Realtime
publishers

The Essentials Series: Improving Application
Performance Troubleshooting

\VWhy Diagnosing
Application Problems
Is Too Hard

sponsored by

& BLue STRIPE by Don Jones

Why Diagnosing Application Problems Is Too Hard Don Jones
-

Why Diagnosing Application Problems IS TOO Hardoeneenneesneeseessesssesssssesssesssssssssessssessnns 1
It Starts With @ Help DESK Calleeeceeeerersresreeessessesssesssessens 1
ANd Quickly INVOIVES the ENLIFE TEAMccucceeeeeeereeereeesresssssssssssessens 2
LOOK, GUESS, FIX, REPEAL......cereeureeereeseessesssesssesssesssesssesssssssssssssssessssssssesssasssessssssssssssesssessssssssesssessssssssssssesanees 3
Modern Applications Are COMPIEX SYSLEMS.. . ..c.orerrermmesimessessssssesssanees 5
And Application DOWNEIME COSES MONEYccreueeemrrrresrsesseessesssens 6
The ProbIem 1S IN YOUE TOOIS......erereeeseeseessesssssssesssnns 6

This independent publication

[{Cd I l] I]1 E;._‘ i is brought to you by:

publishers ﬁBLUE;TDR!V&E

Why Diagnosing Application Problems Is Too Hard Don Jones
-

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

This independent publication

l‘t{‘_‘(ll i] 1]]L‘ ii is brought to you by:
| & BLue §TRIPE

SOFTWARE

mailto:info@realtimepublishers.com

Why Diagnosing Application Problems Is Too Hard Don Jones

Why Diagnosing Application Problems Is
Too Hard

Anyone working in any kind of business is familiar with this scenario: Users complaining
that their applications have slowed down, managers getting tense that their employees
aren’t working, and the IT team running around trying to pinpoint the cause of the
problem. In this Essentials Series, I'll share some of my own experiences in troubleshooting
slow applications in a major enterprise, and try to unearth some of the reasons that
troubleshooting seems to always be so slow and inefficient.

But let’s be clear about something: I'm not discussing application performance
management. APM is a huge IT discipline in and of itself, typically involving large, complex
tool sets and very specialized skills. APM often involves measuring performance in
somewhat unusual ways, such as running an agent on end-user systems as well as on back-
end systems to measure the response times between the two. APM is certainly useful, but
what'’s equally useful is being able to do something about applications that are experiencing
some kind of performance setback. And perhaps more importantly, being able to do
something quickly.

“Quickly” is incredibly important. In a 2008 study entitled Service-Level Management and
Application Performance Management, Forrester Consulting found that only two-thirds of
application performance issues were resolved in what the business considered an
acceptable time period.

It Starts with a Help Desk Call

Let’s start by setting the stage, and looking at the first ways in which the troubleshooting
process begins to bend toward massive inefficiency. Normally, you’ll hear about a slow
application directly from its users, often through your company’s Help desk. If you're a fan
of IT Service Management (ITSM) practices, this notification becomes an incident; in more
generic terms, you might just call it a trouble ticket.

But these incidents aren’t as cut-and-dry as “my computer blue screened” or “the printer
isn’t working;” users are seldom able to be more specific than “my application is suddenly
running really slowly,” or “my application stopped responding.”

Ideally, your first-tier support folks will try to verify the problem, and may be able to
perform preliminary troubleshooting steps: Does the problem affect just a single user or
are multiple users impacted? Does rebooting the user’s client computer or closing and re-
opening the application help resolve the problem? Are other applications on the same
computer affected? Is the problem limited to a single remote office or to a single
department within the company?

This independent publication

l‘t{_‘(ll l] 1] ‘]‘;:L 1 is brought to you by:

Why Diagnosing Application Problems Is Too Hard Don Jones
|

Sadly, that’s usually where the first-tier team runs out of options. Unless an application or
computer restart solves the problem, all the first tier can usually do is verify that the
problem is occurring and perhaps try to define the scope of the problem. Because
applications tend to be both complex and, in most cases, not specifically designed for
performance troubleshooting, the first tier often has no choice but to toss the problem up
the chain of command, and that’s where the first major inefficiency kicks in: Who, exactly,
should get notified of the problem?

And Quickly Involves the Entire Team

Your first-tier support might initially notify a software developer, but the problem almost
always escalates from there. Think about all the technology disciplines involved in a
modern application: client application developers, component developers, database
administrators, database developers, and more. In addition, applications rely on many
different shared infrastructure elements, such as the network, domain name services,
routers and switches, and more. So before long, an entire army of high-end technical
experts are examining the problem: developers, database administrators, network
administrators, infrastructure administrators, and more.

The More, the Merrier?

