Realtime
publishers

The Essentials Series: Improving Application
Performance Troubleshooting

Faster, More Efficient
Application
Troubleshooting

sponsored by

& BLue STRIPE by Don Jones

Faster, More Efficient Application Troubleshooting Don Jones
-

Faster, More Efficient Application TroublIeSN0OTINGcceeeeeemreeeseesseessessseesssesssesssesssssssssessssessnns 1
ENADIE ThE HEIP DESK...ueeereeeeereesreesseesseesssessssssssssssessesssssssssssssssnsssssssnssanees 1
Enable a Focused, System-Wide APPIrOACH.......eeeereesseesseesssanees 2
Find Tools for the Application, NO FOF STOSeeneeneesrensesseesssessesssssssssssssssesssssssssssssessssssssssees 3
A Wish List for Application Management and ANAIYSISccoereernmermeessmsssssssesssssssssssssssssssssssens 3

This independent publication

[{Cd I l ”]] (‘3 i is brought to you by:
publishers ﬁBLUE’[R!ﬂE

Faster, More Efficient Application Troubleshooting Don Jones
-

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

This independent publication

l‘t{‘_‘(ll i] 1]]L‘ ii is brought to you by:
| & BLue §TRIPE

SOFTWARE

mailto:info@realtimepublishers.com

Faster, More Efficient Application Troubleshooting Don Jones

Faster, More Efficient Application
Troubleshooting

So how do we resolve application performance problems more quickly? How can we
ensure that “my application is running slowly” isn’t met with a barrage of technical
expertise that doesn’t actually yield results very quickly?

The answer is not to buy more domain-specific tools. Most organizations already have
plenty of tools within each technical “silo”—network analyzers, database profilers, and so
forth. They're not helping because each tool only looks at one potential part of the problem.
Also, those “silo tools” don’t come into play until after your first tier of technical support
has tossed the problem up the chain of command. What we really want is a way to make the
first tier of technical support more effective because that will also make subsequent tiers
more effective and efficient.

And I know what you're thinking: “Our Help desk folks are smart but not that
experienced—that’s why they’re on the Help desk!” We often think that making the Help
desk more effective means giving the Help desk more tools and teaching them how to use
them. That’s an education approach, and sometimes that’s not practical. First, your first tier
of support may well lack the background experience to use those tools. Second, you'll just
be giving them the same silo-specific tools you were already using. Moving the tools to a
lower tier of support isn’t the answer, either. So what is the answer?

Enable the Help Desk

The answer is to enable the Help desk, or whatever you call your first tier of support. Not
necessarily educate them and not try to make them as smart as your second- or third-tier
experts, but to enable the Help desk. Specifically, enable the Help desk to do a better job of
verifying slow applications and routing the incident to the correct portion of your second
or third tier.

What we need is a tool that can pinpoint exactly which bit of a complex application is
causing or contributing to a slowdown. That lets them refer the problem to the experts
responsible for that bit: No more looking, guessing, fixing, and repeating. The tool needs to
look at the entire application, including all of its dependencies, back-end components, and
other elements. That tool needs to understand the shape of the application and how the
various components fit together, and it needs to be able to view their performance
characteristics in real time so that it can spot those temporary slowdowns that bother
users and frustrate technical experts.

This independent publication

l‘t{_‘(ll l] 1] ‘]‘;:L 1 is brought to you by:

Faster, More Efficient Application Troubleshooting Don Jones
|

Enable a Focused, System-Wide Approach

We IT experts have to stop thinking of our applications as a collection of building blocks,
and instead think of them as a single entity composed of many different contributing
elements all working in tandem. A building engineer doesn’t think of girders, concrete, and
windows; he thinks about the building. Sure, girders are a part of it, but once welded and
riveted together, those girders behave differently than they did as individual units. If the
building’s exterior starts to show cracks, the engineer has to consider not only the girders
but also how they’ve been attached, how they're affected by the load of the building’s walls
and contents, and so forth, all as a single, interconnected set of elements. He—that one
engineer—has to consider all the elements that make up the building, even if he isn’t
personally an expert in, say, windows.

That’s where we need to take our application troubleshooting. Everyone, from the Help
desk on up, needs to be able to see the entire application not just their individual silos.
Everyone who troubleshoots a slow application needs to be aware of every element of that
application, how those elements interact, how they fit together, and how they might—as a
unit—be exhibiting performance problems that aren’t immediately apparent in any
individual component taken by itself.

Here’s another non-computer example: Suppose you have a car that’s getting really poor
gas mileage. You disassemble the car and start testing each component—pretty much
exactly how we troubleshoot slow applications today. The engine seems to be running well,
the drive train is in good shape, and the tires look to be properly inflated. So where’s the
problem? Well, maybe you take a guess and rebuild the engine. You reassemble the car and
the problem is still there.

Looking at individual elements of a system will almost never reveal the cause of a
performance problem because those elements work differently on their own than they do
as part of the system. To find the problem with the car, you need to examine those
components when assembled as a car, not individually. You need to put little sensors and
stuff on each component, and monitor them as the entire car runs. You might find out that
the car’s chassis is too heavy and that places stress on the drive train, which makes the
engine work harder—something you’d never see if you examined individual components
by themselves.

