

Introduction

i

Introduction to Realtimepublishers
by Don Jones, Series Editor

For several years, now, Realtime has produced dozens and dozens of high-quality books that just
happen to be delivered in electronic format—at no cost to you, the reader. We’ve made this
unique publishing model work through the generous support and cooperation of our sponsors,
who agree to bear each book’s production expenses for the benefit of our readers.

Although we’ve always offered our publications to you for free, don’t think for a moment that
quality is anything less than our top priority. My job is to make sure that our books are as good
as—and in most cases better than—any printed book that would cost you $40 or more. Our
electronic publishing model offers several advantages over printed books: You receive chapters
literally as fast as our authors produce them (hence the “realtime” aspect of our model), and we
can update chapters to reflect the latest changes in technology.

I want to point out that our books are by no means paid advertisements or white papers. We’re an
independent publishing company, and an important aspect of my job is to make sure that our
authors are free to voice their expertise and opinions without reservation or restriction. We
maintain complete editorial control of our publications, and I’m proud that we’ve produced so
many quality books over the past years.

I want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially if
you’ve received this publication from a friend or colleague. We have a wide variety of additional
books on a range of topics, and you’re sure to find something that’s of interest to you—and it
won’t cost you a thing. We hope you’ll continue to come to Realtime for your educational needs
far into the future.

Until then, enjoy.

Don Jones

http://nexus.realtimepublishers.com/

Table of Contents

ii

Introduction to Realtimepublishers.. i

An Introduction to Microsoft PowerShell..1

If You Don’t Know History…You’re Doomed to Repeat It ...1

So What Is the Solution?..1

What Is PowerShell and Why Should I Care? ...2

PowerShell Requirements..3

Quick Start ...3

Navigating Your System..4

Using the PowerShell Command Line...5

Aliases..5

Basic Cmdlets ..6

Parameters..7

Ubiquitous Parameters ...7

Profiles ...7

Scripts ..8

Redirection and Substitution..8

Variables ..9

Special Characters..13

Scopes ..14

Functions..15

Pipelines...15

Getting Help...16

So What Has .NET Got to Do With It? ...16

Microsoft .NET Framework Essentials..17

Reflection...18

Assemblies ...18

Variables as Objects...18

The .NET Application Programming Interface in PowerShell..............................20

Advanced .NET in PowerShell ..23

Okay—When Can I Get it? What Can it Do?..23

Want to Know More?...24

Copyright Statement

iii

Copyright Statement
© 2006 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

1

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library. All
leading technology guides from Realtimepublishers can be found at
http://nexus.realtimepublishers.com.]

An Introduction to Microsoft PowerShell

For ages, Microsoft has been blamed for being a bit lacking when it comes to scripting and
automation for its flagship Windows product and related server products, such as Exchange
Server and SQL Server. In the beginning, Windows NT simply included an MS-DOS-like
command shell called Cmd.exe; in the mid-nineties, Microsoft introduced Visual Basic Scripting
Edition—VBScript—as an administrative tool. In the interim, dozens of third-party or
unsupported scripting solutions debuted with varying degrees of success: KiXtart, WinBatch,
WinScript, AutoIt, and more, just to name a few. They all shared a single problem: Windows
itself.

If You Don’t Know History…You’re Doomed to Repeat It
Understanding the problems with Windows automation can help prevent those problems in the
future, and the main problem—simply put—is windows. With a lowercase “w.” Windows (the
product) has been entirely built around a graphical user interface (GUI), and how exactly do you
automate something like that? You can’t. Instead, early automation was provided in the form of
command-line tools, which were really an alternative to the GUI; they rarely did the exact same
thing as the GUI because they were built for different purposes. That meant the only things you
could really script and automate were the things Microsoft offered command-line tools for—
small wonder, then, that the tool-packed Windows NT Resource Kit was a bestseller!

VBScript tried to address some of these issues by allowing administrators to write scripts that
more directly addressed the Windows operating system (OS) or, more specifically, the
Component Object Model (COM) on which Windows is built. Most GUI administrative tools use
COM to do their work, so by tapping directly into COM—this is the theory, at least—you could
do anything the GUI could do. Or not; turns out VBScript couldn’t address every COM interface,
and some significant portions of Windows remained outside the realm of scriptability.

Another problem—both with command-line tools and with VBScript—was consistency. Every
command-line tool and COM interface worked slightly differently, creating a learning curve
every time you needed to use a new one.

So What Is the Solution?
The solution was easy: Like UNIX/Linux (*nix, for short) systems, Windows needed to be built
upon a common ground that both GUI and command-line (scripting) administrative tools could
access equally. Fortunately, by the early 21st century, that common ground existed: The
Microsoft .NET Framework. What Microsoft needed was to commit to .NET and build all
administrative functionality on it—something they did with Exchange Server 12 in 2006. Then, a
powerful new command-line shell—one similar to Cmd.exe in certain ways and to VBScript in
others—could be created that also interfaced with the .NET Framework, providing a simplified
way of having the Framework perform administrative tasks. The answer was code-named
“Monad,” and in early 2006 Microsoft officially announced it as PowerShell.

http://nexus.realtimepublishers.com/

2

What Is PowerShell and Why Should I Care?
Administrators of *nix systems have always had the luxury of administrative scripting. In fact,
most *nix OSs are built on a command-line interface (CLI); while most also feature a GUI, the
real work is done from the CLI. Every variant of *nix supports some sort of shell scripting
language that enables CLI commands to be strung together to automate administrative tasks.

Microsoft Windows has traditionally been built on a GUI rather than on a CLI; the exact
opposite, in fact, of a typical *nix system. Automating tasks performed in a GUI is significantly
more difficult than automating tasks performed in a CLI; how do you write a script, for example,
that tells a computer to select a certain check box if the contents of a text box are such-and-such?
You really can’t. To help administrators automate various tasks, Microsoft has traditionally
included a variety of CLI tools—command-line executables—that provide a CLI-based way of
performing tasks; by stringing these commands together in batch files, or scripts, administrators
could automate these tasks. However, the CLI tools typically only exposed a portion of
Windows’ functionality, meaning you could only automate tasks for which Microsoft provided
CLI tools.

