Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 7
|

Chapter 7: Benefits of Automated Debug, Analysis, and Test ... 98
Selecting the RiGHE TOOIS ...t ses s s ssesnes 98
Heightened Developer ProdUCHIVILY ... serseeseessesessessessesssessesssesssessesssessssssssssssssssessssaes 99
Improved Code Quality and Reliabilitycccoueeereresessssssssssseessessssssesssessssssssssessens 102
SUPETIOr Mana@eabilifyoeucereeeeereeseeeesseessessesssesseessesssessesssessessssssses s ses s ssses s s s ssssssesasens 105
Better Performance and Real-World Behavior..........eeeesessseseesesssesssssssssssssesseens 108
Improved MaintaiNability ... sesasessens 110
Access to Modern MethOdOlOZIes ... sssssessesns 113
000 Uod 11 -3 0) o TP 114

: o
Realtime 1 CIFochs
publishers Leading the Evolution

Chapter 7
|

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 7

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology eBooks and guides from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 7: Benefits of Automated Debug,
Analysis, and Test

Much of this book has been about improving your processes and procedures, adopting
tools for automation, and improving practices for both development and testing. But what
are the real-world advantages of these improvements? In other words, after investing time
and money in adopting changes and tools, what kind of return can you expect on that
investment? That's what this chapter is all about: Wrapping up everything that has come
before with a focus on the actual business benefits.

However, before I dive into that, let me remind you that this book has never been simply
about tools. It is extremely unlikely that simply purchasing and using tools will gain you the
many benefits I'll be writing about. These benefits come primarily from changes in your
practices and procedures; tools are—as I've written previously—simply a way to
accomplish those practices and procedures more quickly. Tools can also make it a bit easier
to stick with certain practices and procedures by offering to help enforce them for you, but
it’s ultimately your dedication to improved practices and procedures that will set you on
the path to achieve the various benefits I'll be describing.

Tools are obviously beneficial in that they provide automation and enforcement, so you’ll
definitely want to add good development and code quality tools to your environment.
Which tools will you select? I have a couple of strong opinions that I'll share.

Selecting the Right Tools

First and foremost, 'm a huge believer in the “right tool for the right job.” That is, figure out
exactly what features and capabilities you’ll need—this chapter will actually help with
that—and then adopt tools that provide those. As this book is primarily focused on .NET
development, I expect that you're working in Microsoft Visual Studio. Most third-party tool
vendors supplement Visual Studio and integrate with it in various ways. Integration in this
manner that is essential because it keeps developers within the development environment
that they’re accustomed to, making it easier for them to use these new tools and features.

Microsoft itself offers supplements for Visual Studio in the form of the high-end “Team
System” version of the product. I have mixed feelings about this version; I'm glad to see
Microsoft incorporating better code quality and analysis tools into its product line, but at
this stage, those tools are fairly primitive compared with offerings from more mature tools
from third-party vendors. Team System costs a premium over the more commonly-found
editions of Visual Studio, so if you elect to go with Team System, exercise due diligence and
carefully compare its features, capabilities, and extra price with the features, capabilities,
and pricing of third-party products. Select the candidate that best meets your needs and
budget.

SR PER 98 MICRO
Realtime CIFGEDS

http://nexus.realtimepublishers.com/

Chapter 7
|

Heightened Developer Productivity

There’s little question that automation can improve developer productivity. In fact, I really
wanted to highlight this benefit first because some of the practices I've recommended—
naming conventions, coding practices, and so forth—can definitely be perceived as
lowering developer productivity. To be frank, [think you can expect a lot of those practices
to initially lower developer productivity as developers tend to slow down a bit when
they’re diligently observing new practices and standards for the first time. Automation—
through the use of various tools—can help offset that initial productivity hit.

One improvement is in unit testing. ['ve seen developers waste a lot of cycles testing the
same code over and over and over, while neglecting other sections of the code. A good unit
testing tool (see Figure 7.1) can help developers focus by indicating which code has been
tested and which hasn’t. This denotation helps ensure that developers are spending the
right amount of time on unit testing rather than “chasing their tails.”

