publishers

The Five Essential Elements of
Application
Performance
Monitoring

Don Jones

sponsore d by

QUEST
SOFTWARE"

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Chapter 4: Diving Deep into Your Application COMPONENLESccverererreereeneensenmesessessssssssssssssessenns 54
Moving Further In: Going from Health Problems to Component Diagnostics........cccoueneennee 54
Using Health to FOCUS YOUT EffOrtS ...t ssssesssesssesse s sssssssssesssanes 55
Using Domain-Specific Tools to Gather More Information ... 58
The 5D Approach: FIow-Up and FIOW-DOWN......cinnissssssssssssssssssssssssssssssssessssssss 59
Problems FIOW DOWN the MOl ... sesssesesssessses e sssssssssssssanes 60
Root Causes FIOW Up the MOdEloeenirreeersesssssssssesssssssssssssssssesssssssssssssssesssssssssans 61
Deep-Dive Areas and TeChNIQUES......creinerneniseseses s ssesessesses s sssssssssssssssssssens 63
Database Management SYSTEIMS ..o eereerrereesseessesseesseessessesssessssssessesssessssssessssssssssssssssssssssssssses 63
Application Server MiddIEWATE........oereenreeereereesseesesseesessesssessessssss s sssssssssssssssssssssssssssseens 65
Message-Oriented MiddIEWATE........oueeernerneseseersssses s ssssssesssessssssasssans 66
Off-the-Shelf Application FrameworKsissssssssssssssssssssssssssssssssssssnes 67
ENterpriSe APPLICATIONS ..o erceceureeeeereeseeseessesse e sees s sses s s s s s s 68
VIrtUal INfrastIUCLUTE. ...ttt ssses s ss s bbb 69
NEtWOTK INfIaSTIUCTUTE.......cuuieeeeeeeeeesseessessseessesssess s ssessse s ssss s s s ssssse s ss s s sssessssssas 70
What to Do With Performance Data........oeeneneeneeseessesseeseesesssssesssssssssessssssessesssessssssesssees 71
CONTINUOUS MONIEOTING cooveuierieieieeeseresses s sss e ses s s sses s bbb s 71

N (=) oo Do VPP 71
=] 010) o0 1 P 71
BaSEIIMIIIG ..ceueereeceeeereeees ettt s s s e s 71
L0000 000 0 Vgl 1o T8 =) PP 71

Realtime i

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime i

mailto:info@realtimepublishers.com

The Five Essential Elements of Application Performance Monitoring Don Jones

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 4: Diving Deep into Your
Application Components

With a valid and comprehensive application stack mapped out, you can start monitoring
specific components’ health. But when something goes wrong with a component, how do
you figure out exactly what went wrong and start to take action toward fixing it? You could
take the traditional approach and have IT specialists dig into the component using domain-
specific tools—which can be difficult to do and often leads to specialists arguing with each
other about whose components are really at fault. The 5D approach is to use a consolidated
toolset that can dive deep within components to identify specific problems. You're moving
beyond component health, now, and starting to diagnose specific root causes by looking
under the hood.

Moving Further In: Going from Health Problems to Component

Diagnostics

In their paper “Magic Quadrant for Application Performance Monitoring,” Gartner defines
this fourth dimension of APM as “Application component deep-dive monitoring,” describing
itas:

...a diverse set of technologies. In addition to the higher-level application
health portraits obtained by the first three dimensions, effective diagnosis of
performance problems frequently involves "looking under the covers" of the
critical elements that hold a modern, highly modular application stack
together; such elements include database management systems, application
server middleware, message-oriented middleware, off-the-shelf application
stack frameworks and even some aspects of the network infrastructure.
(Byte code instrumentation is a frequently favored way, for example, of deep-
dive monitoring for application servers.)

It's important to note that a lot of APM solutions don’t really provide this dimension. Many
of them stop at the server level; they can tell you when a database server isn’t performing
well, for example, but they can’t dive deeper to tell you which bit of a Java or .NET
Framework application that uses that database is holding up performance. As I'll discuss in
the next chapter, proper APM depends on having all five dimensions in the 5D approach,
and this fourth dimension is especially important for quickly pinpointing the root,
actionable cause of a problem.

Realtime 54

http://nexus.realtimepublishers.com/

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Using Health to Focus Your Efforts

When an application’s performance starts to fall below your goals, where do you begin
your troubleshooting and corrective efforts? Obviously, you need to dig into your
application at the component level, but what component do you look at first?

Health is one way to focus your efforts. [make a distinction between health and
performance:

e Performance is raw data. It tells you how, from a performance perspective, a
particular component is performing at a given moment. At a simplistic level, this
might be something like “80% CPU utilization” or “12ms to complete this query.”
Performance data is typically contextual, meaning that it requires some
interpretation—either by a tool or by your brain—in order to have any real-world
meaning. Performance is neither good nor bad; it just is what it is.

e Health, however, is what you get when you take raw performance data and apply
some kind of threshold to it to define “good” and “bad” performance. “This
component is healthy if the query takes less than 20ms to execute,” for example.
These thresholds are what help focus your efforts, by enabling you to more quickly
identify components whose performance is out-of-bounds, abnormal, and so forth.

