Realtime
publishers

Tips and Tricks

Guide To

Windows
Administration

Don Jones and
Dan Sullivan

Tip, Trick, Technique 23: Business Drivers Behind the Need for High Availability.......ccccoueue.. 1
User Expectation for Continuous Availability ... 1
Application Design Considerations and High Availability ... 2

Tip, Trick, Technique 24: Understanding the Key Elements of High Availabilityccuccneeen. 4
The Need for Hardware REAUNAANCYovnenenenenesnesnensininssesns 5
The Need for OS REAUNAANCYoeeeeeereereeresseeseeseesseesesseessessesssessesssessssssssssssessssssssssssssesssssssssssssssssessnes 6
Special Issues with Application Software Redundancy ..., 6

Tip, Trick, Technique 25: Windows Server Options for High Availability.......cconomneinnicnienes 8
Using NLB to Ensure Performance LEVELS ... seessssssessesssesssessesssesees 8
Application Redundancy in FailoVer CIUSTETS. ... ereenreeseeseeeessessessesssessessessesssesssessesssssssesseens 9

Tip, Trick, Technique 26: Ensuring High Availability for SQL Server Databases.........couuuvun. 11
FAIlOVET CIUSTET'S ..ooeeeeeeresesseesseseesresseessessseessessessseseessesssssesssessesss s s ssse s sssanes 11
DatabDaSE MITTOTING..cuceueeueeeeesreseesseseesseesseeseessesssesssessessse s es s s sas s bbb bR s s bR bbb snsaes 13
00T =] 410 0 02 PP 13
2] 0] 3 or= U (o) o OO 13

Tip, Trick, Technique 27: Ensuring High Availability for Microsoft Exchange........cccccuucenuennee. 14
High Availability in Microsoft EXChange 2007 ... eeneensesseesesseessesseesessssessessssssessssssesssssnes 14
High Availability in Microsoft Exchange 201 0.......cienesssssssssssssssssssessesssesssssssesans 15

Download Additional Books from Realtime NeXUs!ceneneeneeneeeeeesseeseeseesseeeessessessennnes 15

Realtime

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

ii

>altime

.__.
P
T,

mailto:info@realtimepublishers.com

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Tip, Trick, Technique 23: Business Drivers Behind the Need for High
Availability

There are growing needs for continuous access to business services. We expect business
services, such as Web applications, database servers, email systems, and other essential
business software, to be functioning and performing when we need to use them—not just
when it is convenient to have them up and running. Part of this need is driven by our
expectations and part is driven by the way we now design highly distributed applications.

User Expectation for Continuous Availability

Let’s start by considering our expectations regarding email. Many of us check our email
frequently during the day (perhaps too frequently in some cases). We have come to depend
on email as a primary means of business communication. Email is so important to us that
we have adopted smartphones in large numbers in order to have anytime, anywhere access
to email. If you are unfortunate enough to be in an area with poor cell phone coverage and
cannot access your email or can only work with it at slow speeds, you know the frustration
of lack of availability.

Now consider how that same type of expectation has spread to other services such as:

e Databases

e Desktop office productivity applications

¢ Browsing and Internet access

e Authentication and authorization services
e File systems

e Mission-critical business applications, such as Customer Resource Management
(CRM) systems and Enterprise Resource Planning (ERP) systems

It is easy to see how each of these could be essential systems in someone’s work. If one or
more of these systems is unavailable, productivity falls, tasks are not completed, and
service level expectations are not met.

Realtime

http://nexus.realtimepublishers.com/

Critical Systems Important
(but not
critical)}

Acti
Directory

File Server

SQI; Server SQI; Server

Application OLTP Data Mart
Server () ()

Figure 43: Maintaining availability of some systems is more important than doing so
for others. Developing a high-availability strategy entails balancing costs and
benefits.

Application Design Considerations and High Availability

When a customer attempts to browse your Web site and gets a timeout error instead, it is
pretty obvious there is a problem. Similarly, if a Web server is up and responsive but an
underlying database has failed, the problem may manifest itself with blank space where
data should be listed, or worse, an error message appears about not being able to connect
to the database. These server-level failures are probably the ones that are most likely to
come to mind when you think of failover and high-availability solutions. There are,
however, finer-grained failures you must contend with as well.