#3 DevPartner Studio - Microsoft Development Environment [design] - BugBench. dpcov®

Fie Edt Vew Project Buld Debug Tools DevPartmer Window Help
w0l » Debug - o - BE =R
. -2 2 Ermrdetettlun - il .
3%/ BugBench.dpcov* | 4 b % || Selukion Explorer - DevPartne... 3 X
g =-E2] All (28.31% of 1,992 lines) =
= %)
g B ggtzqzw\ggsfgﬁftfu;f:,”(h)) 780 of 453 fnes crecuied (3972 [Solution ‘BugBench’ (3 projects)
= Our ce 3% of lines
. [— 5 = [Z BugBench
= T TFACE.dl { 4.3% of 327 lines) Lol bate ol s -@REFE,MES
atiinh (0,000 Elnes)) Method List Saurce[bugbench.cpp] | Session Summaty | #- [1 Source Files
atlcam.h 0.0% of 124 lines) S1- (B Heslor Fies
atthost.h (0.0% of 100 lines) Count | Source e - (I3 Resowes Fles
iface.cpp (B7.5% of 16 lines) // Inicialize COM. S
=71 main.bug { 22.6% of 1,196 lines) . LG BATEED ASMOTeIRIRil o S (] DevPertrer Studia
cpperr.cpp { 0.0% of 10 lines) {] BugBench. dpbel
errarbase.cpp (0.0% of 11 lines) 0 MessageBox (| NULL , "COM could not be initialized.” , "BugBench Initialize il
ugBench, dpcoy
leakerr.cpp { 0.0% of 40 fines) o return -1 ; e HCEQ "
afxdllh ¢ 0,0% of 7 lines } 3 i
bugutity cpp (10.4% of 651 lines) - (B Soures Fles
tresctrl.cpp (12.3% of 65 lines) // Dynamically register the Interface Test Object that will be used by the G Hoadker P
+ leader Files
ptrert.cpp (19.4% of 67 lines) // error generating CON code. 5. (B Resowca Hlos
writeerr.cpp { 21.4% of 28 lines) 1 if (! RegisterInterfaceTestObject (]) B ol
readerr.cpp { 47.8% of 23 lines) {
main.cpp { 52.2% of 23 lines) 0 CSEring abrlppless: Contents
comerr.cpp { 56.0% of 109 fines) o strApplame . LoadString | IDS_AFPNANE) ; T
doingall.cop ¢ 63.6% of 11 Ines) L i
pierr.cpp { 66.9% of 121 lines } TCHAR * szMsg = _T |{ "Unsble to register the IFACE.DLL Interface Test © DevPartner Studio -
=] BugBench.exe { 59.7% of 469 lines § "COM errors will not he generated.in®
bbtrescertrol.cop { 31.4% of SLine | 0 "Please re-install the BoundsChecker semples.” | ; ¢
bbeommandinsinfo.cpp { 46.4%0f 2| 0 MessageBox | NULL , szMsg , strippiame , NE_APPLMODAL | MB_OK | ; :éF:al'Sf‘EsgC:NEW
bugbenchdg.cpp (62.4% of 346 line | 0 3
47 DevPartner User Interface Elemed
bugbench.cpp { 79.5% of 44 lines o {j‘ 1 "
[E] Methads Mot Covered // Create an instance of the main dialog . @[”;m':g‘:;‘;:r‘;m iiealion
[E] Methods Less Than 20% Covered CEugBenchbly dlgy - {; Eaneral TeFormatin
[E Over 30 Lines, Less Than 10% Covered kL m_pMainiind = &dlg: z
+ & Code Review
/f Get the command line passed to the app = mé;“:’if_”gf'yf‘sd
3 + etting Starte:
i CBECommandLineInfo cmoline; e
1 ParseCommandLine (cmdLine) ; =4 Hove To Informatien for AR
&% Collecting Coverage Data for)
// Dispatch commands specified on the comrand line # & DewPartner Coverage Langu
¥ if (!ProcessShellCormand (crdLine)) 4 Infarmation for Distributed |
4 G e v &P Reforence
< | % 3 =-([J) Error Detection
+ & Getting Started
Qutput o x + ¥ Configuring Error Detection
Debug L] # 4% Detecting Errors In Your Prog)
& Memory analysis
Deleting Key {73CCFOD1-4AZ0-41E5C-EZ37-6BCEEO4DF4C) Al u Performance Analysis
'BugBench.exe': Unloaded 'C:yProgram Files)Compuwarel Studio) Exanples bin\Debue TFACE. d11' % @ Getting = tyd
The thread 'Win3z Thread' (0xd50) has exited with code 0 (Ox0). @/He “;g]arre tion For Al L
Detected menory leaks! e L armation.nop
Bl bbaas i w @Devpartner Language Suppol
{223} normal block at OxDO35ZEAS, 160 byces long. 1 & Profiing Server Applications
Dava: <0 © > 44 OF 1& 01 30 OE 14 01 00 00 00 00 00 00 60 0O +) &% Information For Distributed A
Object dump complate ¥ &P Reference
The program '[3236] BugBench.exe: Native' has exited with code 0 (0z0). LAE @Perﬁ:rmaﬂteEXDert
< b3
Ready