Take the simplistic example console shown in Figure 4.1. This shows both raw
performance—the line charts—as well as health thresholds, which are shown as dashed
lines in the middle column of information. Performance values that exceed the predefined
thresholds result in an “alert” indication, such as the large red “X,” that help draw your
attention to a component or application element that isn’t performing where it should be.

Realtime 55

The Five Essential Elements of Application Performance Monitoring Don Jones

18:30

Last Minute Bookings

W sttus % (B 7 |[1 max x

1828

Figure 4.1: Monitoring application health and performance.

Consoles like these are designed to quickly direct your attention to whatever application
element is creating the most-immediate performance issues, helping you to triage your
troubleshooting efforts. Figure 4.2 shows another console, which may direct your attention
to an entire server or help you drill down into individual application elements.

The Five Essential Elements of Application Performance Monitoring Don Jones
I

@ server 2domain [orrdvizs.sra I+ @ | 5 (fOMIN: @ Server suve romesss
alh; @ Aams:

Ll

(’\j W q

;
000000000000l

e ;000 00000 0
eescscccccccccscssseses b

Up Time:
CPU Usage:

Figure 4.2: Application-wide health monitoring.

Again, the goal here is health, not performance per se. You want a dashboard that quickly
gets your eyes on the problem—in Figure 4.2, those red dots are the things that need your
attention. Once you know more specifics about where the performance problem is
occurring, you can switch to more domain-specific tools to troubleshoot further.

Stopping the “Toss it Over the Fence” Mentality

[frequently see IT teams waste a lot of time “pointing fingers” or “tossing the
problem over the fence” between IT disciplines or silos. For example, when
an application is exhibiting poor performance, the database administrators
(DBAs) may blame the network, while the network engineer points his finger
at the software developers, who blame their programming framework, and
so forth.

The problem is that these individual disciplines tend to look at performance
data without necessarily translating that into health information and without
looking at it in the context of the application. They’re all using domain-
specific tools as their starting point, which means that everyone is looking at
different numbers, from different places, having different meanings. The
result is often that nobody can agree on what’s “broken,” and so nothing gets
fixed—the problem just passes from silo to silo.

A top-level, application-wide component monitoring dashboard can help get
everyone on the same page. In Figure 4.2, for example, it’s very clear which
component is causing problems—and the IT person responsible for that
component can get on with the actual troubleshooting rather than trying to
pass the problem to another team member.

The Five Essential Elements of Application Performance Monitoring Don Jones
___|

Using Domain-Specific Tools to Gather More Information

Once you know what’s causing or contributing to the problem, your IT team can start using
their domain-specific tools to gather more information, narrow down the root cause of the
problem, and start implementing a fix. This may involve tools that are independent from
your actual APM solution, but it may also involve tools that are a part of the APM solution.

For example, if the root component seems to be the database server, your DBAs may turn
to vendor-specific tools to check performance, monitor query execution time, and so forth.
A good APM platform may also provide tools to help them do so—and, in fact, should
provide these tools. Figure 4.3 shows an example of this.

. Databaser » O1024RAC > Thurzday, October 8, 2009 11:08:04 PM - How 60 minutes w

Avg :q.{lw# Settions Toral CPU Losd Usilzaken 1 Lead s arL#’emv Glabal Cacha
7 6% @ 97 % @
- y 16 % 7 %
Nurnber of
CPUs Total RAM
Avg, Conmected Sessions 2 2 020.50 \,h. ter Crvethead Cache Misz Rate
| |
[Chister Overview
Chuster Balance
Balance Criteria: [nterconnect Load + Hoad (%]
Availsbity 100 % © Worl (%) 92.0
Avalabley —
Response Time » L

. |
Workload I Closd(%) 1000 @

Respons Teos Logeal Reads ©§ | m interconnect Losd ——— |
CPU Load
e | Interconnect Load 8
I o Chuster Wak Time:

[i - Cluster Wak (%) 92.0 @
2310 2305 3N 2325 NIRRT 2340 23:55 0000 0095 |]

20

Lo

Logical Reads (%) 26.0 &

] o B Received Blocks
g W Sent Blocks
= CPULoad(%) 8600
Alarins: B 1 % = = jee—rxo——1]
arms: [8 7 ISRMEHA05- 01024RAC ISRUMRHAD4 O 1004RAC
[Storage | [T Actvity |
D""“' AT Ut adions e Block Read Sarvice Physical Reads Phiysical Wries Rada Writes ASM Reads ASH Wriex

— 5485.0 3 5095.0 Tors
megabytes meegabytes _ \)
S5.53% 23.67% @
I

Figure 4.3: Database-specific troubleshooting within an APM solution.