Application designs have shifted from single, tightly coupled monolithic programs to more
distributed sets of software components. The Web services model of application
development allows finer-grained software components to be combined in multiple ways.
For example, a module for calculating tax on a customer order could be used to support
multiple customer-facing Web sites.

Realtime
HSNETS

Service 1 Service 2

0o

\

Figure 44: Applications built with Web services may have dependencies on several
other services, perhaps some shared with other applications. A failure in a low-level
service can have adverse effects on multiple services.

From a business perspective, it does not matter whether a system is unavailable because of
a major hardware failure on a database server or there is an obscure error in a low-level
Web service; any component that is critical to delivering a critical service must be available
on demand.

One of the first steps in developing a high-availability strategy is mapping out the critical
components that are required to provide services. Needless to say, not all services are
equally important. A customer-facing support site or online catalog needs to be up
continually. A shared file system used internally by employees should be up continually but
if it were down for short periods of time would not cause significant adverse effects on the
company. The key is to balance the cost of high availability with the benefits of continuous
operations of essential business services.

Cross Reference

See Tip, Trick, Technique 18 for more information about how to identify
critical systems, establish Recovery Point Objectives (RPOs), Recovery Time
Objectives (RTOs), and other factors related to a comprehensive recovery
management strategy.

Realtime

Tip, Trick, Technique 24: Understanding the Key Elements of High
Availability

High availability is the property of systems that are up and running at expected
performance levels almost all the time. The definition of “almost” will vary with your
requirements, but the idea is that applications, servers, and data are available to users
when they expect to use those systems.

High levels of availability may allow for several minutes of downtime in a month but not
much more. For example, 99.99% availability over the course of a month is equivalent to
4.32 minutes of downtime. (That is based on 60 minutes per 24 hours per 30 days or
43,200 minutes). Less than 5 minutes per month does not leave much time for patching and
other maintenance operations let alone unexpected downtime. Demanding business
requirements such as 99.99% availability require systems to be designed to accommodate
component failures and keep working. Stringent service level agreements (SLAs) also
require that services be available during maintenance, which clearly requires redundancy
to provide services during planned maintenance.

The key elements of an application’s architecture that you need to design for redundancy
include:

e Hardware
e Operating system (OS)
e Application software

If any of these three fails, the system is potentially unavailable or unable to meet SLA
requirements.

Applicaitons

Operating System

Hardware

Figure 45: Service availability depends on a stack of applications, OSs, and hardware;
failures in any one of these can disrupt service availability.

Realtime

The Need for Hardware Redundancy

One of the simplest ways to deal with a failed component is to use another component;
hardware vendors can provide us with servers with built-in redundancy of critical
components. A typical list of redundant components includes:

e Power supplies

e Fans

e Network interface cards (NICs)
e Diskdrives

e [/0 paths to storage arrays

Fully fault-tolerant servers will also have redundant processors and memory built-in to the
server. A commonly used alternative is to use multiple servers in a cluster and if a CPU fails,
the workload on the primary, failed server can be switched to the standby server. The two
configurations give the same level of redundancy but do so with different hardware

configurations and correspondingly different methods for failure detection and workload
switching.

¥ Ny

.= Device Manager = | B |t
Eile Action View Help
== d
[% Batteries *

> 1M Computer

-+ Disk drives

..Ml Display adapters

> i DVD/CD-ROM drives
g IDE ATASATAPI controllers
33 Imaging devices

» o Keyboards

m

» E!, Mice and other pointing devices
. B Monitors
- -E¥ Metwork adapters

>-D Processors
- %y Sound, video and game controllers

> M System devices

- - i Universal Serial Bus controllers

1

Figure 46: Any of the many hardware components of a computer can fail, but
redundancy is only required for those components that could disrupt service
delivery if they fail.

Realtime °

The Need for OS Redundancy

The Windows OSs are much more resilient today than they were in the early days of
Windows NT. Systems administrators came to understand the blue-screen system dump
that followed a fatal error as part of the process of maintaining the OS. Even with
significant improvements in stability at the OS level, you have to plan for its failure at some
point in time.

Planning for OS failure is more complex in a virtualized environment that supports
multiple OSs; there is the host OS and one or more guest 0Ss. Recovering services requires
moving guest 0Ss to new host 0Ss where they may be in the same or different
combinations of virtual machines on the new host.