Figure 7.1: Identifying code that has not yet been tested.

. 99
Realtime CIFocts

Chapter 7
|

Another improvement can be gained from tools that help developers during debugging. For
example, tracking down a difficult-to-reproduce bug can be an enormous waste of time,
especially when the difficulty in reproduction comes from differences between two
systems. Tools can help compare two systems at a very detailed level, as Figure 7.2 shows,
helping developers arrive at the root cause of the problem much more quickly.

] Compuware DevPartner System Comparison

= - (7)
Differences by category Difference details ®9
“System Info (110} | Installed Products 98 diferences/428 compared Show _.C\II differences v|
System Files (2352 T e — —
| Installed P o | Item MHT 33348001 MHT 4242701 ~
Services (39) ; — Whware Work station R.E019175 [mizsing]
Startup tems (25) - webEx [mizsing] installed
:g%uaﬂao)ok Components (34) I Windows XP Hotfix - KBE73333 [missing] 20060114.006213
S0L Server (2) = Windows ®P Hotfix - KBS38310 20041027 095746 [mizzing]
Drivars (75) = Windows P Hotfix - KBB89673 20041116.085848 [migsing]
Registry (0) = Windows XP Hotfix - KBE30047 [misszing] 200412211 24506
File (0] - Windows XP Hotfix - KBEA3086 [missing] 1
= installed [missing]
Category description: =+ Systern Components
— Connection kanager inztalled [mizzing]
Installed Products — KBga40E installed [migzing]
Shows differences in — KB893803 installed [mizzing]
pat praducts are - Micrasoft NET Framewark 2.0 2080727 [missing]
Version information is — Microzoft MET Framework 2.0 Beta 2 [mizzing] 2050215
shown (if available). — Microzoft Document Explorer 2005 8.050727.42 [missing]
This is extracted from - Microsoft SAL Server 2005 Express Edition [SOLEXPRESS]) 9.00.1399.06 [missing]
the AddfRemove ; = R
Programs section of — Microzoft SOL Server 2005 Tools Express Edition 9.00.1399.08 [mizzing]
the registry. I~ Microsoft Visual J# 2.0 Redistributable Package 2050727 [mizsing]
= Microsoft Visual Studio 2005 Team Suite - EMLU 8.0.50727. 42 [mizzing] &
Details For: Products/\Windows %P Service Pack 2/
Yalue on MHT292348001 Yalue on MHT42427M01
[[missing] ‘ "20040803.231319
Search the internet for more information on this item

Figure 7.2: Finding differences between systems.

When it comes to identifying performance problems in code, you're typically looking at
more wasted time. In fact, without the right tools, it can be impossible to determine exactly
where in an application performance is being lost. With the right tools (see Figure 7.3),
performance problems can often be traced to a few lines—or even a single line—of code,
letting the developer quickly shift focus to the code that’s actually causing the problem.