An advantage of having this level of troubleshooting built right into the APM solution is that
it provides faster and easier drill down. From the main dashboard, IT experts can quickly
access more detailed diagnostics without having to launch a separate tool, configure a
troubleshooting session, and so forth.

ealtime 58

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Every element of the application will, at some point, need this kind of domain-specific
troubleshooting; there’s no one-size-fits-all way to troubleshoot every component. For
example, cache sizes and query execution times are critical when troubleshooting database
performance but meaningless when troubleshooting a virtualization host’s performance.
The more discrete elements an APM solution can troubleshoot directly, the more value it
will offer your team. For example, Figure 4.4 shows how the same solution that
troubleshoots an Oracle database can provide distinct and domain-specific troubleshooting
for VMware hosts as well.

» Bookmarks ~

vmEsplorer Friday, 15 February 2008 13530 - Mow 4.0 hours~ || General | Help
» Homes hd + Actions
> Daslboards 2 = ESX Servi Fatal Critical Waming Find ESH Servers
5 EL DA Server Alarms 1 Find ¥irtual Machines
- virtual Infrastructure

Run Migration Models
Summary (10.4.45.114) | Perfarmance | UMs | CPU | Memory | Shares | Datastores S S LR

wiew: Topology | Hierarchy A :) iew Wirtual Infrastructure Alarms
@ 1049515 Server 10.4.45.114 resides in [[-]] WebApps. 10,445,114 hosks & totsl of 6 virkual machines. Eaoent
[Datacenters 5} bookorlc:
e = The tables below show additional information about this server including configuration and available resources, Maks this my home page
[HE wew Datacenter e A
= Other Actions
g Chesterfield Summary Resources
Pl - Creste dastboard...
[E pev ® Connection Status: connected | Processors: & CPL cores In 2 sockeks Create report..
tiga ° ES% Software Yersion: 302 Computing Capacity: 12,8 GHz ch
5 = wirtual Machines Configured: & Memery Capacity: E0GE
[5t a @ 5 Monitor
= virtusl Machines Runring: 3 Hetwork Cards: 4
7@; Dev [] HBAs: z @ 10.4.45.15
(=] Clusters EE stLoa
@ ESX Servers . Server Utilizations [;—“ 10.4.45.100
[10.4.45.112 []

cPUD cPU1 [=TES CPU3 Network Summary 104,45, 101
[E 10.4.45.114

[10.4.45.100 ® View Alarms

10.4.45.101 @® , @ 10.4.95.100
= Data Sent 0

!) Resource Pooks 8 | Jawm: T leant “Dita @ 10445101)
[Virtusl Machines @® i —— Utlizstion © stwoa
Packets Sent
13K NIC Send Rereiwe
~ At A Glance (10.4.45.15) L 1 S44kbis 1200Kb: * Themes

Data Received H nfs nis

. 1520 Kb 3 nfa ni;

Packets Received |+ WOKbE ER0ie

v 10.4.45.114::CPU Status

cPuT :|
8830
cPUG] =
CPUS :|
cPu4 :I
(=]
7 Swap In Starage Summary
cpuz] ',.:‘-;’-—-' - "7 Bis
Swap Out
cPu1] 28 ‘ ‘
0B
0
EaiE 1400 1530 1700
Write Rate
Ui R WAL, B0 THRS 10D 1340 1400 1440 1500 1590 1010 1610 170 r A~ 3’“ KBls =CnkLiu
2 I v [Overhead IR llooned [Common [Sharsd iTas pr——
¥ Server Info Memory Utilization i 2510 14 M
£ >

+Top 5 CPU v

Figure 4.4: Drilling into VMware performance within an application.

A bit later in this chapter, I'll examine some of the specific capabilities that you should look
for in an APM solution with regard to application component deep-dive.

The 5D Approach: Flow-Up and Flow-Down

Every application can be modeled as a stack or diagram of interconnected components,
such as the fairly simple application model in Figure 4.5. In fact, as I discussed in the
previous chapter, having a clear and accurate model of your application is crucial to the 5D
APM approach because it helps you clearly understand how the different components
affect each other and rely upon each other from a performance perspective.

Realtime 59

publis

S
;
1ET5

The Five Essential Elements of Application Performance Monitoring Don Jones
___|

Figure 4.5: Simple application model.

There are two ways to approach performance problems using this model: flow-up and
flow-down.

Problems Flow Down the Model

We usually say that problems flow down the model, from the user’s perspective to the most
deeply-buried components that are furthest from the user. For example, in Figure 4.6, a
user is experiencing poor response times from a Web page that they’re trying to access.
From the end user’s perspective, that’s the problem with the application: The Web page is
slow. In other words, the end-user experience (EUE) metric is telling us that users aren’t
having a good time of things.

