell is
pretty important; Microsoft is adding it to more and more products, and going forward, the
company’s plan is to incorporate PowerShell throughout all of its business products as a
baseline administrative layer. No, the GUI isn’t going away—it’s still called “Windows,”
after all—but in most cases, the GUI will simply be running PowerShell commands under
the hood. In some cases, the GUI will be “de-emphasized,” meaning the GUI might not
surface all of the product’s administrative functionality.

If you're ready to get started in PowerShell, and have no experience, this is the crash course
for you. If you have a bit of Unix or VBScript experience, try to remove that from your brain:
PowerShell will look familiar, but it’s really something very new and different.

[encourage you to continue exploring beyond this crash course, too. For example, visit
http://windowsitpro.com/go/DonJonesPowerShell to find tips and tricks and FAQs and to
ask questions, or drop by the PowerShell team’s own blog at
http://blogs.msdn.com/powershell for “insider” information. You'll also find a lot of in-
person PowerShell instruction at events like TechMentor

(http://www.techmentorevents.com) and Windows Connections

(http://www.winconnections.com).

How to Use this Crash Course

[suggest that you tackle a single crash course item each day. Spend some
time practicing whatever examples are provided and trying to complete tasks
that make sense in your environment. Don’t be afraid to fail: Errors are how
we learn. Just do it in a virtual environment (I recommend a virtualized
domain controller running Windows Server 2008 R2) so that you don’t upset
the boss! Each “Day” in this crash course is designed to be reviewed in under
an hour, so it’s a perfect way to spend lunch for a few weeks. This book will
be published in five-day increments, so each chapter corresponds to a single
week of learning.

Realtime 1

http://nexus.realtimepublishers.com/
http://windowsitpro.com/go/DonJonesPowerShell
http://blogs.msdn.com/powershell
http://www.techmentorevents.com/
http://www.winconnections.com/

PowerShell Crash Course Don Jones
|

By the way, this crash course isn’t intended to be comprehensive—I already co-authored
Windows PowerShell v2: TFM and don’t intend to re-write the same book here! Instead, this
is designed to get you up and running quickly with the most crucial elements of the shell.
I'm skipping over a lot of stuff to get right to the really good bits, and in some cases, I may
gloss over technical details simply because they don’t contribute to speedy understanding
of the most important things. You should obviously keep exploring; in my blog (linked
earlier), for example, I go into a lot of these little details in one short article at a time. You'll
also find PowerShell video tips on http://nexus.realtimepublishers.com, and those can help
you embrace some of the more-detailed things that I might skip here.

Pre-Requisites

PowerShell v2 comes preinstalled on Windows 7 and Windows Server 2008 R2; it’s
available as a free download (from http://download.microsoft.com) for Windows XP,
Windows Server 2003, Windows Vista, and Windows Server 2008. Be sure to download the
right version for your operating system (0S) and architecture (32- or 64-bit). You'll need,
at a minimum, .NET Framework v2 installed. Ideally, get the latest version of the
Framework, or at least v3.5 Service Pack 1, because that enables maximum Windows
PowerShell features.

Windows Server 2008 R2 ships with a number of PowerShell modules that connect
PowerShell to Active Directory (AD), IIS, BitLocker, and other technologies. Generally
speaking, these modules will only run on Windows Server 2008 R2 or, if you install the
Remote Server Administration Toolkit, on Windows 7. There’s a trick called implicit
remoting (I'll get to it) that lets you access these cmdlets from older OSs that have
PowerShell v2 installed, but you’ll need at least one Win7 or Win2008R2 machine on your
network to host the cmdlets for remote use.

Week 1, Day 1: Commands, Cmdlets, and Aliases

PowerShell is not, first and foremost, a scripting language. It’s a shell, not unlike Cmd.exe.
It's written in .NET instead of C++ or something, but in the end it’s a text-based command-
line window. You type commands, hit Enter, and they run—and you see results.

Go on, try it. Run Ping, Ipconfig, Net Share, or whatever other commands you may know.
They’ll work. Those three specifically are external commands, meaning they exist as
standalone .exe files. PowerShell also has native commands, which are called cmdlets
(pronounced “command-lets”). The difference with these is that they only run within
PowerShell; you can’t get to them from Cmd.exe or from Explorer or anywhere else.
Examples include Dir, Cd, Del, Move, Copy, and Type. Yep, those look just like command
names you're probably familiar with. You can try Ls, Cat, and Cp while you're at it, because
those will all work, too.