. 100 o
Realtime CIFochs
lishers Eaasding the Bvolition

Chapter 7

2% BNTNETWinApp - Microsoft Yisual Studio

File Edit View Project Build Debug Data Tools Test DevPartner SecurityChecker Window Community Help

;D']'leg | & S | o - B - E | p Debug + Mixed Platforms - Qﬁ“%ﬂ%ﬂ ;Ep
MR- -H- R e v e

/éNTNETWinApp.dppxp[Frmabaut.vb | Start i’égé | - X

ance Expert Biack ko Summary
Path analysis

Method CPU time... © Execution... Elapsed time {ps) Disk activity (bytes... | Network ackivity (bytes.. Wait time {us) Lol
[=F FrmBMTME TWinAppain, Main 4,211,339.0 1 19,637,700.0 52,333 2,431 2,509,319.0 —

| E|-FrmBNTNETWinAppMain.mnuOr... 2,335,486.0 1 7,358,656.0 32,050 2,431 2,507,895.0

M s

I OrderDetail GetOrderDetail

3,664,351.0 i 2,431 2,506,544.0

&7z, 144.6

_|.Ca|| Tree | Call Graph

1
[OrderDetail..ctor 445,570.9 1 1,506,776.0 32,050 0 1,350.8
I frmitait. Dispose 6,593.8 1 71203 1] 1] 0.0
| - Fromvwait, . cbor 5.A54.5 1 AS7LA n n no S

Method detail for : frmCrderInguiry FrmorderInguiry _Activated

Source | Call Stacks |

!CPU time including user children {us) » I Far each line in frOrderInguiry . frmOrder Inguiry _Activated

5§72,593.0 0.0

950: A

951: ' create a connection to the web service and get the order detail data set =

952: Dirn wes Ag New BNTHET OrderD etaiba'S. OrderD etail

953

954: ‘ws. SetConnectionlnfolpDB Type, pConnectionSting, plserame, pPasswiord)

................ gz = s GetOrderDetalDrderi o, DB Tyoe, pConnectionSting, pllseame, pPasswiord|

95E:

957: EndIf

958

955 dgOrderDetail DataSource = ds. Tables["'OrderDetail]

960 dgQrderDetail ReadOnly = True

9E1:

962 SubTotal =0

963 PerlternTotal = 0

964:

9E5: Dirn rmyRow &g DataRow =

9EE: Far Each myRow In dz. T ables("OrderDetail]. Rows v
< | ¥

Figure 7.3: Identifying poorly-performing lines of code.

Finally, performance tools can help developers profile their code’s performance, giving
them insight into resource consumption. Figure 7.4 shows an example, with a breakdown
of the time spent in given methods, the amount of memory consumed, and other
performance data. This information helps developers quickly gauge overall performance
and promptly focus on problem areas—without creating endless cycles of less-direct tests
and fix attempts.

Realtime FOELS

publishers Leading the Evolution

101 MI i

Chapter 7

2% Performance Analysis Sessions - DevPartner Project [run] - driverZ._dpprf & IEIIlI

File Edit Mew Project Buld Debug Tools ‘Window Help
H-m-SHE|)RR BB) obe - o - RER 2
MW BE S L F & . EB<a?m s x| -

DevPartner Memory Analysis

[d] Memary Leaks [&] RAM Footprint I@ Temporary Objects I

(@ View M Footprint — £1 11 [RSRAIGHT_w2K - 1512 Driver ese) =l
[System Memory I Profiled Memaory