Realtime 60

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

j

F

=
W

Figure 4.6: Poor EUE is observed at the top of the model.

If you simply took the EUE, which is the first dimension in the 5D approach, your next step
might be to check the Web page for errors. After that, you might check the Web server’s
performance, then check the middle-tier components. The problem is flowing down the
model, and you’d be investigating each subsequent component to see whether it was
causing the problem.

This isn’t a bad approach, but it can be time consuming. One potentially confusing aspect of
the 5D approach, in fact, is its emphasis on the EUE as a top-level metric. In this book’s first
chapter, I really emphasized the importance of the EUE in measuring application
performance. That doesn’t mean you start troubleshooting with the EUE, though. The EUE is
simply your indicator that troubleshooting is needed; it will rarely be your starting point.

Root Causes Flow Up the Model

Instead, you have to recognize that the root cause of a problem will flow up the model. In
other words, a bad EUE isn’t the problem; it's a symptom of the problem caused by
something lower in the application stack. Figure 4.7 illustrates this.

Realtime 61

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

Excessive query
plan recompilations

Figure 4.7: Root causes flow up the application stack.

Here, a database server is experiencing excessive query plan recompilations, which slows
querying. That results in a middle-tier component performing slowly, as it waits on the
database to deliver data to it. That slow middle-tier component causes Web scripts to
execute more slowly because they're waiting on the component to deliver whatever the
Web page needs to display. That, in turn, results in longer response times and page loads
for the end user.

The 5D approach—combined with tools that implement the approach—enables you to see
the root cause more directly. Rather than starting at the top and drilling down, these tools
let you respond to a poor EUE by simultaneously monitoring the health of every application
component at once. By tracing user transactions through the application model—
dimensions two and three of the 5D approach—these tools can highlight the problem
component immediately, allowing you to focus your efforts and begin deep-diving into the
problem component to solve the problem more quickly.

Realtime 62

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Caution: Good Health Does Not Necessarily Equal a Good EUE

[want to offer a caution here. An APM solution that truly implements the 5D
approach will directly measure the EUE, either through direct user
transaction mimicry—having an automated process visit a Web page, for
example, to see how fast it loads—or by monitoring user transactions (either
real or simulated) as they flow through the application. You cannot derive the
EUE; it must be directly measured to be useful. I've seen APM solutions that
claim to offer EUE metrics, when in fact all they do is add up the individual
component health information and aggregate that as an “EUE.” That’s not an
EUE; it's an aggregate. Depending on how you've set up individual
component thresholds, every component could be “healthy” and still, in total,
deliver an unacceptable EUE. Make sure that your APM solution is directly
monitoring the EUE, not deriving it from lower-level performance data.

Deep-Dive Areas and Techniques

In the next few sections, I want to talk about some of the major capabilities that you should
look for in component deep-dive features. In general, you may find that solution vendors
don’t offer a “one-size-fits-all” package that includes every one of these; more commonly,
you’ll find vendors offering a base APM framework, to which you add deep-dive capability
modules. That lets you add, for example, Oracle or Java deep-dive capabilities if you need
those technologies, while perhaps omitting capabilities that aren’t in use by your
organization. I think that almost every organization will need all of these general
categories, although every organization will vary in the exact brands (for example, SQL
Server vs. Oracle or Java vs. .NET Framework) that they need to monitor. I'll keep the
capabilities descriptions focused at the category level for this reason.

Database Management Systems

Relational database management systems (RDBMSs) are complicated pieces of software
with dependencies on the underlying operating system (0OS), storage, memory, processor,
and other resources. They’re a very specialized OS in and of themselves, with multiple in-
memory caches, execution procedures, and so on—monitoring and troubleshooting them
can be challenging. Figure 4.8 shows some of the basic monitoring capabilities I'd expect—
many of which are often difficult to dig out with RDBMSs’ native administrative tools.

wealtime 63

The Five Essential Elements of Application Performance Monitoring Don Jones

1 Datshazes » ISRVMNI02-KBSENT1 5 Monday, October 26, 2009 £:45:15 PM - Now 60 ninutes «

© ISRVMN302-X86ENT 1

| Instance " SOL Processes ! 1"SQL Memory . Disk Storage
| | Physical Reads e
BType: BY & server Tata Total : 78 MB - e atEnases
Max 2 2% 0,00 pagesfs @ G
Logical Reads 0.1GE &
P - e 0180 | ol vies
Systen 7 pagesfs @ _..._._.. Data Files

. 0,00 pagesfs @ cm—
G . E e L | Read Ahead = sE
— % ¥ | p.00pagess @ :)
Page Lif oy &

3 0.7 packetsfz G | Checkpoaint 2
Sessio | woMe
o [e Blocked Processes | | 0.00pagesfs @ 3%

