Realtime
publishers

The Essentials Series: Mainframe Application
Modernization

Options for Modernizing
Mainframe Applications

sponsored by
Attachmate by Don Jones




Options for Modernizing Mainframe APPliCations ... sssssssessssssssnns 1
Y] 10 L 10 o 3 1013 o 1
SOIULION: RECOME ..ottt s s s es s 1
SOIULION: REPACKAZE ...ovevrerrieueeseesesissesssessessssssssssessssssss s sss s 2
Y0 =T (ol o) ol 1= ot (o7 | PP 4
Repackaging Your Mainframe APPliCation ... encereenneensesnessesseesesseessessssssssessessssssssssssssessesssssnns 5

Realtime i ® Attachmate

publishers




Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime i ®) Attachmate


mailto:info@realtimepublishers.com

Options for Modernizing Mainframe
Applications

So how can we begin exposing our mainframe application’s data and services outside the
boundaries of the mainframe computer? I want to try to address the problem from three
different angles: dealing with the hardware, dealing with the applications themselves, and
dealing with the data directly.

Solution: Rehost

One option is to rehost your applications, something that's commonly done with
applications written in a language such as COBOL. Rehosting lets you get rid of your
mainframe hardware by moving the COBOL application to a non-mainframe host, which
might be a UNIX or Windows computer, and might even be virtualized. Doing so gets the
application running elsewhere, but it ultimately doesn’t do much to change the monolithic
nature of the application. Sure, you can cut back on mainframe hardware support costs, but
that’s often the only savings. The data in that application, and the services it provides, are
still pretty trapped inside the application—you haven’t extended it to any other portions of
your enterprise. This solution is a good option if the only thing you need to do is eliminate
the mainframe hardware, but it’s not really an option for truly modernizing the application
itself.

Solution: Recode

Software is malleable. With the right skills, tools, and time, software can be changed to do
almost anything. So if your current mainframe application doesn’t do what you need—
recode it!

This is the exact direction my company took with our AS/400 for several years. We had a
team of about a half-dozen dedicated RPG programmers. We acquired the source code for
most of our enterprise applications (at great expense, by the way), and we started
customizing them mercilessly. Once we’d acquired that on-staff skill set, “reprogram the
AS/400” became the answer to nearly every IT-related challenge that came our way. When
our distribution center needed to integrate with new distribution hardware, we
reprogrammed the AS/400 to talk to that hardware’s UNIX-based controllers. When the
distribution center wanted to use wireless terminals to facilitate stock movements, we
reprogrammed the AS/400 to provide the needed functionality. Our AS/400 programmers
had lengthy wish lists from nearly every department of the company, and it seemed like
new and changed AS/400 entry screens were released every day.

Realtime L Attachmate




What we gave up, however, was the ability to easily use more off-the-shelf applications. We
could never upgrade our enterprise mainframe applications when the software vendors
released new versions because we’d lose our massive customizations. We were unable—
well, not unable but unwilling—to purchase other off-the-shelf applications because we had
all these on-staff programmers; shouldn’t we be writing this stuff instead of buying it? We
were very unwilling to purchase applications that ran on anything but the AS/400, simply
because we wanted to get the most from our heavy investment in the mainframe. So we
mentally limited our options to what our programmers could do, and we physically limited
ourselves to whatever they could actually accomplish in their 10 hours a day.

Solution: Repackage

These days, one of the most intelligent—I think—solutions to the whole problem is
repackaging. Simply put, you write some kind of wrapper around your existing mainframe
application to expose portions (or even all) of the application through more modern,
standard interfaces. Maybe you want to expose the mainframe application as a set of Web
services, a bunch of .NET Framework components, or a set of Java objects.

This approach works well because it directly addresses the fundamental problem of
mainframe applications. As | said in the first article of this guide:

Monolithic mainframe applications, however, tend to intermix the user interface
(UI), the business logic, and the data management layers of an application. The only
way to ensure that the right data gets into the application is to enter it into the user
interface. That’s great for manual data-entry, but not so great when you begin
looking for ways to leverage your data in other ways and to connect your data with
other systems.

Repackaging, done properly, can actually turn the entire mainframe application into a
middle-tier component. It essentially automates the use of the existing mainframe
application, exposing data and accepting input through a Web service, Java object, or
whatever. External applications see a .NET Framework component; that component is
actually a sophisticated engine that manipulates the native mainframe application, taking
advantage of its inbuilt business logic and everything. This technique typically requires no
changes on the mainframe, meaning you can use prepackaged, off-the-shelf applications
with no changes, and finally get your data off of the mainframe—all while keeping your
mainframe investment completely intact.