500,000

400,000 |

300,000

o |
200,000 |
100,000 |

Memory (bytes)

it Page | driver.dpprf | driver - ram foo, . nalvsissnap, dpmem | driver - temporar, ,.ct analvsis.dpmem| WEdothet, vb | driverl.dpprf driver2.dpprF | 4 X
E| All { Modules: 26 | Method List |Source [Diiver.csl| Session Summeary |
: E""Q RSRAIGHT Method %in V| %with | i | averae fl
[:l Saurce | Marne Method Children 3
E System (| DialogBoxParamd S 9.9 1 188,627.7
=] Top 20 Source M| LineTo 1.8 1.8 10,060 7.9
[E] Top 20 Methads | SpeedBump.Driver Forml..ctor 1.7 35.8 1 72,0736
=] Tap 20 Called 50 | 3vstem Reflectian. . 1.4 2.7 2 30,577.5
System. indows. ... 1.3 29,9 664 2.7
Top 20 Called M | e aseDC 1z 1.3 5,03 10.5
1| | _pl System. AppDomai. . . 1.2 1.8 1 51,149.2 ;I
| Autos B x|
| Ready | | | 4

Figure 7.4: Performance profiling.

Frankly, using these tools doesn’t require much additional effort for most developers; these
tools simply speed up tasks that developers are (or should be) already accustomed to
doing. That’s a benefit because it means more immediate productivity gains.

Improved Code Quality and Reliability

Tools won’t necessarily help improve code quality and reliability directly, but by using
tools to enforce good coding practices, you can encourage and assist developers so that
they're producing better-quality code all the time. For example, one feature of Visual Studio
Team System is the Team Foundation Server’s ability to enforce code quality guidelines
during source code check-in. Figure 7.5 shows how these rules are defined. The product
gives you the ability to define different rule sets for different projects.

. 102 i
Realtime CIFochs

publishers Leading the Evolution

Chapter 7

Source Control Settings - CA Demo " @Iﬂ
Check-out Settings | Check-in Policy | Check-in Notes

Description

Policy Type

Ensures that code analysis is run with a defined set of rules.

Code Analysis Policy Editor 2] = |

[7] Enforce check-in to only contain files that are part of current solution
| Enforce C/C++ Code Analysis (fanalyze)
Enforce Code Analysis For Managed Code

Rule settings for Managed Code Analysis:

Rules Enabled During Code Analysis Treat Warni...

Design Rules
Globalization Rules
Interoperability Rules
Maintainability Rules
Mobility Rules
Marming Rules
Performance Rules
Portability Rules
Reliability Rules
Security Rules
Usage Rules

"
HEHHEEE

H H

L

]
[+

Ooooooooomd

[+

OK } l Cancel

Figure 7.5: Defining check-in rules.

Using their copy of a Visual Studio Team System product, developers can apply the same
rule sets to their code for local analysis. If a developer attempts to check-in code that hasn’t
passed the rule set defined at the source control level, developers are presented with a
message like the one in Figure 7.6. This feature helps the developer realize the need to use
the top-level set of analysis rules, and helps to enforce a specific level of code quality across
all the developers in the project.

&

. 103
Realtime FOELS

publishers Leading the Evolution

Chapter 7

Pending Changes - Policy Warnings El

j =i Check In
A\ TF10139: The following check-in policies have not been satisfied |

Description a

D The code analysis settings for one or more projects are not compatible with code analysis policy. Double-click this message for more information.

r 3
Code Analysis Policy Failure Details |@753|

The projects in the following list have one of the following issues: either the code analysis settings are
not compatible with the code analysis policy for this team project or the projects have not been
successfully built with those settings. To correct this, from the Analyze menu, select "Code Analysis
Settings for Solution”, choose how you want to update the settings, and then rebuild with those
settings.

BusinessLayer
DataAccessLayer
MainApplication

Figure 7.6: Enforcing code quality at check-in.

Third-party tools can also provide local code analysis using rule sets, all of which are
designed to improve overall code quality. Figure 7.7, for example, shows Micro Focus
DevPartner’s code analysis rules in action. Here, the rules defined are a bit more complex
than mere coding style and are actually looking for potential security and other functional
flaws. To keep developers productive, the analysis should not only highlight problems but
also offer an explanation and guidance—and examples—for fixing the problem and
improving the code.