A At Log Fles

1) 0.7 packets/s @ é Lazy Writes

S B : | Hitaste 06% @ | 0.00pagesis @
o P NN — Eog Fhushes
0.01 compilesfs & | B

- T4 the I Background Processes | 0.01 flushesjs ©

: : . o | Dick Activity 0o
(¢ Repicaton)
| Alarms ;

Tresles: [6 60

e E—

Figure 4.8: Key RDBMS monitoring elements.
Of particular importance:

e General statistics such as server processor consumption, memory utilization, and
disk queue length (the amount of data waiting to be written to disk) are important
top-level items to monitor.

e Database cache sizes—such as procedure caches, page buffers, and so forth—help
you ensure that the server has the right amount of memory to maximize
performance. Cache hit ratios are also important.

e Monitoring in-database processes like replication.

e As RDBMSs are almost always bottlenecked at the storage layer, detailed views into
disk utilization are key. This should include physical read and write operations as
well as read-ahead caches, lazy writes, log flushes, and so on.

e Other capacity information—database sizing, log file sizing, active connections, and
so on—can help provide proactive alerts when specific capacity thresholds are
reached.

Having all this information in a dashboard-style health view—rather than in raw
performance numbers—can help direct attention to areas that require it most urgently.

| {Eﬂ‘al ti me 64

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

You also need deeper statistics than just these server-level ones. A good APM solution can
also trace specific query statements, offering performance monitoring at an extremely
granular level. Some APM solutions can even analyze slow-running queries and offer
performance optimization suggestions, such as redesigned indexes. Although many RDBMS
platforms provide native tools to accomplish this, having everything rolled up into a single
APM solution can help you immediately pinpoint a slow-running query as the root cause of
a poor EUE and a breached SLA.

Application Server Middleware

In most cases, you'll always need some kind of general server monitoring—processor
utilization, memory utilization, disk throughput, and so forth. Any server participating in
the application will need this level of monitoring, likely in addition to other, more specific
forms of deep-dive monitoring that are covered in the following sections. Figure 4.9 shows
the type of information you’re looking for.

... 0 prod ouest oo CPU (1 Processors) Memory d e n
) .
0.0¢fs

wi_Host No. of Disks

Context Switches Top Memory Consumers 2

% Top 2 Consumers
[B | :

Processor Queue Length i N

.
@ Total Top Disk 1,0 Consumers ‘i _.rj‘ 34 A
Total

'b 0 Processes i

Top CPU Consumers —

=

Figure 4.9: Monitoring application servers.
Some of the key items your APM solution should track:

e Network utilization—It’s actually not unusual for modern servers to outperform
less-modern network connections; any server built within the past couple of years,
for example, can easily overwhelm a 100Mbps Ethernet connection, which is why
servers typically utilize Gigabit Ethernet or better connections.

e Processor utilization—This item is of course important, but so is processor queue
length—the number of instructions waiting to be executed by the processor. A long
queue length is often a better indicator of an overloaded server.

Realtim

e 65
PUDHSNETS

The Five Essential Elements of Application Performance Monitoring Don Jones
I

e Memory utilization—This item is important primarily in terms of which processes
are using it. You should establish baselines for what looks “normal” in your
application, and use those to create health thresholds that will alert you to abnormal
conditions.

e Memory—This item is related to disk throughput in OSs that use paging files to
create virtual memory. Tracking the page file utilization as well as paging speed and
throughput is another critical performance element.

e Overall disk throughput—reads and writes as well as queue lengths—can help you
determine whether a disk subsystem is being overwhelmed and acting as a
bottleneck.

These numbers are often easy to pull using native tools, such as Windows’ System Monitor
console. However, having them integrated into an APM dashboard—which is what Figure
4.9 illustrates—can help you visualize the connections between the components, and
provide better health-based monitoring.

There’s more to monitoring an application server than just keeping an eye on the server
and its OS; there’s also the application part of the stack—typically an application written in
a framework such as Java or .NET. For the standalone portions of such applications, read
ahead to “Off-the-Shelf Application Frameworks;” however, there are server-based
applications that run, for example, Java as middleware components. WebLogic, WebSphere,
and other products are examples of these, and you’ll want an APM solution that knows the
specifics of those platforms and how to monitor them so that you can get the entire picture
of your application servers’ performance.

Message-Oriented Middleware

Modern applications can rely intensely on the ability for components to communicate with
each other, often including asynchronous message queue-based communications.
Monitoring the message-oriented middleware—whether it's IBM WebSphere MQ,
Microsoft Message Queue Services, or something else—is a critical part of maintaining the
performance of such applications. Figure 4.10 shows some of the major elements you'll
need to monitor. These include the overall throughput of the queuing product as well as
each individual message queue that the product manages. You typically want to see small
queue lengths (or “depths”), meaning that messages are being picked up and processed
roughly as quickly as they’re being placed on the queue.