Special Issues with Application Software Redundancy

Redundant hardware and failover copies of the OS are two-thirds of the high-availability
issue; the last piece is application software. When applications fail, you need to restart
them, possibly on the same server and instance of the OS or perhaps on the same virtual
machine running on a different host server. Wherever it is running, it has to recover from
its failed state. How we recover from that failure depends on whether the application is
stateless or stateful.

A stateless application is one that passes information from a client to a server; the server
uses the information to compute a result and then returns those results. No additional
information, unique to that user’s session, is required. In the case of a stateful transaction,
an exchange with the client can result in changes to information stored on the server,
which is used to calculate results for that session. For example, an example of a stateless
transaction is a Web service that accepts the name of a tax jurisdiction and a sales amount
and calculates the tax. No data stored on the server about the session would influence the
results. More complex services, such as one that provides an “undo” feature, may maintain
state information about actions taken so that those actions could be reversed if necessary.
As you shall see, the distinction between stateless and stateful applications is an important
factor when choosing a high-availability option for an application.

Realtime

Client

Device

Parameters Results
Parameters Results

Application

Server Application

Server

State Variables

SessionlD:8TEYG
Varl: ABC

Var2: 123.456
Var3:78A
Vard:Hold

(a) Stateless (b) Stateful

Figure 47: Stateless applications complete units of work in a single back-and-forth
exchange. Stateful applications maintain information between exchanges and use
that information when computing results to return to the clients.

To summarize, the key components of high availability are hardware, OSs, and application
software. The need for resiliency in each of these can be addressed in multiple ways but
there are constraints, ranging from the most cost-effective way to balance redundancy
within and across servers to the need to support stateful sessions in Web applications.
Now, let’s turn our attention to Windows Server support for high availability.

Realtime

Tip, Trick, Technique 25: Windows Server Options for High Availability

Windows Servers offer two methods “out of the box” for supporting high availability:

e Network Load Balancing (NLB)
e Failover clusters

Both methods use redundant servers but bring with them different advantages and
disadvantages.

Using NLB to Ensure Performance Levels

NLB is a software service for distributing a workload across multiple servers. NLB runs on
a Web server and allocates portions of the workload to each server in the cluster according
to the NLB configuration. Tasks can be distributed in a round-robin fashion in which each
new task is assigned to the next server in an ordered list that wraps around (for example,
in a four server cluster, the tasks are assigned to server 1, 2, 3, 4, 1, 2, 3, and so on).

Shared
Storage
Array

Figure 48: NLB distributes client requests over a set of clustered servers. By sharing
storage, each server has access to the same persistent data.

Realtime

publishers

8

NLB clusters such as the one depicted in Figure 48 can help maintain performance levels as
demand for application services grows. Additional servers can be added to the cluster in
order to meet Service Level Agreements (SLAs). They also provide failover protection; if
one of the servers in an NLB cluster fails, the NLB server distributes requests to the other
servers in the cluster.

NLB works well for stateless applications because each interaction between the client and
server is independent. No information has to be stored on the server, therefore, one
request can be serviced by one server and the next request can be serviced by another.

An NLB cluster can be used for applications that maintain state information if the
application writes that data to a shared, persistent data store, preferably a database. In this
case, however, you introduce a potential single point of failure unless the database itself is
set up in a high-availability configuration. SQL Server databases can be configured in
failover clusters, which would address this issue. Failover clusters a different type of
cluster than NLB clusters. The former provides redundancy for running an application; the
latter is used to distribute TCP/IP traffic among multiple servers.

Application Redundancy in Failover Clusters

Failover clusters eliminate single points of failure with regard to servers by having standby
servers in place and ready to assume the function of the primary servers in case the
primary servers become unavailable. Failover clusters can be configured in one of two
ways: Active/Active and Active/Passive.

The Active/Active model is similar to NLB clusters in that all the nodes typically share in
the workload at all times. In the case of Active/Passive clusters, one of the servers is the
primary server, which handles all the workload while the standby server remains passive.
When the failover software detects the primary is no longer available, the passive server
becomes active and starts serving requests.