>altime 2

.__.
P
F aw

http://nexus.realtimepublishers.com/
http://download.microsoft.com/

PowerShell Crash Course Don Jones
|

But they won’t work in quite the same way that you're used to. Those are actually aliases,
or nicknames, to PowerShell cmdlets. The real cmdlet names are things like Get-ChildItem,
Set-Location, Remove-Item, Move-Item, Copy-Item, and Get-Content. The aliases exist
to give you something a bit easier to type that corresponds to the MS-DOS-style command
names that you're probably familiar with. These new cmdlets—and their aliases—work
similarly to those old-school commands, but they get there in a different way. For example,
try running Dir /s in PowerShell; you'll probably get an error. Run Help Dir and you’ll see
why you got an error: There’s no /s parameter.

In PowerShell, parameters all begin with a dash (-) not a slash (/), and parameter names
tend to be full words, like recurse. So running Dir -recurse will work just fine. Actually, you
don’t have to type the full parameter name; you only need enough so that the shell can
uniquely identify it. Dir -r will probably work fine. And no, you can’t build an alias that
would make “Dir /s” work; aliases are just a nickname for the cmdlet name. Aliases don’t
have any effect on the parameters of the cmdlet.

That Help command is going to be your new best friend—or it had better be, if you plan to
master PowerShell. Run Help * for a list of all help topics; notice the numerous “about”
topics that don’t relate to a specific cmdlet but instead cover background concepts. That’s
your manual (in fact, you can use the Unix-style alias Man instead of Help if you prefer).
Run Help *service* to see everything that has to do with services, or Help *user* to see if
there’s anything in there to deal with user accounts.

While we're at it, notice the cmdlet names: They have a specific naming pattern, consisting
of a verb, a dash, and a singular noun (it's Get-Service, not “Get-Services”). The verbs come
from a strictly-controlled set: It will always be New and not Create, and you’ll never see
Delete in place of Remove. These consistent verb names, combined with common nouns
such as Service, Process, EventLog, and so forth, make it easier to guess at a cmdlet name.
Can you guess the cmdlet provided by Exchange Server to retrieve mailboxes? Get-
Mailbox. What cmdlet in the AD module might retrieve a user account? Get-ADUser. Yeah,
sometimes you'll see a product-specific prefix, such as “AD,” attached to the noun. That
helps distinguish it from other kinds of user accounts that might exist in your environment.

Try running some single commands. Stuck for ideas? Run Help * to get a list of help topics,
which will include all the cmdlets, then run Help cmdlet-name -example. Adding the -
example parameter retrieves a list of examples for that particular cmdlet—very handy!

PowerShell Crash Course Don Jones
|

Week 1, Day 2: Output

Running Dir and so forth certainly produces text on the screen. But let’s look at why text is
bad.

In the Unix world, everything is text based. Run a command that generates a list of running
processes, and you'll see a text list laid out as a columnar table. A Unix admin looking for a
particular process name might pipe that text to a command like Grep, telling it to filter out
entire rows based on the contents of columns 8 through 16, which contained process
names. That kind of text parsing has been a common task in most shell-based
administration. It’s tough because it requires exactitude—and often a lot of
experimentation—that goes beyond the actual administrative task. PowerShell doesn’t
work that way.

Instead, PowerShell cmdlets produce objects, which are essentially a specialized data
structure in memory. Instead of putting information into tables and lists, information goes
into this specialized structure. The benefit of this structure is that you can ask the shell for
a single piece of information, and it can instantly retrieve it without you having to know
exactly how the structure is built. In other words, you don’t ask the shell to look at the
contents of columns 8 through 16; you just ask it to look at the process’ names. The shell
knows which bit of the data structure contains the name so that you don’t have to know.

This turns out to be pretty powerful, as you'll see shortly. But you might ask yourself why
PowerShell cmdlets still seem to produce text. Well, that’s because the shell knows that you,
poor human being that you are, can’t comprehend the wondrous data structures stored in
your computer’s memory. So when the shell finishes running commands, it converts all
those objects into text-based tables and lists for you. Essentially, it retrieves some of the
objects’ attributes from the in-memory data structure and dynamically constructs a text-
based table or list.

You can actually exercise a tremendous amount of control over this process, or just sit back
and let the defaults take over. If you aren’t liking the defaults, there are really three steps
you need to take.

Step 1: Find Attributes

Every object that the shell works with has numerous attributes or properties. For example,
a process has properties for its name, ID, memory consumption, and so forth. To see a list
of them all, pipe the object to Get-Member (which has an alias, Gm). For example, Get-
Process | Gm will show you the properties of a process; Get-Service | Gm will show you
the properties of a service.