Realtime 66

The Five Essential Elements of Application Performance Monitoring Don Jones
___|

Chanasl Monitaring

|| :';'m":zl Availakility Status Eytes Sent g:::::wd 2::‘?" ::tf:l:’ud Health Euﬁgfﬂ"

O e . Runsang FLEET 15465 # 5 . ®

Dolete | Compars [Bytes Sent %) Ion

Listednr Stals

[Listener Hame Status Session Count BackLog Health ':";‘I':;'E

[] LISTEMER.TCP Running [0} 100 L £

Ceolets | Comoars [Sesion Count %] Ton

Quewe Moritoring

[] Museis Name g::‘f‘"t ;T;:-Im :J:l:-:! gs:‘:u! Health Enﬁ':f:""
Decupied Count Count

[SYSTEH ROMINACCOUNTING QUELE 0] il [} . |

[SYETEH.ADHINACTIVITT.QUEUE i] i I o E

[Sv¥ETEH.ADHIN CHANNEL EVENT 1 o]] . T

[0 svsTeHADHIN COMMARD QUELE i a 1 FH e i

O STETEM.ADMINLOGGER EVENT i g 1 il - T

[] SYsTEH.ADMINFERFMEVENT a a a 1 - ¥

[0 SYSTEM.ADMINQMGR EVENT 1 2] a 4] E

[0 Sv5TEM.ADMIN.STATISTICS.QUELE [2 a i . Ll

[0 SrSTEM.ADMIN.TRACE.ROUTE QUEVE 2 1 1 i

[] SvSTEM.AUTH.DATA. QUELE 57] 1 1 ®

[SYSTEM.CHAMMEL INITQ i] 1 i " W

[SYsTEM.CHANMEL STHCY 1 '] 1 1 e [}

[] SYSTEM.CICS.IMITIATION GUELS] ' 1] L] [

[[] SYSTEM.CLUSTER.COMMAND,GUELE [i 1] v #

[[] SYSTEM.CLUSTER.REPOSITORY QUELE 1 o 1 i] Ll

[S¥YSTEM.CLUSTER TRANSMIT.OUELE [o 1 1 ™ #

[] SvSTEM DEADAETTER QUELE i 2 i 0 o L

[SYSTEM DEFAULT.IMITIATION GUEUE [o i I o L

[] SvSTEH DEFAULT LOCAL QUEUE] [}]] vl -5

[] S¥STeEH BENDING DATA GUEUE 1 "] i i vl -4

O a1 a 2 a a - i

Bolgls | Cornpass | Surans Dapth Top

Figure 4.10: Monitoring message queues.

Off-the-Shelf Application Frameworks

Being able to deep-dive within application programming frameworks—Java and .NET
Framework are two of today’s most popular ones—Ilets you “see inside” your application
components and ensure that they’re performing well at a fairly deep level. For example,
consider Figure 4.11.

Realtime 67

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

General all3TA = 22 Application(s)
STATUS: 4 Health ~ Mame
Transaction Commits Transaction Rellbacks 3 2
[] largeejbl
COMNFIGURATION 160 1 :
Version: 8.13P8 L4 rgeebi
Host: torrdv 125, sitraka.com HES Rollback Type [] largeejb1l
Listen Address: /3 5 g EResource ® largeejbi2
= O S [Elsystem c
Port: 20002 ™ ~ [ElApplication [] largeejb13
Start Date: 3/3/08 11:00 AM Ti t
o = 4P I Timag [] largeejb14
COMPONEN
COMPOMNENTS > ® largeeib15
VM 12:00 13:00 1400 15:00 12:00 13:00 14:00 15:00
@ M il = ® largeeib1s
'a Work Managers,Thread Pool ® lergesipi7
@ Execute Queues WM o
(] largeeib 1&
® IDEC
;0w L] largeejb13
8 |Apictions Heap Usage GC Rate & Overhead
° i m 240 100 1 ® largeejb2
Meb Applications
W pp.n \/ i ® largesjb2n
@ Servlets/15Ps 180 "
® largeejb21
nfa Web Services 60 .
@ E=s 1203 % z [] largeejb3
40 largeejbd
® s ® argee]
® o 20 [] largeejbs
a JCA 0 04 N o NP, [] largeejbs
12:00 1300 1400 15:00 200 1300 1400 1500 o -
® Security b e — R e ® largeein?
counts per second (c/s) E
Rate [] largeejbd
[Total (225 MB) percent () largeeibg
[Jused (14 % of 1 GEmax) — Owerhead L4 S
[] LargeTreeTest
Execute Queues =3
Pending Requests
1
IVM Properties “ i

Name: BEA JRockit{R)
Version: 142 10
Vendor: BEA Systems, Inc,

Info:
Up Time: ailable e
CPU Usage: lot Available 12:00 12:20 12:40 12:00 13:20 1340 14:00 1420 1440 1500 1520 1540 ® -

wnoy

Figure 4.11: Monitoring inside a Java component.