In the late nineties, Microsoft introduced Visual Basic Scripting Edition, commonly referred to
as VBScript. This scripting language was compatible with Microsoft’s COM, which forms the
building blocks of Windows itself. Because most GUI administrative tools were built on, and
utilized, COM, it was felt that VBScript would be able to provide a better automation
environment. Unfortunately, VBScript can still only automate a fraction of Windows’
capabilities, although it can do far more than the simple CLI batch language (which evolved
from Microsoft’s earliest OS, MS-DOS).

Both CLI tools and VBScript have other problems, primarily in consistency. Because both
evolved over time and were created by various groups within Microsoft who had no standards to
work from, each CLI tool and COM interface (as used by VBScript) works a bit differently.
Thus, every new tool or COM interface has a new learning curve, which takes additional time—
which you may not have. All of this stems from the fact the Microsoft never really committed to
scripting and automation for Windows; the feeling was that it was Windows and you primarily
used the GUI to run it. As Windows’ penetration into large companies and enterprises increased,
however, managers and administrators accustomed to *nix began to demand the same scripting
and automation capabilities from Windows.

Which brings us to PowerShell. PowerShell is Microsoft’s first comprehensive, from-scratch
effort to create a scriptable automation shell for Windows. It’s built on the Microsoft .NET
Framework, which has deep ties into almost every aspect of the OS. Because Microsoft’s made a
strategic commitment to .NET, PowerShell’s future is fairly secure because it will be built on the
same platform that most of the rest of Microsoft’s products will be built on. And PowerShell is,
above all else, consistent: There are clear guidelines for how PowerShell is to be built and
extended, meaning you won’t have to learn an entirely new way of doing things every time you
start a new script.

3

Exchange Server 12 is perhaps the best example of how PowerShell can be leveraged.
PowerShell was built into this version of Exchange from the outset. In fact, all of the product’s
administrative functionality was built in .NET and exposed through PowerShell; the
administrative GUI, or console, simply utilizes that underlying functionality. That means any
Exchange administrative task can be performed in PowerShell—which means any task can be
scripted and automated in a consistent fashion. Whether future use of PowerShell is so
comprehensive remains up to the individual product groups within Microsoft, but with the
strategic commitment both to .NET and to administrative automation, you can bet that
PowerShell will finally offer a clear, consistent, and comprehensive tool for Windows
administrative scripting.

PowerShell Requirements
PowerShell is designed to run on all recent versions of Windows, including those based on x64
processors. The only prerequisite for installing PowerShell is that you must first install v2.0 of
the Microsoft .NET Framework.

 PowerShell will pre-install in certain situations; it is part of the Exchange Server 12 administrative
tools, for example.

 This eBooklet is based on Beta 3.1 of PowerShell.

Quick Start
PowerShell is easy to get up and running—simply run PSH.EXE (or select the Start menu
shortcut) and you’ll be in the new shell. PowerShell is a complete shell, not unlike the Cmd.exe
shell you’re probably already familiar with. From within PowerShell, you can run normal
applications such as Notepad or Calc; for applications that produce textual output (as opposed to
using a GUI), you can capture the output within the PowerShell shell.

Under Cmd.exe, you typically ran CLI utilities such as Dir, Xcopy, Cacls, and so forth; under
PowerShell, you’ll primarily work with cmdlets (pronounced, “command lets”). Cmdlets serve
the same role within PowerShell as CLI tools did under Cmd.exe, but they’re all built to a
consistent standard, and they’re all built using the .NET Framework. PowerShell scripting
involves stringing these cmdlets together to perform various tasks; if you’re a .NET developer,
you can also write your own cmdlets.

Cmdlets are always named in a verb-noun format, such as Get-Process. You can use the built-in
Get-Help cmdlet to read help, when available for other cmdlets: Get-Help Get-Process, for
example, displays help on the Get-Process cmdlet.

4

Navigating Your System
The old Cmd.exe shell primarily provided access to drives, files, and folders on your system;
PowerShell provides access to these as well as to additional resources such as the Windows
registry. However, PowerShell “maps” these additional resources so that they look like drives,
providing a familiar interface for working with a variety of resources. For example, when you
open PowerShell, you might have a prompt that looks something like this:

PSH C:\>

that indicates that PowerShell is currently looking at the root of the C drive on your system. You
can see a list of current drive mappings by using the Get-Drive cmdlet:
Name Provider Root CurrentLocation
---- -------- ---- ---------------
A Microsoft.... A:\
Alias Microsoft....
C Microsoft.... C:\ ...TEM\MSMAPI\1033
cert Microsoft.... \
D Microsoft.... D:\
Env Microsoft....
F Microsoft.... F:\
Function Microsoft....
HKCU Microsoft.... HKEY_CURRENT_USER
HKLM Microsoft.... HKEY_LOCAL_MACHINE
Variable Microsoft....

Notice that drive names aren’t limited to single letters: The HKLM drive, for example, maps to
the HKEY_LOCAL_MACHINE portion of the registry. Also notice the Provider column, which
indicates the PowerShell provider, or piece of software, that is providing the connectivity to that
particular resource. Providers are what make PowerShell so flexible. Simply by adding a
provider, you can gain access to entirely new resources through PowerShell. PowerShell ships
with providers that give you access to certificates (the cert provider), the registry (HKCU and
HKLM), the file system (drive letters), and the Windows environment (the env provider), in
addition to internal providers for aliases, functions, and variables.

To change locations, simply use the Set-Location cmdlet, passing it the name of the location you
want to change to:

PSH C:\>Set-Location HKLM:\

 PowerShell is generally case-insensitive, so Set-Location is the same as set-location.

Note that you can set yourself directly to a complete location:
PSH C:\>Set-location "C:\Documents and Settings"

This command will change directly to the indicated path. Note that the path is contained within
double quotation marks because it contains spaces; any argument that contains spaces must be
enclosed within double quotation marks.

5

PowerShell also maintains a stack of locations. You can add, or push, a location onto the stack
by using the Push-Location cmdlet; you can quickly change to the location on the top of the
stack by using the Pop-Location cmdlet. For example:

PSH C:\>Push-Location C:\

moves the location C:\ to the top of the stack. Later, when you’re ready to quickly change back
to C:\, just issue:

PSH C:\Documents and Settings>Pop-Location

Learning to navigate through the PowerShell shell quickly is a key to using it effectively.