I recall one troublesome application we had when [was working for a large
telecommunications company in the US. One day, everyone seemed to think
the application was running a bit slow, but we couldn’t really pin down
anything. By the end of the next week, the application was positively
crawling, and managers throughout the company were screaming for
support. Our Help desk was at a complete loss: They’d actually gone above
and beyond their normal responsibilities and scheduled server reboots,
router reboots, and more, but nothing they did seemed to be helping. So they
finally kicked the problem upstairs.

We could have thrown a pretty good party with the number of people who
became involved at that point: I was in charge of the network infrastructure,
although I had specialists in charge of much of the infrastructure equipment,
like our routers and switches. One of the software developers started looking
at the application itself, and another started looking at its various sub-
components. Our Unix admin started examining the Unix-based firewall and
DNS services. A database administrator started poring over the SQL Server,
while another developer started poking around the server-side code within
the database. One of our desktop support specialists started looking at the
client computers to see if maybe there was some kind of resource conflict
there. Our managers, of course, hovered over everything and got in the way.
Nine or ten people, taken away from extremely important projects, all to fight
a single fire.

___|
This independent publication
2 is brought to you by:

& BLUE STRIPE

SOFTWARE

Why Diagnosing Application Problems Is Too Hard Don Jones
-

Look, Guess, Fix, Repeat
Everyone on the team starts looking at the slow application with their own particular tools:

Network administrators might grab a packet analyzer and start looking at network
traffic.

Database administrators may turn to a profiling tool to look at database server
performance.

Software developers often have dedicated code performance tools (read more about
those in The Definitive Guide to Building Code Quality from Realtime Publishers) that
can profile application code performance.

Desktop technicians may run client OS performance tools, such as Windows’ System
Monitor or Performance Monitor.

Infrastructure engineers might look at statistics collected within routers and
switches.

Technology managers usually don’t have any specific tools but try to make lots of
“suggestions” to everyone else anyway.

Pay special attention to that list because you're looking at the exact reason why
troubleshooting a slow application is so inefficient. I'll get to the specifics in a bit, but let’s
stick with the chronology and talk about what happens next: Someone takes a guess.

Maybe the software developer has a tool, like the one shown in Figure 1, that breaks down
application performance within the application’s code.

This independent publication

[‘::C-;l] l] I] 1“._‘ 3 is brought to you by:
LD ISNErs

& BLuE §TRIPE

SOFTWARE

Why Diagnosing Application Problems Is Too Hard Don Jones
-

@9 BNTNETWinApp - Microsoft Visual Studio N EES
File Edit Wiew Project Build Debug Data Tools Test DevPartner SecurityChecker Window Community Help
- E-GH a6 S E s + =L b Debug = Mixed Platforms - L‘.ij =T e ';'
- - . T —— —,—————- au e
5 e L& i - o c Y "
MR- 0B) A ? "
- X

Back ko Summary
Path analysis

| £ Method CPU time... © Execution... Elapsed time {ps) Disk. activity (bwtes . | Mebwork activity (bykes.. | Wait time (ps) fas '
|| = FrmBNTHETWinAppMain, Main 4,211,339,0 1 19,637,700,0 52,333 2,431 2,509,319.0
= || | = frmBNTNE TWinAppMain.mnuor ... 2,335,486.0 1 7,368, 656.0 32,050 2,431 2,507,895.0
2 |- CrderDetail, GetOrderDetai G872, 144.6 1 3,664,351.0 i} 2,431 2,506, 544,0
= - OrderDetall. .ctor 445,570,9 1 1,506,776.0 32,050 i 1,350.5
_| | Frm\Wait Dispose 56,5938 1 7,120,3 u] o 0.0
| [k Frmiait .. char S.AA4.5 1 ASTNLE 0 nl nn i |
Method detail for : FrrGrderInguiry . FrmOrderInguiry _Activ ated
Source | Call Stacks |
ECPU time including user children (us) — » l For each line in frmOrderInguiry frmOrderInguiry _activated
872,593.0 0.0
350 ~
951: ' create a connection to the web service and get the order detail data zet =
952 Dim ws &z Mew BMTHET OrderDetaifby'S. OrderD etail
953
954 ‘w5 etConnectioninfolpDE Type, pConnectionShing, pllse zawiord]
ame, pPazsiW ord|
956E:
957: End If
958:
955 dgOrderDetail. D ataSource = ds. T ables("OrderDetail"]
960 dglrderDetail ReadOnly = True
961:
962: SubTotal =0
963 PerltemTotal = 0
964: |
965 Diirn myFow Az DataRow =
9EE: For Each myRow In ds. T ables("OrderD etail") Rows e
< | >

Figure 1: Analyzing application code performance.