Here, you can see overall Java Virtual Machine (JVM) information in the lower-left, along
with detailed statistics in the main portion of the dashboard. Monitoring transaction
commits, rollbacks, heap usage, garbage collection rate, and so forth can help you spot
poorly-written or underperforming components. For example, high levels of garbage
collection can indicate a component that is making poor use of its memory allocation,
forcing the JVM to collect released memory more frequently than you might prefer, and
slowing the overall performance of the JVM and the components running inside it.

There’s more to monitoring these components than just watching the runtime virtual
machine: The best APM solutions also support byte code instrumentation, which is able to
examine the actual code of the application for performance purposes. This literally puts
your APM solution inside the application’s code, giving you the deepest dive possible.

Packaged Enterprise Applications

It’s common for modern applications to interact with numerous back-end systems—Siebel,
PeopleSoft, Oracle E-Business, and so on. As Figure 4.12 shows, a good APM solution can
recognize those dependencies and include that back-end system—SAP, in this
illustration—in your monitoring efforts.

Realtime 68

The Five Essential Elements of Application Performance Monitoring Don Jones
I

#
SAP Application Server(s) SUrnmary A OX =
g Client 2
Availabilicy i Agent Connection Event .
State Agent Mame Instance Mame Events (o) Ava, Response Time - Lsers Starus Hsfa:;h Stabus Shapye | MiEWS
@, 9APSErver_saprsapphost_sapserver@sapr3ap . 2 — — Collecting e Iritical o
& & i ALVSCEWDL aPM 00 @ nfa MMW e T DK nfa Event(s) Ve

SAPServer_Dialog_Resp_Owervies by saprsapphost_Sanserer Agent Selector & O % | SAPServer_TaskType_wWorkload by saprsapphost_sapserver or Agent Selector & 0 X

SAP R/3 Server Dialog Response Time Overview on sapr3apphost E R A . Zedi Tt | |3
100 I 250
| SAP R/3 Server Workload per Task Type on sapr3apphost
a0) m . . {1 <
— AN B A T iliseconds fms) & RO
60 — Avg. CPU Time Dialag g' —_—_ [avag. CPU Time (ms)
% 1302 ——Avg. DB Requast Time Dialog = P Ava, Response Time (ms)
40 —— Avqg, Response Time Dialog & Background [JAvg, DB Request Time (ms)
percent (%) o [CJAvg, Load Time (ms)
A 70 WP Utilization Di g Dialog [_lAawvg. Wait Time (me)
T e WAR % —— WP Utilization Dislog g 9 {ms)
s Ty T 'Cr'i Total [EHumber Dislog Steps (count)
sl F
- 10 g 0 40 B0 120 160 200 240 Tl

0 =
0400 04dE 05:30 06:E 07:00 075

Thursday, Feb 28, 2008 251 AM - Now 4.0 |
Thursday, February 28, 2008 3:51 AM - Now 4.0 hours Ll el S ow hours

- ox
SAPServer_Work_Process by saprsapphost_sapserver on saprd Agent Selector & 0 X SAPServer_Locks by saprsapphost_sapserver on s3praapphiost Agent Selctor

SAP R/3 Server Locks Overview on sapr3apphost

e
o sl © 0 0 T T T T T T 22808 7:51:01 /M i
SAP R/3 Server Work Process Overview on sapr3apphost
3
o up2 count
fspo 3 —Local Locks
5 BTC [Max Allocated 5 — Total Locks
TENg [_Running — Local Long Locks
Ziinn [JLong Running —Long Locks Taotal
4 [stopped
T DIA
z I
Z 00 1.0 20
g count D400 0445 0530 0615 0700 075
Thursday, February 28, 2008 3:51 AM - Now 4.0 hours Thursday, February 28, 2008 3:51 AM - Now 4.0 hours
SAPServer_Avallahility_Proress by saprsapphiost_sanseryer on < Agent Selector & £ X
|||||||||||||||||| t e
2127008 7:51:01 pM 2178/08 7.51:01 Al :

Figure 4.12: Deep-dive monitoring in SAP.

The exact metrics you seek to monitor will obviously differ from one back-end solution to
another, but it's important to recognize the role these solutions can play as application
dependencies, and to monitor them as if they were any other dependency in your
application model. In this illustration, the APM solution is tracking overall response times
for SAP access, tracking SAP’s workload for various task types, and so on. Essentially, the
APM solution is treating SAP as just another application component—which, in this
context, is exactly what it is.

Virtual Infrastructure

As more and more of our servers move to virtualization hypervisors, the ability to directly
monitor virtualization host performance—whether VMware, Hyper-V, or some other
brand—becomes increasingly important. Figure 4.13 shows an example.