. 104 i
Realtime FOCUS

P iblishers Leading the Evolution

Chapter 7

I™ DewPartnor Code Raview Ritbs Managsr - [Socurity Rubsc]

T e ' 4 Fue | Tiie - [Ty [Largpaage | Do [-~
1730 Imgropes derial of SteldertitFemiveon on & lype High Secuty Winusl Basic. NET. Visual CHNET DevPatren
Sedoct of lsaat ann fom em sach calngeny T Aot WelFuronn Hickder: Frskd Names Hih Secuty HIML DevPatre
BT T VI Uneabe ThoasPocl Mathods Diop Sceaty brfermalaon High Grcvrly Witaaal By NE T, Vs CH NET UmePwtrm
Tyoa TEH VakdalrHrgued Deabied o web exedg Fis High Seeunly Urtrer
1B COM e 01 TS EnabieViewSImeMAL is Diabled 1 Fage High Secuty HIML [
{5 Daabze 1) 1674 Irelfnctive Demand Placed on Static Conatnuctes High Srcusty Wisual Basic NET, Visual C NET DieParrer
B st 1y 1655 SupgeewsUinmanagedCodeSecuniy Detecled High Securty Wisual Basic NET, Vieual CHHET DevPatrer
B Dreapn Tire Popmsitoes (04 Wse of LoadwithPartisame
| EnoExiception Handing 101 P ol Elevaled Priviegst igh Secuy i 10 C T DePartrar
[Garbiage Collection [0 Open to Partisly Truited Calerr
A Irdminatuonaiestion 10] 1650 Clats o Swuchae Dpen to File Parh Hacking High Securiy Visusl Basc NET. Vieusl CHNET DeerPartroe
[Language (0 1657 Puolerisl Exsts o Secusily Cotunmention High Secuty Vinusl Basic NET. Visual CHNET DevPatrm
B ooz 101 1642 Folenhal o Bulercvenn High Srcunty Vitual Biasc NET, Visusl CHLNET Dt
[Matanabing 0] 174D Consden umrg 5L bo protect Fosms fahenisataon cockass High Securly Dty
& Fetomarce (0] TEEE Possbie Lo of Dery o Permilky Inbomaton High Seculy Vitsl Basec NE T, Visudl CRNET Dot st a
|5 Pomaediny (04
1B Provect 1 Sokusion Propessies 0] &
| Feekatsliy] Potentlal for Falsely Uevated Privilegas
B S ity 11555
B Standerds [0 Trigger: Trigger ttte and number of ceeurances
[Syvem 4 Original Source Line: Source line If available
(= + Locatlon: Location detnils
| s Drsfined s (04
1B Versirina 0]
B windows 21 0] Explanation
B Sevety
EHehisn Demnanding privileges in & constructor aliows or prevents thal object from being created based on its given permission sel. I the Dermand fais, the object k= nol created, and it
[EMedam 77 . cannot be used by the calling code. I the Demand succeeds, the members of this newdy-create object do not need to Demand aay other permissions. While this simphfies secuning
BELew 3 an ohject, permissions only have to be ence in the 3 nat in every public/p {in VE.NET Fublic/Protected Friend) member, which can open &
B warrg 23] secunty hoie.
= [Languege
(Vi Basic NET 123] [C® Example
B Vs C8 NET (143) o MyDbject
(=N
= [Dvrer
Aoy | o |

Figure 7.7: Code analysis in action.

Essentially, tools alone can’t improve code quality. What they can do, however, is
encourage developers to improve code quality by observing standards, conventions, and
best practices. Code analysis tools in particular can help developers learn about these
standards and best practices by providing developers with clear guidance when a standard
or practice has not been followed and by detecting that problem early on in the coding
process—ideally, before the code is even checked-in to a source control repository.

Superior Manageability

Management often shares too little of the code quality burden, often because management
has so little insight into any kind of actionable quality data. In other words, it’s tough to
make smart decisions when you have no data to work with.

Provided your development managers are willing to make the tough calls, the right tools
can give them the data they need to do so. For example, one simple set of metrics can help
managers understand the general complexity and overall risk associated with a given
portion of code. Figure 7.8 illustrates a simple, dashboard-style view that focuses on
maintainability: Portions of the code with a low maintainability index will usually require
more ongoing maintenance, create more risk, and definitely require more extensive testing.
These numbers help managers decide where to focus resources: either more testing and
more maintenance or more development time simplifying these components to raise their
index.