Using the PowerShell Command Line
PowerShell has some very basic line-editing capabilities that you can use when typing at the
command line. These are no substitute by any stretch for a full development environment if
you’re writing scripts or cmdlets, but they provide basic features when you just need to run a
script or cmdlet interactively:

• Down- and up-arrow displays previously entered commands

• Left- and right-arrow move the cursor left and right, respectively

• The Home key moves to the beginning of the current command; End moves to the end

• Ctrl+Left and Ctrl+Right jump one word to the left and right

• Insert toggles insert/overwrite mode

• Backspace deletes the character in front of (to the left of) your cursor; Delete removes the
character to the right of your cursor

• Press Tab to auto-complete path names

Aliases
As intuitive as PowerShell’s cmdlet names can be, they’re not always convenient to type. Typing
Set-Location is a poor substitute for the good ol’ cd command under Cmd.exe, for example.
Thus, PowerShell lets you define aliases, or nicknames, for cmdlets. For example, if you find
Pop-Location to be too cumbersome, create a nickname called “Popd” for it:

PSH C:\>Set-Alias popd Pop-Location

And now you can use Popd in place of Pop-Location. You can remove, or un-define, an alias by
using the generic Remove-Item cmdlet:

PSH C:\>Remove-Item alias:popd

6

This command removes the Popd alias from the system. PowerShell predefines a number of
useful aliases; just run Get-Alias to see them all. Here’s a portion of the output you’ll see:
CommandType Name Definition
----------- ---- ----------
Alias ac add-content
Alias clc clear-content
Alias cli clear-item
Alias clp clear-property
Alias clv clear-variable
Alias cpi copy-item
Alias cpp copy-property
Alias cvpa convert-path
Alias epal export-alias
Alias epcsv export-csv
Alias gci get-childitem

Note that you can only set up aliases for cmdlets; aliases aren’t shortcuts for entire command
strings. For example, this won’t work:

PSH C:\>Set-Alias GoC "Set-Location C:\"

Aliases can only be for a single cmdlet or external executable, not for any accompanying
parameters or arguments.

Basic Cmdlets
PowerShell will happily provide a list of all registered cmdlets, using Get-Command. Here’s a
partial list:
CommandType Name Definition
----------- ---- ----------
Cmdlet add-content add-content [-Path] String[]...
Cmdlet add-history add-history [[-InputObject] ...
Cmdlet add-member add-member [-Type] MshMember...
Cmdlet add-mshsnapin add-mshsnapin [-Name] String...
Cmdlet clear-content clear-content [-Path] String...
Cmdlet clear-item clear-item [-Path] String[] ...
Cmdlet clear-property clear-property [-Path] Strin...
Cmdlet clear-variable clear-variable [-Name] Strin...
Cmdlet combine-path combine-path [-Path] String[...
Cmdlet compare-object compare-object [-ReferenceOb...
Cmdlet convert-HTML convert-HTML [[-Property] Ob...
Cmdlet convert-path convert-path [-Path] String[...

That’s a good way for inventorying what your capabilities within PowerShell are. For any given
cmdlet, Get-Command will tell you more about it. For example:

PSH C:\>Get-Command Set-Alias

will describe what the Set-Alias cmdlet does. You can also use wildcards:
PSH C:\>Get-Command Get-*

And you can use Get-Help to learn more specific information. For example:
PSH C:\>Get-Help Set-Alias

produces a lengthy description of the Set-Alias cmdlet, along with details about each argument,
examples of how the cmdlet is used, and so forth.

7

Parameters
Many cmdlets can accept parameters; these are passed by name, using a hyphen, then the
parameter (or argument) name, a space, and then the value you’re passing to the parameter. For
example:

PSH C:\>New_Item –type file "myfile.txt"

will create a new file. Notice the –type parameter, which is given the values file and a filename.
When parameters are passed by name, they can be passed in any order. Some parameter names
may be abbreviated, such as –db for –debug; valid abbreviations are always listed in the
command’s help.

Ubiquitous Parameters
Most cmdlets support a set of ubiquitous parameters, which are always optional (meaning they
don’t need to be specified if you don’t want to use them):

• -Debug (-db)—Instructs the cmdlet to provide additional programmer-level detail about
the operation.

• -ErrorAction (-ea)—Controls the behavior of the cmdlet when an error occurs. Values
can be NotifyContinue (which is the default), NotifyStop, SilentContinue, SilentStop, and
Inquire.

• -ErrorVariable (-ev)—Specifies the name of a variable in which to place all objects to
which an error occurred while processing. The specified variable is processed in addition
to the built-in $ERROR variable.

• -OutVariable (-ov)—Specifies the name of a variable in which to place all objects that are
output from the cmdlet.

• -Verbose (-vb)—Instructs the cmdlet to produce additional output about its actions and
progress.

Profiles
PowerShell uses profiles to help customize the shell environment. There are a few files that
customize the profile:

• \Documents and Settings\All Users\Documents\PSH\profile.PSH

• \Documents and Settings\All
Users\Documents\PSH\Microsoft.Management.Automation.PSH_profile.PSH

• \My Documents\PSH\profile.PSH

• \My Documents\PSH\Microsoft.Management.Automation.PSH_profile.PSH

These files, if they exist, are read in this order; conflicts are “won” by whichever file is read last.
If none of these files exist, PowerShell will use its built-in default settings.

8

Scripts
So far, we’ve simply explored ways to run cmdlets directly and view their output. PowerShell
scripts are designed to string several cmdlets together to automate more complex tasks.
PowerShell scripts must have the filename extension .PSH; to run a script, simply type its name,
without the extension. PowerShell will look in the environment Path variable or any files with
the .PSH extension in order to find your script. If your script takes input arguments, simply type
them after the script name:

. Myscript arg1 arg2

Did you catch the period at the beginning of the line? That tells PowerShell to execute the script
in the current scope, which I’ll discuss in a bit. Scripts use their own language, which is similar
to both VBScript and C#, and I’ll spend most of the rest of this guide discussing this scripting
language.

 How can PowerShell tell when you’re typing a script name, a cmdlet name, or an alias? When you
type any name, PowerShell tries to look first for an alias, then a function, then a cmdlet, then a script,
and then an external executable.