Realtime 69

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

Server Utiizations

CPUD CPU1 CPU 2 CPU 3 Network Summary

B
J‘u
f I'. = | 4!
Data Sent il il i a
| 1400 15:30 1700
I 24.0 Kbz
. -'-M--'I'n‘ﬂt»-.-'»

— Utilization

59

CPU 4 CPUS CPUG cPU7 PacketsSent I Recdive

A

o~ 5440 Kbz 1200 Kb

Data Received nfa

. 1520 Kbﬂ nfa =

ot 400 Kb 32,0 Kbi:

Packets Received i ;
2830

IS TR

Composite CPU Utilization

1 20 40 &0 a0 100
o5
Swap In Storage Summary
}II;,I,-.-._.—'—._ I'? Bz
Swap Out
- e
14100 15:30 17:00

: Write Rate

i / = . y

1340 1400 1440 150 150 160 160 17:0 ' _hnAS 3-93 KBz —— Disk Usage
[Active] ©werhead [Ballooned] Common [Shared Writes Ciiciveisiiis
Memory Utilization " 2510 T4 &
4 3

Figure 4.13: Monitoring the hypervisor.

This is in addition to monitoring the CPU, memory, and other elements within virtual
machines; by monitoring both the physical hardware and the virtual, you’ll be able to
determine whether performance problems are the result of a particular virtual machine
running out of resources or the result of a virtualization host that’s simply overworked.
Standard hardware-level measurements typically suffice for virtualization monitoring:
processor, memory, and network throughput, plus, of course, storage performance, are the
four key factors. Keep in mind that modern hypervisors have the ability to “overcommit,”
meaning the sum of each virtual machine’s memory may exceed the actual physical
memory available. The theory is that not all virtual machines will need their fully-
configured amount of memory at all times, so the hypervisor reallocates memory on-
demand; overdoing overcommit, however, can leave virtual machines straining for the
resources they need, negatively impacting performance.

Network Infrastructure

It's also important to have an APM solution that can at least help in monitoring your
application’s underlying network infrastructure. Modern applications rely heavily on
networks for inter-component communications; without a view into that infrastructure,
you're missing a major performance dependency. Typically, you'll want to monitor
capacity, throughput, and error rates for LAN and WAN devices, such as switches and
routers. Depending on what comprises your network, specific capabilities for frame-relay
networks, Quality of Service (QoS) traffic, and so on may also be important.

Realtime 70

publis

S
;
1ET5

The Five Essential Elements of Application Performance Monitoring Don Jones
I

What to Do With Performance Data

All of the performance data gathered by an APM solution can be used for a lot more than
just troubleshooting performance problems. In fact, with a good solution and the right
additional capabilities, that data can help you be very proactive about managing
application performance.

Continuous Monitoring

Continuously monitoring the entire application model is a key capability. You don’t just fire
up monitoring when something goes wrong; you want it running all the time. That
continuous monitoring can net you three specific benefits, which I'll describe in each of the
following three sections.

Alerting

Why wait until the EUE goes bad to start troubleshooting a performance problem? An APM
can proactively alert you to degraded performance—potentially at the component level,
before the EUE falls below your established service level. This lets you start solving a
problem before your end users realize it’s a problem.

Reporting

By collecting data over time, you can provide detailed reports on uptime, service level
agreements (SLAs), and so forth. You can also use reports to provide trending
information—for example, as more users utilize your application, you can make judgments
on where you’ll need to expand capacity to accommodate that growth.

Baselining

Baselining enables you to take a “snapshot” of what your application’s performance should
look like under a given load. You can then compare current performance to that baseline
for growth trending and to continually examine and revise your health thresholds.

Coming Up Next...

In the next and final chapter of this book, we’ll bring it all together. The first four
dimensions of the 5D approach can generate a lot of data—so what do you do with it? We'll
look at a case study of a slow application and explore how an APM database provides a
place for all your data to reside, be correlated, and help lead to a fast resolution of
performance problems. We'll wrap up with a sort of shopping list for an APM toolset,
defining key selection criteria so that you can begin to intelligently evaluate APM solutions.

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

Realtime 71

http://nexus.realtimepublishers.com/

	Chapter 4: Diving Deep into Your Application Components
	Moving Further In: Going from Health Problems to Component Diagnostics
	Using Health to Focus Your Efforts
	Using Domain-Specific Tools to Gather More Information

	The 5D Approach: Flow-Up and Flow-Down
	Problems Flow Down the Model
	Root Causes Flow Up the Model

	Deep-Dive Areas and Techniques
	Database Management Systems
	Application Server Middleware
	Message-Oriented Middleware
	Off-the-Shelf Application Frameworks
	Packaged Enterprise Applications
	Virtual Infrastructure
	Network Infrastructure

	What to Do With Performance Data
	Continuous Monitoring
	Alerting
	Reporting
	Baselining

	Coming Up Next…
	Download Additional Books from Realtime Nexus!