Hint

Any cmdlet that uses Get as its verb will usually produce some kind of object
that can be piped to Get-Member.

Make a note of the properties that you think you’d like to see. Just write down their names,
for now.

5 PRI
l{}’aa'_(_lll_llllfﬂ-_ 4

PowerShell Crash Course Don Jones
|

Step 2: Pick a Layout

PowerShell offers three default layouts: tables, lists, and a wide list. Decide which one you
think will work for your needs. Keep in mind that tables can only hold so many columns
without truncating information, so if you've selected a LOT of properties, a list might be
appropriate. A wide list only displays a single property—something else to keep in mind.
Once you've chosen a layout, you'll pipe your objects to it: Get-Process | Format-List, for
example, or Get-Service | Format-Wide, or Get-EventLog Security -newest 20 | Format-
Table. The aliases for those Format cmdlets are FL, FW, and FT, respectively.

Hint
The shell isn’t case-sensitive about cmdlet or alias names. FT is the same as
Ft, ft, and fT.

Step 3: Add Your Properties

By default, the shell decides what properties are shown in a table or list, and it defaults to
the Name property for wide lists. Customize that by just providing a comma-separated list
of properties: Get-Process | FL Name,ID,VM,CPU. If you just want every property shown,
use * for the property list: Get-Service | FL *.

Additional parameters of the Format cmdlets enable further customization. See if you can
answer these questions:

e Ifyou use a table with only a couple of properties, such as Get-Service | FT
Name,Status, you'll notice a lot of unused space on the screen. What parameter of
Format-Table might eliminate that extra space and instead automatically size each
column for its contents?

e Ifyouinclude too many columns, FT may truncate their contents. What parameter
would instead force it to word-wrap that information?

e FW defaults to two columns. How can you have a list of four columns?

Realtime 5

PowerShell Crash Course Don Jones
|

Format, Then You’re Done

A trick about the Format cmdlets is that they consume whatever you pipe into them. They
output a special kind of formatting instruction that really only makes sense to the shell
itself. Try running Get-Process | FT | GM and you'll see what I mean. The practical upshot
of this is that a Format cmdlet will almost always be the last thing on the command line.
“Almost always?” Yes—the one type of cmdlet that can understand Format output is an Out
cmdlet: Out-Host, Out-Printer, Out-File, and so forth. In fact, Out-Host is the one used by
default in the console window, but you can pipe formatted output to the other Out cmdlets
to redirect output to a printer, a file, or elsewhere:

e Ifyoudirect output to Out-File, the file width defaults to 80 characters. What if you
wanted to pipe out a much wider table of information? Is there a parameter that
would let you modify the logical width of the file?

e What parameters allow you to specify a destination printer when piping output to a
printer?

e (Can you pipe output directly to an Out cmdlet without using a Format cmdlet, such
as Get-Service | Out-File test.txt ?

Week 1, Day 3: The Pipeline

You've already started piping stuff from one cmdlet to another, so it should come as no
surprise that PowerShell cmdlets run in a pipeline. Essentially, a pipeline is just a sequence
of cmdlets:

Get-Service | Sort Status -descending | Format-Table -groupBy Status

The pipe | character separates each cmdlet. Each cmdlet places things into the pipeline, and
they are carried to the next cmdlet, which does something with them. Then that cmdlet
places something into the pipeline, which carries it to the next cmdlet...and so on. This can
create some pretty powerful one-line commands, and thanks to the shell’s cmdlet naming
syntax, they can be pretty easy to figure out. For example, consider this pseudo-command:

Get-Mailbox | Sort Size -descending | Select -first 10 | Move-Mailbox Server2

That’s not the exact correct syntax, but hopefully it conveys the power of the shell’s cmdlet
interaction. The trick is that every cmdlet gets to decide what kind of input it will accept. In
other words, you can’t just pipe anything to anything. This would make no sense:

Get-ADUser -filter * | Stop-Service

There’s no reason why piping a user account to Stop-Service should make sense, and in
fact it won’t work. So how can you tell what a cmdlet is willing to accept as input from the
pipeline? There are (as will become a theme in this crash course) three steps.

>altime 6

.__.
P
F aw

PowerShell Crash Course Don Jones
|

Step 1: Determine Your Output

First, cmdlets that produce output are, as we already learned, producing objects. The thing
is, not all objects are built the same. A process looks very different from a service, for
example, which is entirely different than an event log entry or a user account. So, each
object has a type name, which simply describes the kind of object you're looking at. Piping
objects to Get-Member reveals their type name. Run Get-Service | Gm and see if you can
find the type name. Go on, I'll wait.