Why did Microsoft choose to use a new language rather than a language already in existence,
like VBScript? A few reasons come to mind. First, because PowerShell is built on .NET, the
scripting language needed to be able to leverage .NET’s features and capabilities, which
VBScript certainly can’t do. In fact, no scripting language had existed that could really utilize
.NET. A new language could also be more consistent than languages like KiXtart, which evolved
over time and are a bit of a mishmash. Microsoft decided to go with a language that was
essentially a subset of the C# .NET language, allowing an easier “upscale” from PowerShell to
the full C# language, should you ever want to make that leap.

Redirection and Substitution
One common thing you’ll need to do is redirect the output of one cmdlet into another cmdlet,
tying the two together. You may also want to redirect cmdlet output to a file, in order to create a
report of some kind. For example, to create your own reference file of available cmdlets:

PSH C:\>Get-Command > commandref.txt

You’ll have a file named Commandref.txt, located in the current location (as indicated by the
PowerShell prompt), which contains the output of the Get-Command cmdlet.

 To append output to an existing file, rather than overwriting it, use >> instead of >.

You can use the output of one cmdlet as the input, or argument, to another cmdlet or language
expression. The syntax is $(cmdlet), as in this example:

PSH C:\>Get-ChildItem $(Read-Host –Prompt "Enter filename: ")

9

This idea is a bit difficult to follow, so let’s walk through it slowly: The first cmdlet is Get-
ChildItem. This cmdlet is designed to accept a file path, then display the child items—files and
subfolders, usually—of that path. The Read-Host cmdlet is designed to read input from the
command line; its –Prompt argument defines a text prompt. Thus, this example displays the
following:
PSH C:\> Get-ChildItem $(Read-Host –Prompt "Enter filename: ")
Enter filename: : C:\

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/10/2005 9:01 PM 15320 ArchiveLogs.wsf
-a--- 1/9/2005 10:07 PM 0 AUTOEXEC.BAT
-a--- 4/10/2006 10:12 AM 17 computers.txt
-a--- 1/9/2005 10:07 PM 0 CONFIG.SYS
-a--- 4/12/2006 11:47 AM 526 hpfr5550.xml
d---- 2/26/2006 5:21 PM Documents and Settings
d---- 1/9/2005 10:32 PM Inetpub
d---- 3/2/2006 1:29 PM logs
d---- 4/17/2006 11:34 AM Program Files
d---- 4/13/2006 1:31 PM temp
d---- 4/13/2006 8:56 PM WINDOWS

The output of Read-Host—that is, whatever was typed at the prompt—is passed as the input
argument to Get-ChildItem.

Other forms of substitution are possible. For example, to create five files named 1, 2, 3, 4, and 5:
PSH C:\>New_Item –type file $(1..5)

The New-Item cmdlets has an input argument, -Type, which accepts an item type (I’ve specified
file) and name. For the name, I’ve used substitution, specifying that the values 1 through 5,
inclusive, should be used. This causes the cmdlet to run once for each value I’ve supplied,
creating five new files.

Variables
Like many scripting environments, PowerShell supports the creation and use of variables. Think
of a variable as a container that has a name and can hold values. For example:

PSH C:\>$var = 100

creates a new variable named $var and assigns it the numeric value 100. Variable names always
begin with $ in PowerShell.

10

You can declare variables right at the PowerShell prompt; you don’t need to be running a script:
PSH C:\Documents and Settings> $var = "C:\"

PSH C:\Documents and Settings> set-location $var

PSH C:\>

In the first line of this example, the variable $var is declared and set to contain the string value
“C:\”—notice the double quotation marks around the value, which marks it as a string rather than
a number. The second line executes the Set-Location cmdlet, passing the contents of $var. As
you can see from the prompt on the third line, the location was successfully changed to C:\. It’s
important to note that, when variables are used, it’s the contents of the variable that are passed
along, not the variable name itself. In other words, I wasn’t trying to set the location to a location
named “$var;” I set it to whatever was contained within the variable $var.

Variables can contain the output of cmdlets, too:
PSH C:\>$a = get-process

will run the Get-Process cmdlet and put its entire output into the variable $a.

Variable Names and Intrinsic Variables
Variable names can contain any character. However, if they don’t start with a letter, they must be
enclosed in curly braces:

$var = 4

$var2 = 3

${@@123} = 2

It can be a bit confusing to use variable names such as @@123, so I recommend sticking with
textual, meaningful names. Interestingly, a variable name can be a path, such as:

PSH C:\>${C:\File.txt} = "Hello!"

This command will write “Hello!” to a text file named C:\File.txt. Remember that every resource
to which PowerShell connects can be presented with a file-like path—the path
HKLM\SOFTWARE, for example, goes to the registry—so this can be a powerful technique for
quickly changing values in various resources.

PowerShell provides a number of built-in variables—automatic variables, policy variables, and
so forth—that provide information about the current environment, the currently executing host,
and so forth. These are listed in the PowerShell documentation, and you shouldn’t try to name
your own variables any of the names used by these built-in variables.

11

Variables Are Objects
It’s important to understand that PowerShell variables are objects. This is unlike languages such
as VBScript, where variables are simply containers for values; in the case of PowerShell, a
variable does contain a value, but it also has a number of intrinsic capabilities because it’s also
an object. For example:

PSH C:\>$var = "Hello, World"

assigns the value “Hello, World” to the variable $var. $var now contains that variable, but $var
also has a number of capabilities as an object. One of those capabilities is the SubString()
method:

PSH C:\>Write-Host $var.SubString(2,2)

This command calls the Write-Host cmdlet, which outputs text to the console. It asks that the
$var object execute its SubString() method, which starts at the third character position
(numbering begins with 0, so 2 is the third character) and takes 2 characters. This will output “ll”
to the console. Similarly:

PSH C:\>Write-Host $var.Length

would output the number 12, because that’s how long the contents of $var are: 12 characters.
Note that PowerShell doesn’t visually differentiate between variables that contain strings and
those that contain numbers:

$var = 5

$var = "Hello"

Both are perfectly legal. However, PowerShell can tell the difference. Variables containing
string values are referred to as string objects, and they come with a rich variety of methods and
properties such as SubString() and Length. For example:

PSH C:\> $var = 3

PSH C:\> write-host $var.length

PSH C:\> $var = "Hello"

PSH C:\> write-host $var.length

5

First, $var is given the numeric value 3. When asked to output the length, PowerShell can’t
because 3 isn’t a string; thus, $var isn’t a string object. However, when the contents of $var are
replaced by the string “Hello,” $var becomes a string object and has a valid Length property, as
shown in the output.