The developer says, “aha, this frmOrderlnquiry method is taking a long time and generating
a lot of network activity—this must be it.” The developer makes some tweaks to the code,
runs it through his performance tool again, and sees an improvement. “I've found the
problem!” he announces to the team. Everyone sighs in relief, the developer compiles a
patch, and it’s deployed to a few client computers (usually the ones with the users who’ve
been complaining the loudest).

And then the bad news comes in: It didn’t fix it. In my experience, the first guess at why the
application is running slowly is wrong about 40% of the time. So the team groans, drops
what they’re doing, and jumps back on the problem. They drag out their tools and start
looking at their own little domains until someone comes up with a better guess.

This independent publication

I{C{l I I]IT]C 4 is brought to you by:
publishers ﬁBLUE TRIPE

SOFTWARE

Why Diagnosing Application Problems Is Too Hard Don Jones
-

Modern Applications Are Complex Systems...

The root cause of this troubleshooting inefficiency is that modern applications are really,
really complicated. Even seemingly-simple applications can, in reality, be incredibly
complex. Think about the average custom, in-house application:

e It’s built on some kind of framework—perhaps .NET, perhaps Java, perhaps
something else—and that framework will have its own internal performance
characteristics.

e It's usually not a monolithic application but rather a collection of components. Some
of those may be purchased and some may be developed in-house. Some may even be
open source, downloaded from the Internet. Each component may have its own
performance issues.

e Applications run on a computer, which may well have its own performance
problems: lack of memory, slow disks, failing network card, and so forth.

e Applications rely on a network that consists of its own complex infrastructure:
routers, switches, hubs, wiring (which is susceptible to electrical interference), and
so on.

e The network provides services that applications rely on, including DNS, which
applications may use as a precursor to communicating with network-based servers.

e Applications commonly communicate with one or more servers, which may have
their own performance issues. Those servers run program code, too, which may
feature any number of performance problems.

e Applications often utilize a database, which can have its own performance
nightmares in addition to the performance problems of the server actually running
the database software.

And aside from all these individual components, you've got the single complex entity called
an application, which from a holistic viewpoint may exhibit what I call synergistic
performance problems. In other words, sometimes a few well-oiled components can
conspire to create poor overall performance. You can’t point to any one component as the
cause of slow performance, but taken together, the various components do, in fact, run
slowly. Many of these components may only run slowly some of the time, which makes
troubleshooting even more difficult—problems that can’t be repeated consistently are
much more difficult to solve.

This independent publication

l‘t{_‘(ll l] 1] ‘]‘;:L 5 is brought to you by:
| & BLue §TRIPE

SOFTWARE

Why Diagnosing Application Problems Is Too Hard Don Jones
-

And Application Downtime Costs Money

When applications are running slowly, users aren’t productive. In one of my past jobs, we
estimated that each hour of application downtime cost us $45,000 in lost productivity,
diverted technical expertise, and more. On average, “my application is running slowly”
would take 48 hours to finally resolve, costing the company $360,000. That’s just an
average, though—I remember one problem that took us over a month to finally sort out—a
theoretical cost of millions of dollars. Ouch.

Note

In their study, Forrester found that 43% of businesses estimated downtime
costing at least $10,000 per hour, and 10% cited more than $1 million.
Research from Enterprise Management Associates suggests that an industry
average of $45,000 per hour is accurate, although they say it is higher for
transaction-intensive verticals such as financial services, where the cost can
exceed millions per minute.

The point is that time is money, and you can’t afford to keep doing the “look, guess, fix,
repeat” cycle. You need to be able to look and to fix—definitively, without the guessing and
repeating. So why is it so difficult?

The Problem Is in Your Tools

The problem is that first bullet list | showed you: All those IT experts using their individual
domain tools. None of them was troubleshooting the application: They were
troubleshooting individual bits of it. Sure, eventually one of them will stumble across the
answer, but it’s horribly inefficient.

When you hear a loud, annoying sound in your house, you don’t immediately call in a
plumber, HVAC technician, structural engineer, and an exterminator. You take a few
minutes to try to narrow down the problem. You listen to the house as a whole, turn the
taps on and off, shut the HVAC down, and so forth. When you’ve narrowed the problem a
bit, you call the one specialist that can handle that problem. That’s how you should be able
to deal with a slow application: The Help desk—your first tier of support for the incident—
should be able to direct the problem to the one technology expert who can actually fix it.

This independent publication

l‘t{_‘(ll l] 1] ‘]‘;:L 6 is brought to you by:

	Why Diagnosing Application Problems Is Too Hard
	It Starts with a Help Desk Call
	And Quickly Involves the Entire Team
	Look, Guess, Fix, Repeat
	Modern Applications Are Complex Systems…
	And Application Downtime Costs Money
	The Problem Is in Your Tools