..waits...

It’s a ServiceController, right? You can often just take the last segment of the type name.
Now there’s just one trick: All objects are technically of whatever type they are and they are
the more generic “object” type. That’s like saying you're a Homo sapien, which is a very
specific type name, and that you're also an organism, which is much more generic. “Object”
is just a very generic classification for object types.

Ok, so now you know what you have as your cmdlet output: A generic “object” as well as
some more specific type name. Now, what can you do with it?

Step 2: Find Matching Input Types

Run Help Stop-Service -full (you'll find that the -full help is often the most useful). Start
looking at the breakdown for each parameter. Notice how each parameter has the option to
“Accept pipeline input?” It's False for many of them. In fact, for Stop-Service, the first one
that’s True is the -inputObject parameter. More specifically, it accepts pipeline input
ByValue, it says in the help. Looking at the parameter definition, you'll see that the type of
object it accepts is ServiceController. Wait, where have we seen that before?

So here’s how it works:

1. You pipe object(s) from one cmdlet to another.
2. The receiving cmdlet looks at the type name of the incoming objects.

3. The receiving cmmdlet looks to see whether any of its parameters will accept pipeline
input ByValue for that type name.

4. Ifit finds one (and there will be zero or one, but not more), the input objects are
“given” to that parameter.

So that’s why this works (and it’ll crash your machine, so don’t run it):
Get-Service | Stop-Service

It works because Get-Service produced ServiceController objects. Those were piped to
Stop-Service, which quickly realized that the -inputObject parameter was willing to accept
objects of that type (which is what ByValue means). So those services were handed off to
the -inputObject parameter, specifying the services that should be stopped.

Realtime ;

PowerShell Crash Course Don Jones
|

Reading that help file a bit more, you’ll notice that -Name also accepts input ByValue. Its
value type is String, meaning if you pipe in a string of characters, they’ll be attached to the -
Name parameter, specifying the service(s) to stop:

“BITS” | Stop-Service

“BITS”,”TrustedInstaller” | Stop-Service
Tip
When you make a comma-separated list of values, PowerShell treats them as
a single group, so those two values are piped in as a unit. Because they're

both of the String type, they’ll both attach to the -Name parameter, and both
services will be stopped.

And how did we know that “BITS”,”TrustedInstaller” were strings? By using Get-Member,
of course!

“BITS”,”TrustedInstaller” | GM

They’re clearly identified as a System.String (just “String” for short) by the output of Get-
Member.

Step 3: When Types Aren’t Enough
Now, the shell isn’t super-smart. It will try to do stuff that doesn’t make sense, if you tell it
to. For example, consider this:

Get-Process | Stop-Service

Makes no sense, right? Well, let’s look at it from the shell’s point of view. Get-Process
produces objects that, according to Get-Member, are of the System.Diagnostics.Process
type. Great. Looking through the help for Stop-Service, I don’t see any parameters that will
bind a Process object ByValue; I also don’t see any that would bind the more-generic
“object” ByValue. So accepting pipeline input ByValue will fail.

But the shell has a backup plan: Accepting pipeline input ByPropertyName. For Stop-
Service, you'll see this only on the -Name parameter. What does this mean?

1. You pipe object(s) from one cmdlet to another.
2. The receiving cmmdlet looks at the type name of the incoming objects.

3. The receiving cmdlet looks to see whether any of its parameters will accept pipeline
input ByValue for that type name.

4. Ifit doesn’t find one, which is the case in this example, it will look to see what
parameters accept pipeline input ByPropertyName.

5. It will then attach those parameters to the properties of the incoming object(s) that
have a matching name. In other words, if the incoming objects have a Name
property, the value of that property will go into the -Name parameter of Stop-
Service simply because the names match.

5 PRI
l{}’aa'_(_lll_llllfﬂ-_ 8

PowerShell Crash Course Don Jones
|

Remember, this is “Plan B,” so it only goes into effect when nothing could be bound to a
parameter ByValue. So we're sitting here looking at a -Name parameter that wants to take
pipeline input ByPropertyName. We’ve given it Process objects. Do those Process objects
have a Name property? According to Get-Member, they do indeed! So the Name property of
the input objects will be passed to the -Name property of the cmdlet. The result is that the
Stop-Service cmdlet will try and stop services based on their process name. In many cases,
it will be able to do so because a service’s name is often the same as the name of its process
when the service is running.

So you have to be a bit careful with this business of piping objects from one cmdlet to
another—sometimes it'll work better than you think, which might be worse than you want.