12

String Variables and Embedding
String variables treat embedded variables in an interesting fashion. For example:

PSH C:\> $var = "Hello"

PSH C:\> $var2 = "$var, World!"

PSH C:\> write-host $var2

Hello, World!

In this example, the value “Hello” was assigned to $var. The value “$var, World!” was assigned
to $var2. When passed to Write-Host, $var was expanded, meaning its contents were displayed.
That is because $var2 was assigned using double quotation marks. Now, consider this similar
example:

PSH C:\> $var = "Hello"

PSH C:\> $var2 = '$var, World!'

PSH C:\> write-host $var2

$var, World!

Notice the difference? This time, the value passed into $var2 was contained in single quotation
marks instead of double. This prevented $var from being expanded, and so the literal value
“$var, World!” was stored in $var2, as evidence by the Write-Host output. $var2 is still
considered a string object; either single quotes or double quotes can be used to contain strings.

Strings assigned with double quotation marks can also contain embedded expressions. For
example:

PSH C:\> $var = "2+2 is $(2+2)"

PSH C:\> write-host $var

2+2 is 4

Anything with a $ is considered either a variable or expression and is evaluated accordingly. In
this case, the expression (2+2) was recognized as a mathematical expression, and it was
evaluated for its result. Here’s one last useful example:

PSH C:\> $var = "Hello"

PSH C:\> $var2 = "$var, World!"

PSH C:\> $var = "Goodbye"

PSH C:\> write-host $var2

Hello, World!

Notice that the output of Write-Host is “Hello, World!” and not “Goodbye, World!” as you
might expect. The reason is tat $var was expanded when it was assigned into $var2. In other
words, $var2 contains the static string, “Hello, World!” because $var contained “Hello” at the
time the value was assigned to $var2. Later changes to $var do not effect the existing contents of
$var2.

13

Parsing Mode
All of this quotation stuff can get confusing because it works somewhat differently at the
command line, when you’re just typing text into PowerShell. For example:

PSH C:\> write-host 2+2

2+2

PSH C:\>

Why didn’t it display 4? Because at the command line, everything is considered a string unless it
appears in parentheses or starts with $ (meaning it’s a variable). Thus, this works differently:

PSH C:\> write-host (2+2)

4

PSH C:\>

Why the difference? At the command line, PowerShell treats everything as a string so that you
don’t have to put quotation marks around everything. That allows you to run:

PSH C:\>Set-Location C:\

Rather than having to type:
PSH C:\>Set-Location "C:\"

Which would be cumbersome and unintuitive because it’s not the way past Windows shells have
worked. This is all called the shell parsing mode: Whether the shell treats things as strings by
default, or not. The rules are pretty simple: If the first character is a number, a variable ($), or a
quoted string, the shell works in expression mode, in which all strings must be quoted. If the first
character is a letter, ampersand (&), or a dot followed by a space or a letter, the shell works in
command mode, which is where everything is assumed to be a string unless it’s a variable or is in
parentheses, as I’ve demonstrated.

Special Characters
Sometimes, you might need to display special characters that can’t be typed. PowerShell
provides an escape character for these: `, which is a backward apostrophe, usually located on the
same key as ~ on your keyboard. The special characters are:

Character Escape Code

Null `0
Alert `a
Backspace `b
Form feed `f
New line `n
Carriage return `r
Tab `t
Vertical quote `v

In order to display a ` by itself, type ``.

14

Scopes
Scope is a description of the visibility of a function or variable within PowerShell. This is a
means of controlling access to variables and functions. Generally, unless you explicitly request
otherwise, variables can be read and changed only within the scope where they were originally
created, and they’ll only be accessible to cmdlets running in the same scope. That’s why, in the
previous example of running a script:

PSH C:\>. Myscript arg1 arg2

It was so important to specify the period, to ensure that the script would run in the current
scope—thus having access to any variables or functions already declared within that scope. If I
hadn’t used the period, PowerShell would have taken its default action of creating a new scope
for the script. This technique of preceding the script name with a period and a space is called dot
sourcing, and it essentially makes the script behave as if each line of the script was being typed,
by you, right into the PowerShell shell.

All scripts, by default (that is, unless you use dot sourcing), are run in a newly created scope.
Child scopes—that is, scopes created by another scope—can read variables from the parent
scope but not change them as easily. Parent scopes can’t access child scope variables in any way.

When you start a new instance of PowerShell, you’re working in the global scope. Any child
scope can access global scope variables (such as environment variables), but they must explicitly
label the variable as global in order to do so (I’ll touch more on this later).

 The global scope is simply named global, while the scope of an executing script is named script. I’ll
reveal other special scope names as I use them elsewhere in the book.

For example, suppose a script declares a variable named $var. A function runs, and also declares
$var. There are now two copies of $var in existence—the one in the script’s scope, and the one in
the function’s scope. Because the function is contained within the script, its scope is a child of
the script’s scope. Thus, the function can access script-level variables if it chooses to do so, by
referring to $script:var—that is, the name of the scope (script) and the name of the variable from
that scope (var). More on functions is coming up next.

Variables can also be declared as private, meaning they’re accessible only from the current
scope, and not from within child scopes:

PSH C:\>$private:var

Declares a private variable named $var.

15

Functions
Functions are little subroutines of code that are intended to be self-contained. Functions have
their own scope, as outlined in the previous discussion on scope—variables declared within a
function are accessible only to the function. If the function was run as part of a script, the
function can access the script’s scope because the script is the parent of the function.

Functions are declared with the keyword function, given a name, and then can include whatever
code you need. For example:

function myFunction {

 $var = 3

 $script:var = "Hello"

}

Notice that the function’s code is enclosed by {curly braces}, which lets PowerShell know where
the function starts and stops.

Pipelines
One of the most powerful and possibly confusing aspects of PowerShell is its data pipelines.
These provide a means of passing data and objects from one cmdlet to another in a very robust
fashion. Perhaps you’ve used the Cmd.exe More utility to slow the display of a long directory:

C:\>Dir | More

This command takes the output of Dir and “pipes” it to More, which displays the data in nice
pages, and waits for you to hit a key before displaying the next page. Pipes have the same basic
function in PowerShell (in fact, that character in between Dir and More is called the pipe
character, and it’s usually on the backslash key of your keyboard); here’s a robust example:

PSH C:\>Get-Process | where { $_.handlecount -gt 400 } | Format-
List

 PowerShell has a More command, too, if you want to pipe multi-screen output to it for one-page-at-a-
time display.