. 105 i
Realtime ClFochs

publishers Leading t!

Chapter 7
|

Code Metrics Results @
= | Filter: Mone + Min: | - | Max: | v| 3| | = F | |
Hierarchy : Maintainability Index ~ Cyclomatic Complexity Depth of Inheritance Class Coupling Lines of Code
EI.E {BusinessLayer (Release) " 38 545 1 9 565
E--{} BusinessLayer m 38 545 1 9 585
EI \"[3 Address = 37 265 1 7 275
----- 5% Address(int, string, string) = 76 1 0 4
257 Td.get() : int m 98 1 i 1
-4 LoadAddress(int) : Address Py 18 102 7 108
=i Savel) : void @ 7 159 E} 160
257 StreetAddressl.get() : string 7] 93 1 i 1
23 StreetAddress2.get() : string m 98 1 0 1
El-%¢ Customner [+ EY 280 1 7 290
----- ﬁ Address.get() : Address] 98 1 1 1
----- 5% Customer(int, string, string) o 76 1 0 4
----- #5 FirstMame.get() : string 7] 93 1 i 1
----- 25 Id.get(): int o 98 1 0 1
----- 25 LastMame.get() : string a 98 1 i 1
----- 9 LeoadCustomer(int) : Customer @ g 146 G 152
----- ‘9 Save() : void i 13 129 2 130
[#-{5F] DataAccessLayer (Release) =] 95 6 1 2 6
[]---E MainApplication (Release) = a4 10 7 5 16

Figure 7.8: Code maintainability metrics.

Tools can also help make it easier to develop, maintain, and track application
requirements—something that's absolutely critical in making project decisions. Figure 7.9
shows one way that requirements can be tracked. This tool also tracks how many tests
have been performed, how much of the code the test covered, and how many tests passed
and failed—crucial information for someone in charge of the project. This view essentially
tells a manager how much testing is yet to be done, and how much of the code is currently
in compliance with the requirements.

g U O view: Coversge SR b G e @R @B B EE
Requirements « || & Default Requirement Folder
Fmri"té |_;6||:|er5 x Hame Display ID Testz . Coverage [Paszed Faled Mot Execu
E HNo Favaorite Folders | (11253 Defauk Requitement Folder 170 9% i3 20
El % Surginet Test Management SURGIFOOO M7 0 9% z 20
[= fi Surginet Functional Testi . SURGIF100 49(42%) e a0 Z

1 = # SURGIFO0G Bilrg |
BILLNGO1.01 Endo.. B : 4]
BILLNGO1.02 OB C.. BILLNGOL.C2 1(100%)
BILLNGO1.03 LiftBr.. BILLMGO1.03 1[100)
BILLNGO1.04 Tonsi.. BILLMGO1.04 1[100%)
BILLNGEI 05 Tota BILLNGTIOE 1(100%)
BILLNGOL.0E Urod.. BILLWGOTL.OE 1(100%)
BILLNGCT.O7 Vitua.. BILLNGO1.07 1[100%)

Requirement Folders
o Default Requirement Foldes
) CAF Requitemert Feldsr | o
) Intzcration Cecle 2
=) Lawszon Interfaces
) Master Backup
0 Master Sugine: cycle 1
=) SC2Biling Cycle 2 I
) SC2 Case Tracking Cycle 2 =

|
o s
B E|
B

.
=
=
g

-
=1
=
e

z

.—..;..:..:..:..—..:.
eEEelEwE— e = e o

=
=
g

b o oimermie o= i~

B % SURGIFO0S Oiders ORDERST 101%) 0%
B TR ee =i %1 % SURGIFD03 CASE TR CASETRKD! 3(3%) 100%
Reports * Il # % SURGIFO0Y SCHEDU.. SCHEDODI 18[15%)