Failover clusters are configured with multiple servers. In the simplest case of two servers,
the passive server would only assume responsibility for providing application services if
the active server is no longer available. (A monitoring mechanism known as a heartbeat is
used to detect when a server fails. More on the complexities of detecting failures in a
minute). When more than two servers are in a failover cluster, you need a mechanism to
ensure that the two passive servers do not both attempt to assume the role of the active
server. To prevent multiple active servers, a quorum model is used.

The quorum model is a voting system in which each server has a vote and the storage
system may have a vote as well. A majority of votes is needed to elevate a passive server to
an active server.

Roalfirme
l{’a{_f_lllllllfg

Agtive Passive
Sgrver Servelr

Shared
Storage
Array

Figure 49: Failover clusters use multiple servers with the ability to detect failure in

other servers. If the active server were to fail, the passive server would take on the
workload of the failed server.

Realtime 10

publishers

Windows Server 2008 introduced a number of features in failover clusters that ease the job
of deploying and managing clusters:

e Failover Cluster Management snap-in for the Microsoft Management Console (MMC)
e High-Availability Wizard to assist with setup

e C(luster validation tool to check whether a hardware configuration will support
failover clusters

¢ Improved support for multi-site clusters, which is especially helpful for disaster
recovery configurations

Both NLB and failover clusters provide application high availability. NLB is well suited for
stateless applications while failover clusters work well for providing resiliency in other
types of services, such as file and print services or applications supporting clustered
environments, such as Microsoft Exchange and Microsoft SQL Server.

Tip, Trick, Technique 26: Ensuring High Availability for SQL Server

Databases

Up to this point, the focus has been on general approaches to high availability. In this Tip,
Trick, Technique, we focus on ensuring high availability with SQL Server databases.
Databases have characteristics—such as /0 and compute-intensive operations—not found
in other applications. As databases are designed to store persistent data, high availability
has to address the need for saving data as well as restarting computations after the failure
of a primary server.

As of SQL Server 2008, there are several options for providing high-availability databases:

e Failover clusters

e Database mirroring
e Log shipping

e Replication

Not surprisingly, there are tradeoffs between functionality and ease of management.
Depending on your requirements, one or more of these solutions may be more appropriate
than the others.

Failover Clusters

A failover cluster is a set of two or more servers that support a single instance of a SQL
Server database. An instance is database parlance for a single managed database that users
can connect to for persistent data storage and management services. The database instance
is installed on a cluster of servers, known as a resource group. A resource group is a set of
servers that logically function as a single computing resource. All servers in the group
share storage.

Realtime 1

One of the advantages of failover clusters is that servers in the resource group can detect
whether the server running the database has failed. If so, one of the other members of the
group assumes responsibility for providing database services. Another advantage is that
the resource group appears as a single server, so applications connect to the group rather
than a specific server. With this method, there is no need to change connection information
to redirect applications to another server.

.f

Web|Server

Application Server

Resource Group
SQL Server Cluster

Figure 50: A SQL Server failover cluster is a set of servers that function as a single
database server; when a server fails, another server in the resource group assumes
its function.

Realtime 12

Database Mirroring

Another way to improve availability with SQL Server 2005 and 2008 is database mirroring.
The basic idea is that every change applied to a primary database is also sent to a backup
database. For example, if a user executes a SQL statement such as:

UPDATE sales.customer
SET active = ‘Y’
WHERE cust_id = 78973;

The customer record will be updated on the primary server, also known as the principal
server. The same transaction is sent to the secondary, or mirrored, server for execution as
well.

One consideration with database mirroring is when to commit a transaction on the primary
server. In synchronous mode, also known as high safety mode, the transaction is sent to the
secondary server and the primary server waits until that transaction completes before
completing the transaction on the primary server. This setup guarantees the update is
written to the secondary server before the primary considers the transaction complete.

In asynchronous mode, also known as high performance mode, the primary sends the
transaction to the secondary server but does not wait for verification that the transaction
completes. It is conceivable that a transaction successfully performed on the primary
server fails on the secondary. (There could be insufficient space on the secondary, for
example). The tradeoff here is that the primary does not have to wait for both transactions
to complete before it can move on to the next operation.

Log Shipping

Log shipping is another technique for duplicating transactions on a secondary server.
Unlike database mirroring where individual transactions are sent to the secondary server,
with log shipping, a backup of the transaction log on the primary is copied and sent to the
secondary server where it is applied.