16

This example is actually executing three cmdlets. The first, Get-Process, returns a list of all
running processes. Each process is actually an object, of sorts, with various properties. These are
all piped to where, which is an alias for the Where-Object cmdlet. Its job is to sort through a list
of objects and pull out those that match some criteria; in this case, where their handlecount
property is greater than (that’s the –gt argument) 400. All of that is piped to the Format-List
cmdlet, which creates a nice, pretty list of the results:
PSH C:\> Get-Process | where { $_.handlecount -gt 400 } | Format-List

ProcessName : csrss
Id : 1080

ProcessName : explorer
Id : 1952

ProcessName : Groove
Id : 2656

ProcessName : inetinfo
Id : 1524

The ability of pipes to pass data to other cmdlets, and the ability of PowerShell to deal with
complex, structured objects (like the Process object) in a text interface, is part of what has people
so excited about it.

Getting Help
PowerShell has a fairly comprehensive built-in help system. To see a list of all available help
topics, type Help *_*; for help with just a specific topic, run Help topicname, such as Help
about_Alias. Help, by the way, is an alias for the Get-Help cmdlet. For help on absolutely
everything, including cmdlets and aliases, just run Help *.

So What Has .NET Got to Do With It?
You probably don’t feel as if you need to know much about the .NET Framework. Or maybe
you’re just hoping that’s the case. Well, almost: You certainly don’t need to know much about it,
and what you do need to know will be summarized in this short section. You do need to know a
little bit, though, in order for a lot of what PowerShell does to make sense to you. I’ll also
explore some WMI essentials, because WMI is at the heart of so many administrative tasks that
you’ll automate through PowerShell.

17

Microsoft .NET Framework Essentials
.NET is Microsoft’s leading-edge software development framework. Traditional .NET
development begins inside a development environment such as Microsoft Visual Studio,
SAPIEN PrimalScript Enterprise, or even Windows Notepad. Applications are written in
languages like VB.NET or C#. They’re then compiled to a special language called MSIL, the
Microsoft Intermediate Language. This is important, because it’s different from how other
things, like Visual Basic 6, compiled programs into a native, binary executable.

When you double-click a .NET executable, it doesn’t actually run right away. That’s because it
contains MSIL, not actual binary code. Instead, Windows fires up the .NET Common Language
Runtime, or CLR. That is what reads the MSIL and compiles it into executable, binary code
that’ll run on your system. This makes .NET applications inherently portable: They can (more or
less) run on any platform for which a CLR is available. This is all a bit of an oversimplification,
of course, but it’s more than close enough for Windows administrative work.

The point of all this is that PowerShell is itself built in .NET, as are the cmdlets you’ll be
running. .NET is an object-oriented framework, which is a fancy way of saying it’s kind of
template-based. For example, all PowerShell cmdlets start out as copies of a standardized cmdlet
base class or template. In programmer terms, you would say that all cmdlets inherit from that
cmdlet base class. This is important because it’s what makes all cmdlets pretty consistent with
one another, allows them to all share certain ubiquitous parameters, and so forth.

The object-oriented stuff also plays heavily into how PowerShell works, but to understand why,
you need to know a bit more about what an object is. At the simplest level—one suitable for
cocktail parties, perhaps—an object is just a bunch of computer code all bundled up into a “black
box.” The box has buttons you can push to make things happen, and has little blinky lights to tell
you what’s going on inside. You don’t actually know how the box works—inside it could be
anything from a particle accelerator to a cheese sandwich—and it doesn’t really matter; the
whole point is that you only interact with the box through its blinky lights and buttons, and
everything inside is a big mystery. You can build your own black box, which incorporates
another black box (this is called inheritance), essentially installing box number one inside box
number two, so that your box (number 2) can take full advantage of number one’s functionality
without really know much about what goes on inside.

In .NET—and in PowerShell—everything is an object. Every variable you create, every WMI
class you return, everything is an object. And those objects all have buttons—called methods—
and blinky lights—called properties. For example, when you run:

PSH:> $stuff = get-wmiobject –class Win32_Process
 namespace –root\cimv2

The Get-Wmiobject cmdlet goes out and gets all the instances of the Win32_Process WMI class.
Each class is an object. Together, they’re bundled up into a collection of objects, which is stored
in $stuff. So the variable $stuff is now a collection (or list, or array, if you prefer one of those
terms instead) of Win32_Process instances. Even a simple string of text “like this one” is really
an object—a string object, to be specific—as far as PowerShell and .NET are concerned.

18

Reflection
Part of what made Microsoft’s COM (the pre-PowerShell way of managing Windows, often
through a language like VBScript) so difficult is that objects (COM had objects, too) had to take
special steps to define their functionality ahead of time. In other words, when someone at
Microsoft created a DLL that allowed your scripts to work with files and folders, they also had to
create a little file called a type library that explained what the DLL was capable of. That made
COM difficult to extend easily. With .NET, however, there is a nifty feature called reflection.
Basically, it’s just a way for one application—such as PowerShell—to discover something about
an object at runtime without having to be told in advance what the object can do. Reflect makes
PowerShell infinitely extensible, because you can just add new cmdlets and PowerShell can
more or less ask the cmdlets themselves what they do and how they work.

Assemblies
In .NET, everything gets packaged, eventually, into an assembly. Cmdlets, for example, are
assemblies. It’s really just a fancy word for what I’d otherwise call an executable, or a DLL, or
some other file-that-contains-executable-code. You’ll find assemblies distributed with
PowerShell in (by default) the shell’s installation folder:
System.Management.Automation.Commands.Management.dll, for example, is a file containing
bunches of different cmdlets (one assembly can actually contain, or implement, multiple objects
or interfaces—each one being a separate cmdlet, for example).