Better yet, in many cases, you can turn the entire application into not a single exposed
service but a set of exposed services, essentially componentizing the application without
touching the application itself. This means a large, monolithic inventory management
application might be able to provide an inventory-query service, a reordering service, and
other services—each of which is an element of the original mainframe application.

Realtime 2 ®) Attachmate



Consider Figure 1, which represents a typical mainframe application: input screens for data
entry and retrieval, including embedded business logic, and an on-mainframe data store of
some kind. This figure represents a standard, monolithic mainframe application like the
ones you are probably already using.

I Y
Input Screens

Databases

Meinframe

Figure 1: Monolithic mainframe application.

Because the application is monolithic, it can’t be easily broken down into smaller
components. That means, from the mainframe point of view, the entire application is the
smallest component. However, you may well have external uses that just need the data
from one or two screens, or just need to input data into a couple of screens. In other words,
you’ve identified some element of the mainframe application that could be externally
exposed as a distinct service. And you can do it: You simply have to repackage the
application in such a way that the application can be used as-is—albeit in an automated,
abstracted fashion—by other applications. Figure 2 illustrates this concept.

Realtime 3 ®) Attachmate

publishers



=
=

_ Inpyt Scmerls ]
- e »
—

- E_ E
m @abaﬂ@ )

:)wmsm(\

Y
__ /)
Mainframe lii

Web Sarver

Figure 2: Repackaging a mainframe application.

This task requires some kind of repackaging engine. Essentially, that engine is taught how
to automatically operate the mainframe application by reading its input screens and
inserting data into the fields on those screens. The engine then exposes that data as a Web
service (or Java object, or whatever) for non-mainframe applications to access—or as a set
of Web services. You might very well not need to expose the entire mainframe application;
you might only need to expose a portion of it, and treat that portion of the application as a
component.

What's the benefit? The main benefit is that you still get to take advantage of the business
logic that lives within the mainframe application—without modifying the application in any
way.

Strategic or Tactical?

The general solution you choose is going to depend largely on your future plans. For
example, choosing to rehost your application can help lower hardware costs, but it honestly
won’t do anything to change your ability to expose pieces of the application externally—it’ll
all still be locked up in a monolithic application. Rehosting is really a tactic designed to
lower costs and driven by a larger strategic decision to keep the application as-is. You're not
really modernizing anything; you're simply moving pieces around.

Realtime 4 ® Attachmate

publishers




Recoding your mainframe applications is also a tactic driven by a larger strategic decision
to—again—keep the mainframe. After all, why invest hours in recoding applications if you
plan to move off the mainframe eventually? Recoding is also making a decision to continue
operating in a mainframe-centric universe, where you want as much functionality as
possible to live within the mainframe, and where you’re willing to invest the necessary
time and money to making that a possibility. Because recoding mainframe applications can
be expensive, and because the skills needed to do so are frankly not in great supply, you
may also be making a tacit decision to forgo business requirements that may need recoding,
if the recoding skills, time, or money aren’t available. In other words, you're happy letting
the mainframe’s technology drive, to a point, what your business can and cannot do.

Repackaging, however, doesn’t lock you into anything. You can use it as a short-term
tactical move: “We're going to repackage key portions of our mainframe application and
use them elsewhere because we plan to migrate off the mainframe at some point.”
Repackaging also supports the longer-term strategic direction to stay on the mainframe:
“We like our mainframe, we want to keep it, but we also want increased flexibility—which
repackaging provides.” Done properly (which I'll discuss in the next article), repackaging
doesn’t change anything on the mainframe, so it preserves your mainframe assets while
minimizing or eliminating the need for costly custom programming on the mainframe.
Repackaging, in other words, offers the most flexible kind of solution, and a solution that
can fit many different strategic or tactical directions.

Repackaging Your Mainframe Application

In the final article of this guide, I'll look at the repackaging solution in more detail and
discuss one approach that can either offer a long-term strategic direction or be utilized as
more of a short-term, immediate tactical solution that helps support a particular long-term
strategy.

Realtime 5 ®) Attachmate



	Options for Modernizing Mainframe Applications
	Solution: Rehost
	Solution: Recode
	Solution: Repackage
	Strategic or Tactical?
	Repackaging Your Mainframe Application

