Realtime
publishers

The Essentials Series: Mainframe Application
Modernization

Considerations for
Injecting Life into
Mainframe Applications

sponsored by
Attachmate by Don Jones

Considerations for Injecting Life into Mainframe Applications ... 1
Repackaging TeChNIQUES ... s 1

3 0TSy o 0 U o o= 0) o T 1

2 e ol U o U=y oq = (0) o PPN 3
Transaction INteGratioN ... 4
Keep Your Mainframe—and Gain ALYccoeereenreneenreeseeseeseessessesseessessesssssssssssssssssessssssssssssesans 5

Realtime i ® Attachmate

publishers

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime i ®) Attachmate

mailto:info@realtimepublishers.com

Considerations for Injecting Life into
Mainframe Applications

To quickly review the key points from the prior two articles in this guide:

e We need to be able to safely interact with portions of the mainframe application in
non-mainframe applications

e We don’t want to access the data directly, because then we’re losing the
application’s business logic

e Repackaging allows us to build a wrapper around the entire mainframe application,
or portions of it, making it accessible via Web services, .NET Framework, or Java

There are different techniques for accomplishing this repackaging, depending on exactly
what kind of mainframe application you're dealing with.

Repackaging Techniques

These repackaging techniques all rely on the presence of some kind of purpose-built
mainframe integration engine. The engine is what does the work of talking to the
mainframe in the proper fashion, and exposing the resulting data to the outside world
through whatever means you choose. These engines commonly use a variety of techniques,
and I'll discuss the three primary ones here.

Host Integration

The easiest to understand technique is probably host integration. Using this technique, the
integration engine literally operates the mainframe application in exactly the same way a
human being would. The basic technique is as old as mainframes themselves, and is
commonly called screen scraping. Essentially, you explain to the hosting engine how the
mainframe application operates: where data is located on each screen, what type of data is
expected for each input field on each screen, what keypresses move between screens, and
so forth. This information is called a model. You then indicate which pieces of information
and which capabilities you plan to expose to the outside world. The engine exposes that
information as properties and methods (of a Web service, Java object, or .NET Framework
component), which can be used by any compatible external application. Figure 1 illustrates
the concept.

Realtime L Attachmate

Model

Properties
Product SKU
Price
Size

Methods
Create
Validate

Web Service

—

!LI

Anplleatic
Figure 1: Modeling the mainframe application.

When an external application accesses data, the integration engine uses its model to
determine where the mainframe application exposes that data. The engine manipulates the
mainframe application to get to that point, reads the needed data from the screen, and then
passes it to the external application. Integration engines commonly support a variety of
terminal emulation protocols that enable them to talk to almost any mainframe, including
IBM 3270, IBM 5250, VT /UNIX, HP700/92, and so on.

A great side benefit of this technique is that it’s easy to manage change. If the underlying
mainframe application changes—say, you upgrade a version—you don’t need to modify
your external applications. You simply update the integration engine’s model so that it
knows where to find all the data again. The engine thus serves as a kind of abstraction
layer, helping to hide any complexities of the mainframe application and exposing the data
in a straightforward, standardized, modern fashion.

The main benefit, though, is that you're getting the full capability of the entire application:
its data, it business logic, and so forth. You're simply enabling things other than human
beings to interact with selected portions of the application. In essence, you've taken a user
interface (UI)-centric application and turned it into a sort of middle-tier component,
exposed through modern architectures such as Java, COM, or .NET.

Realtime 2 ®) Attachmate

Bridge Integration

Some highly-standardized mainframe applications may be accessible through somewhat
more sophisticated means. IBM’s CICS software, for example, exposes a well-documented
set of application maps called BMS maps. Rather than manipulating CICS’ Ul screens

directly, an integration engine can tap into the underlying application through these maps
via an IBM-provided bridge, as illustrated in Figure 2.

Madel

Weroperties
s }Dmduct SKU
Mainframe Price
2> Size

Create
Validate

Web Service

_,1 ‘
I%
Extarnal Appllcatic

Figure 2: Tapping into CICS by using bridge integration.

Note

I've illustrated a “model” here, although it’s important to note this isn’t

something you have to build directly. It's something the integration engine
maintains on its own.

This technique is somewhat faster because the integration engine can talk directly to CICS
application logic before the application renders a screen. The bridge, in essence, has direct
access to COBOL fields and variables behind the column-level data on the screen. There’s no
need to manually build a model, and there’s no dependency on the mainframe U], so if that
changes, you don’t have any extra work to do. Best yet, the bridge is actually manipulating
the COBOL code of CICS directly, which means all the application’s business logic remains
intact and usable, even though you're not going through the UI.

Realtime 3 ® Attachmate

publishers

The end result, however, is identical: Portions of the mainframe application (or all of it, if
needed) are exposed to external applications with no changes to the mainframe. You don’t
have a single line of extra code running on the mainframe to make this happen, so it's a
low-impact, very fast way of integrating mainframe data into many external applications. As
with host integration, you're taking a Ul-centric application and transforming it into a set of
middle-tier components.

Transaction Integration

Finally, an even more sophisticated technique can leverage the COM area of CICS and IMS
applications because these applications are actually designed to support a certain degree of
integration by external applications. As Figure 3 shows, the integration engine is simply
mapping the applications’ native integration protocols with more modern, standardized
interfaces such as a Web service. This technique interacts with the mainframe application
below its workflow and application logic levels, meaning you’re far further “under the
hood” and able to do things that the application might not normally allow, which is both
good and bad.

CICS COM —

Mainframe

_,1 ‘
IH
Extamal Appileatic

Figure 3: Transaction integration with a CICS or IMS application.

This technique offers a lot more flexibility than the others because you’re working with the
data at a low level. However, this isn’t without risk: Because you're bypassing higher levels
of code, you'll have to ensure that you don’t break things like data dependencies. So the
additional flexibility of this technique is offset by the greater responsibility you take on
yourself.

Realtime ' ® Attachmate

Keep Your Mainframe—and Gain Agility

There are countless business reasons for getting your mainframe application services out
of the mainframe. You can implement new business processes and new business
capabilities and help keep your organization as agile as possible, ready to adapt to changes
rapidly. Repackaging mainframe applications through the use of an integration engine that
uses the techniques I've discussed in this guide, offers the fastest way to connect your
mainframe applications to non-mainframe applications, using modern software interfaces
such as Web services, .NET Framework, and Java. You essentially turn entire mainframe
applications into sets of middle-tier components, which can be utilized by modern software
built on standardized platforms, protocols, and techniques.

Best of all, these techniques require no changes to your mainframe hardware or its
applications. This helps reduce the skills required to implement these techniques, helps
reduce the risk to your critical data and applications, and allows you to leverage the
existing business logic that's wrapped up in your mainframe applications.

There’s no doubt that mainframe applications can play a major, positive role in the modern
business world—with the right integration.

Realtime 5 ®) Attachmate

	Considerations for Injecting Life into Mainframe Applications
	Repackaging Techniques
	Host Integration
	Bridge Integration
	Transaction Integration

	Keep Your Mainframe—and Gain Agility