Variables as Objects
Earlier, I mentioned that even variables are objects, and they are. In .NET, string variables in
particular are extremely robust, and have a number of methods and properties. One of them is
Split, a method that takes a string and creates an array (or list) out of it by breaking the list up on
some character, like a comma or a space. Try this in PowerShell:

PSH:> "1,2,3,4".Split(",")

What you’re telling PowerShell is “take this string, and execute its Split method. Use a comma
for the method’s input argument.” PowerShell does this, and the method returns an array of four
elements, each element containing a number. PowerShell gets that array and displays it in a
textual fashion, with one array element per line:

1
2
3
4

19

There are other ways to use this. For example, PowerShell has a cmdlet called Get-Member,
which displays the methods and variables associated with a given object instance. Thus, taking a
string such as “Hello, World”—which, remember, is an instance of a String object—and piping it
to the Get-Member cmdlet will display information about that String object:
PSH C:\> "Hello, World" | get-member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Objec
Contains Method System.Boolean Contains(Stri
CopyTo Method System.Void CopyTo(Int32 sou
EndsWith Method System.Boolean EndsWith(Stri
Equals Method System.Boolean Equals(Object
get_Chars Method System.Char get_Chars(Int32
get_Length Method System.Int32 get_Length()
GetEnumerator Method System.CharEnumerator GetEnu
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode(
IndexOf Method System.Int32 IndexOf(Char va
IndexOfAny Method System.Int32 IndexOfAny(Char
Insert Method System.String Insert(Int32 s
IsNormalized Method System.Boolean IsNormalized(
LastIndexOf Method System.Int32 LastIndexOf(Cha
LastIndexOfAny Method System.Int32 LastIndexOfAny(
Normalize Method System.String Normalize(), S
PadLeft Method System.String PadLeft(Int32
PadRight Method System.String PadRight(Int32
Remove Method System.String Remove(Int32 s
Replace Method System.String Replace(Char o
Split Method System.String[] Split(Params
StartsWith Method System.Boolean StartsWith(St
Substring Method System.String Substring(Int3
ToCharArray Method System.Char[] ToCharArray(),
ToLower Method System.String ToLower(), Sys
ToLowerInvariant Method System.String ToLowerInvaria
ToString Method System.String ToString(), Sy
ToUpper Method System.String ToUpper(), Sys
ToUpperInvariant Method System.String ToUpperInvaria
Trim Method System.String Trim(Params Ch
TrimEnd Method System.String TrimEnd(Params
TrimStart Method System.String TrimStart(Para
Chars ParameterizedProperty System.Char Chars(Int32 inde
Length Property System.Int32 Length {get;}

This output is truncated a bit to fit in this book, but you can see that it includes every method and
property of the String, and correctly identifies “Hello, World” as a “System.String” type—that
being the unique type name that describes what I informally call a String object. You can pipe
nearly anything to Get-Member to learn more about that particular object and its capabilities.

20

The .NET Application Programming Interface in PowerShell
The fact that PowerShell is built on and around .NET gives PowerShell tremendous power that
isn’t always obvious. For example, I already explained that any PowerShell variable can contain
any type of data. Well, that’s really because all types of data—strings, integers, dates, and so
forth—are .NET classes, and they all inherit from the base class named Object. A PowerShell
variable can actually contain anything that inherits from Object although, as in the previous
example with a string, PowerShell can certainly tell the difference between different classes that
inherit from Object.

You can actually force PowerShell to treat objects as a more specific type. For example, take a
look at this sequence:

PSH C:\> $one = 5

PSH C:\> $two = "5"

PSH C:\> $one + $two

10

PSH C:\> $one = 5

PSH C:\> $two = "5"

PSH C:\> $one + $two

10

PSH C:\> $two + $one

55

In this example, I gave PowerShell two variables. One contained the number five, and the other
contained the string character “5.” Might look the same to you, but it’s a big difference to a
computer! But I didn’t specify what type of data they were, so PowerShell assumed they were
both simply of the generic Object type, and decided it would figure out something more specific
when they were actually used.

When I added $one and $two, or 5 + “5,” PowerShell looked and said, “aha, this is addition: The
first character is definitely not a string because it wasn’t in double quotes. The second one was in
double quotes but… well, if I take the quotes away it looks like a number, so I’ll add them.” And
I correctly got ten as the result.

But when I added $two and $one—reversing the order—PowerShell had a different decision to
make. “I see addition, but this first operand is clearly a string. The second one is a generic
Object, so let’s treat it like a string, too, and just concatenate the two.” And so I got the string
“55,” which is just the first five tacked onto the second.

But what about:
PSH C:\> [int]$two + $one

10

Same order as the example that got “55,” but this type I specifically told PowerShell that the
generic object in $two was an Int, or integer, which is a type PowerShell knows about. So it used
the same logic as in the first example, added the two, and came up with ten.

21

You can actually force PowerShell to try and treat anything as a specific type. For example:
PSH C:\> $int = [int]"5"
PSH C:\> $int | get-member

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Int32 value), System.Int
Equals Method System.Boolean Equals(Object obj), System.Boole
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString(), System.String ToStrin

Here, the value “5” would normally be either a String object or, at best, a generic Object. But by
specifying the type [int], I forced PowerShell to try and convert “5” into an integer before storing
it in the variable $int. The conversion was successful, as you can see where I piped $int to Get-
Member, which revealed the object’s type: System.Int32. Of course, PowerShell isn’t a miracle
worker: Force it to convert something that plainly doesn’t make sense and it’ll complain:

PSH C:\> $int = [int]"Hello"

Cannot convert "Hello" to "System.Int32". Error: "Input string
was

not in a correct format."

At line:1 char:13

+ $int = [int]" <<<< Hello"

Because “Hello” can’t sensible be made into a number. This one’s even more fun:
PSH C:\> $xml = [xml]"<users><user name='joe' /></users>"

PSH C:\> $xml.users.user

name

joe

22

I created a string, but told PowerShell that it was of the type XML, which is another data type
PowerShell knows about. XML data works sort of like an object: I defined a parent object named
Users, and a child object named User. The child object had an attribute called Name, with a
value of Joe. So when I asked PowerShell to display $xml.users.user, it displays all the attributes
for that user. I can prove that PowerShell treated $xml as XML data by using Get-Member:
PSH C:\> $xml | get-member

 TypeName: System.Xml.XmlDocument

Name MemberType Definition
---- ---------- ----------
ToString CodeMethod static System.Stri
add_NodeChanged Method System.Void add_No
add_NodeChanging Method System.Void add_No
add_NodeInserted Method System.Void add_No
add_NodeInserting Method System.Void add_No
add_NodeRemoved Method System.Void add_No
add_NodeRemoving Method System.Void add_No
AppendChild Method System.Xml.XmlNode
Clone Method System.Xml.XmlNode
CloneNode Method System.Xml.XmlNode
CreateAttribute Method System.Xml.XmlAttr
CreateCDataSection Method System.Xml.XmlCDat
CreateComment Method System.Xml.XmlComm
CreateDocumentFragment Method System.Xml.XmlDocu
CreateDocumentType Method System.Xml.XmlDocu
CreateElement Method System.Xml.XmlElem
CreateEntityReference Method System.Xml.XmlEnti
CreateNavigator Method System.Xml.XPath.X
CreateNode Method System.Xml.XmlNode
CreateProcessingInstruction Method System.Xml.XmlProc
...