Week 1, Day 4: Core Cmdlets

Now that you know how to pipe stuff from one cmdlet to another, you might want to learn
some of the cmdlets that can let you manipulate objects in the pipeline. I'm going to briefly
introduce these and give you a quick example, but I'm going to expect you to read the help
to learn more about them—and I'll ask some finishing questions to help encourage that
independent research:

e Sort-Object, or its alias Sort, rearranges objects in memory. Just specify the
property you want to sort them by, such as Get-Process | Sort ID.

e Select-Object does a lot of stuff, and you’ll often see its alias, Select. For now, focus
on its ability to grab just the first or last objects in the pipeline: Get-Process | Sort
VM | Select -first 10.

e Measure-Object counts objects. If you specify a property, you can also have it
average the values for that property, assuming it contains numeric values. Its alias is
just Measure: Get-Process | Measure vmm -average

¢ Import-CSV and Export-CSV read and write Comma-Separated Values (CSV) files,
like this: Get-Service | Export-CSV servicelist.csv

e ConvertTo-HTML creates an HTML table. You'll probably want to write the HTML
to a file: Get-EventLog Security -newest 10 | ConvertTo-HTML | Out-File
security-events.htm

Now’s the time for that independent research. How would you:

e Change the sort order of Sort to be descending instead of ascending (which is the
default)?

e Get the last 20 objects from the pipeline using Select?
e Change the delimiter of a CSV file to a pipe | character instead of a comma?

e Display not only the average value for processing physical memory but also the
minimum and maximum values and the total physical memory used?

The more comfortable you become reading the help, the more capabilities you'll find!

PowerShell Crash Course Don Jones
|

Week 1, Day 5: Configuration Baselines

This is the last tip for your first week of PowerShell, and it’s a doozy. First up is a pair of
cmdlets that read and write XML-formatted files: Import-CliXML and Export-CliXML. For
example, let’s export all the running processes to a file:

Get-Process | Export-CliXML baseline.xml
Now, launch a couple more processes:

Notepad
Calc
Mspaint

Now for a fun new cmdlet called Compare-Object, or Diff as us slow typists like to call him.
This cmdlet isn’t that good at comparing text files (remember, PowerShell kinda hates
text), but it's awesome at comparing sets of objects. Consider this command:

Diff (Ps) (Import-CliXML baseline.xml)

Couple of fun things happening there. First, PS is just an alias for Get-Process. The really
fun thing is the placement of the parameters. You see, | should really have written the
command like this:

Diff -referenceObject (Ps) -differenceObject (Import-CliXML baseline.xml)

This time, 'm including the actual parameter names. But I looked in the help (as I'm sure
you did), and saw that -referenceObject is positional, and occupies the first position. The -
differenceObject parameter is also positional, and occupies position 2. With these positional
parameters, [don’t need to type the parameter name so long as I put the parameter values
into the correct positions. Thus:

Diff (Ps) (Import-CliXML baseline.xml)

The parentheses are doing something special. Just like in algebra, they tell the shell to
execute whatever is inside the parentheses first. The result of whatever’s inside the
parentheses is passed to the parameter. So the result of Get-Process (which is a bunch of
process objects) is passed to -referenceObject, and the result of Import-CliXML
baseline.xml is passed to the -differenceObject parameter. Basically, I'm comparing two
sets of processes: the current set and the set that I had exported to a CliXML file earlier.

>altime 10

.__.
P
F aw

PowerShell Crash Course Don Jones
|

The results are horrible. Oops. That’s actually because everything about processes is
constantly changing, including their memory use, CPU use, and so on. I'd do better to just
compare a single, unchanging property—Ilike name:

Diff (Ps) (Import-CliXML baseline.xml) -property Name

Ah, there are some results. I can now see which objects were present in the left side (the
current processes) but not in the right (the baseline). So this is a difference report of my
current configuration versus my baseline configuration. Imagine what other types of
objects you could export and compare in this fashion!

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

Realtime 11

http://nexus.realtimepublishers.com/

	Introduction to Realtime Publishers
	PowerShell Crash Course Week 1
	Pre-Requisites
	Week 1, Day 1: Commands, Cmdlets, and Aliases
	Week 1, Day 2: Output
	Step 1: Find Attributes
	Step 2: Pick a Layout
	Step 3: Add Your Properties
	Format, Then You’re Done

	Week 1, Day 3: The Pipeline
	Step 1: Determine Your Output
	Step 2: Find Matching Input Types
	Step 3: When Types Aren’t Enough

	Week 1, Day 4: Core Cmdlets
	Week 1, Day 5: Configuration Baselines
	Download Additional Books from Realtime Nexus!