To start troubleshooting our applications as systems, rather than as individual components,
we need to focus less on our silo-specific tools such as database profilers and network
analyzers. Instead, we need to find tools that can look at the entire application—every
element, every component—and all in real time.

x This independent publication
{.'_‘-;11 | 11}]‘;;ﬁ 2 is brought to you by:

& BLuE §TRIPE

SOFTWARE

'|"|'
I

Faster, More Efficient Application Troubleshooting Don Jones
-

Find Tools for the Application, Not for Silos

The idea of looking at an entire application’s performance is hardly novel. One of my first IT
jobs was as an AS/400 system operator, and we had a tool that could, in real time, analyze
each aspect of a running process’ performance. It would tell us if a slow process was slow
because of memory, processor time, database responsiveness, and so on. Of course, an
AS/400 is a completely self-contained system, so our troubleshooting tool wasn’t terribly
complicated.

Modern tools exist that extend the same concept to today’s complex, multi-tier, distributed
applications. They understand—or can be configured to understand—that the application
may start with a single process running on someone’s client computer, but that the
“application” also consists of an underlying network, a back-end database, numerous other
processes and components, and so forth. These tools can check the performance of each
element in real time and can do so continuously, actually alerting you in advance when an
application element’s performance strays outside normal parameters.

These tools enable a holistic, system-wide look at the application. They can make it easy to
see which bit of the application isn’t performing properly, and they do that while looking at
the entire application.

A Wish List for Application Management and Analysis

There’s a problem with some whole-application monitoring and troubleshooting tools,
though: installation and configuration. If the tool requires you to manually explain to it how
the various application components fit together, you're less likely to use the tool. You're
less likely to keep it updated as the application changes. You're more likely to make
mistakes or miss components, giving the tool a lopsided, inaccurate view of the entire
system. So with that in mind, I'll propose a sort of “wish list” for what a good, system-wide
application troubleshooting tool might be able to do.

First on the list is automatic. Ideally, a tool should take a few minutes to install, and you
should be able to point it at a running application. It should then take over, figuring out on
its own what the application looks like and what dependencies that application has. The
result is an application map, and it might offer views like the one in Figure 1.

) . This independent publication
I\‘E;‘-;ll l 1IIe 3 is brought to you by:
LTSS & BLue §TRIPE

SOFTWARE

Faster, More Efficient Application Troubleshooting

Don Jones

Fle Edit Took Reports Help

| Overview |

App List Machine List
Name /. ART Load

| Top Ten ART |

CreditApproval/Home
| TN
ey

CustomerPortal/Home
o
[PY.d | DY
CustomerDB (on MS.SQL1)

] Pt

Top Ten Load |

| | A
AN Mml. '.m}» Il

CraditApprovall.. GustomerPortslf CustomerDB Advanture.

System Map

Discovered Systems
4 Collectors, 1 Subnet

Top Ten CRU |

Tap Ten Memary

\II \M’H | ||I I

L

PaopleWorks NewAccount

ART

(Average Respanse
Time io Clients in ms)

N VT o -

MccoumSist. mySAPcom ChsckRatss Talisma GRM

History
I o

Live View

AdventureWorks (on MS.5QL2)

sl
Ppeopleworks (on RHEL.PeopleSoft) _ B4)
il /| e
NewAccount I
| el
1
AccountStatus

I ™
| X

mySAP.com

CheckRates (on Solaris.WAS.1) | e |

TalismaCRM

Average Response Time was > 500 ms Esxz
L0 wed ul 22 14:52:29 EDT 2009
Application - CreditApprovalfHome:

CPU Utilization was 100% L [P
£10% ied Jul 22 14:50:29 EDT 2009
Process - CreditApproval (on iis1)

Ttems ~ [i]

Figure 1: Looking at the entire application.

This view offers a list of applications on the left, listed by name. When reports of slow
applications start coming in, the Help desk can select that application from the list, and look
at the performance of each component that makes up that application.

That leads to the second item on the list: intuitive. This tool has to be usable by the Help
desk, preferably with as little education as possible. It should call the Help desk’s attention
directly to slow application components so that the Help desk can simply notify the higher-
tier expert responsible for those slow components.

Third on the list is real time. The tool is useless if it can’t display the current state of the
application’s components. When the Help desk opens this tool, it needs to be up to date and
ready to go. Those little performance charts should be moving and changing in real time so
that the Help desk can easily spot system elements that are performing outside normal
parameters.

The result? We always used to feel it took us 80% of our time to find the problem, and only
20% to fix it. A tool like this can really cut that 80% back a lot because it eliminates the
“look, guess, fix, repeat” cycle. You can focus on what is actually causing the application to
slow down, and spend your time fixing it, not guessing.

The fourth item for my wish list is smarts. If a tool can do the first three things, there’s no
reason it can’t proactively alert someone when a system element’s performance begins to
show signs of a problem.

That takes us from reactive application troubleshooting to more proactive application
management—a wonderful thing that any organization will benefit from.

This independent publication
is brought to you by:

& BLuE §TRIPE

SOFTWARE

Realtime 4
WIDISNETS

	Faster, More Efficient Application Troubleshooting
	Enable the Help Desk
	Enable a Focused, System-Wide Approach
	Find Tools for the Application, Not for Silos
	A Wish List for Application Management and Analysis