This demonstrates not only that variables are objects but also that PowerShell does understand
different types of data and provides different capabilities for them.

Curious about what object types are available? In PowerShell’s installation folder, you’ll find a
file named Types.mshxml, which lists them all. Each entry in this XML-formatted file looks
something like this:
 <Type>
 <Name>System.Array</Name>
 <Members>
 <AliasProperty>
 <Name>Count</Name>
 <ReferencedMemberName>Length</ReferencedMemberName>
 </AliasProperty>
 </Members>
 </Type>

So this type name is System.Array. There are lots of types, though; for the most part you won’t
need to worry about them unless you need to specifically make sure a string of characters is (as
in the previous example) treated as a number.

23

Advanced .NET in PowerShell
PowerShell exposes almost all the .NET Framework, and the Framework has an unbelievable
amount of functionality built into it. Although you might never want to, you can certainly
leverage this functionality anytime. For example, a major shortcoming of VBScript was that it
featured very minimal user interface capabilities. Not so with PowerShell, which can draw on the
entire .NET Framework for user interface features. The Framework includes classes for
something called Windows Forms, which are the bits of the Framework used to construct
graphical Windows applications. Ryan Paul at Arstechnica.com found that the Windows Forms
classes—contained in a .NET assembly named System.Windows.Forms—could be utilized from
within PowerShell:
PSH C:\>
[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

GAC Version Location
--- ------- --------
True v2.0.50727
C:\WINDOWS\assembly\GAC_MSIL\System.Windows.Forms\2.0

PSH C:\> $window = new-object Windows.Forms.Form
PSH C:\> $window.text = "This is a dialog box!"
PSH C:\> $button = new-object Windows.Forms.Button
PSH C:\> $button.text = "Close"
PSH C:\> $window.controls.add($button)
PSH C:\> $window.showDialog()

This example loads the System.Windows.Forms assembly into PowerShell. It then uses the New-
Object cmdlet to create a new object of the Windows.Forms.Form type, and assign a value to the
resulting object’s Text property. It then creates a new Windows.Forms.Button object, assigns a
value to its Text property, then adds the button to the window’s Controls collection. Finally, it
calls the window’s ShowDialog() method. No code was added to the button, but click the red
“X” icon to close the window and PowerShell displays “Cancel” as the result of the
ShowDialog() function. This might not be something you use everyday, and it does certainly
require a fairly thorough knowledge of the .NET Framework, but it’s a powerful capability to
know about in case you ever need it.

Okay—When Can I Get it? What Can it Do?
Keep in mind that PowerShell will initially ship with Microsoft Exchange Server v12, not with
Windows Vista. However, a Windows-flavored version of PowerShell will ship sometime
between Windows Vista’s release and Longhorn Server’s release, probably in 2006 or 2007. In
the meantime, the beta of PowerShell provides plenty of tantalizing hints as to what is in store
for Windows administrators. And keep in mind that, according to Microsoft developers, future
Windows admin GUI tools will be MMC snap-ins built on top of PowerShell, making
PowerShell the single, consistent, and complete point for command-line automation and
scripting. Exciting, isn’t it?

24

Consider the following example: Want an inventory of a computer’s IP addresses and MAC
addresses for its network adapters?

get-wmiobject win32_networkadapterconfiguration | select
ipaddress, macaddress, description | where { $_.macaddress.length
-gt 0 }

And that’s not even a “script,” it’s just a single command line inside PowerShell. Scripts aren’t
any more complex than a bunch of command lines, like this one, strung together; PowerShell’s
powerful scripting language lets you have loops and conditional execution—but all that power
comes from just about a half-dozen language statements, so the language is a snap to learn.

Want to Know More?
This eBooklet has just been a brief introduction to PowerShell, how it works, and where it fits
into the world of Windows scripting. If you would like to know more—and why wouldn’t
you?—drop by my Web site at www.ScriptingAnswers.com. Together with fellow scripter
Jeffery Hicks, I’m working on a book entitled Microsoft PowerShell: TFM™ (yes, it’s TFM that
everyone tells you to Read) that will dive into much greater detail. It’ll be available in late 2006
from SAPIEN Press (www.SAPIEN.com). Good luck, and start scripting!

Download Additional eBooks from Realtime Nexus!
Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to be
informative, we encourage you to download more of our industry-leading technology eBooks
and video guides at Realtime Nexus. Please visit http://nexus.realtimepublishers.com.

http://www.scriptinganswers.com/
http://www.sapien.com/
http://nexus.realtimepublishers.com/

	Introduction to Realtimepublishers
	An Introduction to Microsoft PowerShell
	If You Don’t Know History…You’re Doomed to Repeat It
	So What Is the Solution?
	What Is PowerShell and Why Should I Care?
	PowerShell Requirements
	Quick Start
	Navigating Your System
	Using the PowerShell Command Line
	Aliases
	Basic Cmdlets
	Parameters
	Ubiquitous Parameters

	Profiles
	Scripts
	Redirection and Substitution
	Variables
	Variable Names and Intrinsic Variables
	Variables Are Objects
	String Variables and Embedding
	Parsing Mode

	Special Characters
	Scopes
	Functions
	Pipelines
	Getting Help

	So What Has .NET Got to Do With It?
	Microsoft .NET Framework Essentials
	Reflection
	Assemblies
	Variables as Objects
	The .NET Application Programming Interface in PowerShell
	Advanced .NET in PowerShell

	Okay—When Can I Get it? What Can it Do?
	Want to Know More?
	Download Additional eBooks from Realtime Nexus!