There is a potential to lose transactions with this method. For example, if a log is shipped
from the primary to the secondary server and then other transactions are applied to the
primary and the primary fails, those later transactions will not be recovered. In spite of this
limitation, log shipping may be suitable for low transaction databases, such as reporting
systems that are replicated to improve performance.

Replication
Replication is a way of duplicating data using a publish and subscribe model. SQL Server
2008 provides three types of replication:

e Transactional replication
e Snapshot replication

e Merge replication

13

Realtime

Transactional replication is useful for high-availability applications where a steady stream
of transactions need to be copied from one server to another. Snapshot replication is useful
for copying data en masse from one server to another; for example, to a make a secondary
copy that is then maintained with transactional replication. Merge replication is more
useful for distributed applications that may result in conflicts when data is updated, such as
mobile applications.

Clearly there are many options for ensuring high availability with SQL Server. Failover
clusters provide computing redundancy with shared storage. If you are more concerned
with servers failing than a highly reliable disk array, failover clusters may be an
appropriate choice. If you are looking for disaster recovery features as well as high
availability, you will be running two storage systems as well. Data mirroring, log shipping,
and replication with a publish and subscribe method can be used in that case.

Tip, Trick, Technique 27: Ensuring High Availability for Microsoft

Exchange

When it comes to ensuring high availability of email services, your options depend on the
version of Microsoft Exchange you are running. Microsoft Exchange 2007 had a few
options, including a failover cluster option; with the advent of Microsoft Exchange 2010,
high availability was built into Microsoft Exchange itself. The later version of the email
server made high availability less cumbersome and easier to manage. The two versions’
approaches to replication are so different, we will consider them separately.

High Availability in Microsoft Exchange 2007
Microsoft Exchange 2007 offered email administrators a few options for implementing
high-availability solutions:

e Local continuous replication
e Single copy clusters

e (Clustered mailbox servers

Local continuous replication uses asynchronous replication to create copies of data that are
then kept synchronized using transaction log shipping. The copies are kept on a second set
of disks on the same server. This option does not provide server failover protection but
does keep a second copy of data, which can help if the primary copy is corrupted or
otherwise unusable.

Single copy clusters are built on failover clusters. As with other failover clusters, the
servers within the cluster share a single storage system. Configuring these clusters and
maintaining them can be challenging and time consuming.

Realtime 1

Clustered mailbox servers use clustering technology for server failover but do not use
shared storage. Instead, a copy of the mail data is maintained with asynchronous log
shipping. This option has both multiple servers and multiple copies of data, so it can
provide a recovery path for both server and data failure. If the servers are located in
different data centers, this option provides disaster recovery protection as well.

High Availability in Microsoft Exchange 2010

Microsoft Exchange 2010 makes a break with the failover cluster model used in Microsoft
Exchange 2007 and instead builds high-availability features into the application itself.
Some of the new features of Exchange 2010 include:

e Actively pushing log data from primary to secondary servers
e Continuous replication is done at the database level
¢ Improved protection for messages in transit

The result is improved protection and easier management.

This is a trend of pushing availability features into the application level that is likely to
continue as high availability moves from low-level network/server function to higher-level
business process and application level.

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

Realtime 1>

http://nexus.realtimepublishers.com/

	Tip, Trick, Technique 23: Business Drivers Behind the Need for High Availability
	User Expectation for Continuous Availability
	Application Design Considerations and High Availability

	Tip, Trick, Technique 24: Understanding the Key Elements of High Availability
	The Need for Hardware Redundancy
	The Need for OS Redundancy
	Special Issues with Application Software Redundancy

	Tip, Trick, Technique 25: Windows Server Options for High Availability
	Using NLB to Ensure Performance Levels
	Application Redundancy in Failover Clusters

	Tip, Trick, Technique 26: Ensuring High Availability for SQL Server Databases
	Failover Clusters
	Database Mirroring
	Log Shipping
	Replication

	Tip, Trick, Technique 27: Ensuring High Availability for Microsoft Exchange
	High Availability in Microsoft Exchange 2007
	High Availability in Microsoft Exchange 2010

	Download Additional Books from Realtime Nexus!