| = ;fﬁ SURGIF002 PREFER.. PREF<001 4 [3%) J00%

| @ % SURGIFO04 CLINICA,, CLINDOC! 16(14%) adx

| ® % SURGIFO03 CARE MOB.. CAREMOBOI 101 0%

= P— & % SURGIF007 INTERFAC.. INTRFADT 13(1%) 100%

] i}
L ApamiRraieck B :-;-‘ SURGIFODE2 INTEGRATI.. INTEGRATIO.. 43[37%) I
~ud Project & & SURGIFDI0 SYSTEM ls.. SYSTEMOOD 11 (3%) [
7| Requirements

i &0~ @ ’.’Iql | _,l

Figure 7.9: Tracking requirements.

. 106 i
Realtime FOCUS

P iblishers Leading the Evolution

Chapter 7
|

Managers can also use higher-level views to get a feel for the application’s overall quality.
For example, Figure 7.10 shows a very simplified view with a very straightforward “quality
meter.” This perspective is perfect for executives concerned about the status of the project.
In this example, the project’s quality is shown, compared with the planned quality level,
and a simple indicator of the “release status” makes it easy to see whether the project is
ready for release.

Project « || 4 Dashboard
ject Information %
£I’[()) hbt Ild] Folder: Default Requirement Folder (Requirement Folder)
ashboar
= Statistice Cycle: All
Report s - - Release stalus: !E \Warning RequitementshTest coverage:
- 4%
= Sy.sl;:;::tports Gualty index: qu |
Lo
Ll Requirements
j Tesqts I-:. - Tests executed (4% n):
L&l Scripts Actual (A0 03 e |

Ll Execution
Lol Fesults

Planned [PE1)=0.75 -~
Pazsrate = 67%

Lol Defects
Il Public Reports
&l My Reparts Test distribuion:
Friarity Mo, Tests..| Test Plan Exit Criteria % | Test Pla.. | Tests Execut.. |F’ass ‘Fail | Others Actual Test Coverage
High 18 100% 18 1 1 o 17 B%
Above dvg 12 90z 1 1 1 o N 8%
Average 18 80% 14 1 1] 1 17 34
Below Awvg 0 7O a a a 0 0 0%
Low G G075 4 1] 1] 0 & 0%
lgnore Fi] 502] a a 0o 7 0%
Total 129 - g5 3 2 1 126 -
" 3J List of Projects 4| | »
“=d Project Defect status:
%] Requirements Defects | Priority 0 (Blocker) | Priority 1 [Criicall | Pricrity 2 (High) | Prioiity 3 (Medium] | Pricrity 4 [Low] | Total
Test Plan Exit Criteria [%] (0% 0% 0% 10% 15% -
a Tests Test Plan Exit Criteria [#] i} a 0 8 13 21
Mumber of Defects Open 0 0 0 1] 1] 1]
9 Scripts Mumber of Defects Clased 0 0 0 1] 1] 1]
Mumber of Blocker Defect.. 0 0 0 1] 1] 1]
. Execution Number of Non-Blocker D.. 0 0 0 0 0 0
= # 7

Figure 7.10: Code quality dashboard.

Dashboards like this can offer a deeper level of management, too. For example, if code
quality is poor and a limited amount of time and other resources is available to improve it,
where should those resources be focused? By allowing managers to play “what if”
scenarios, a tool can show where development and testing resources can be best deployed
to achieve the highest quality improvement. Figure 7.11 shows an example: Here, two
scenarios are shown, each with different levels of testing devoted to different levels of code.
The tool shows the change in overall quality that will be achieved by each action. This data
makes it easier for a manager to achieve the desired balance between code quality and
available resources.

. 107 MICRO
Realtime CIFGEDS
yublishers e, T

Chapter 7
|

Requirements % | oy Default Requirement F ol der
Favarite Falders || [ware Display 0 Testi®) Cowersge |Passed Foiled Not Execut [InPropress Mot taried Not Subrwit . Fisk Tests Sed Defeots
0 ne Frsom Faizan 5 oefoult Reguirerest Folder [0 0 6 L 18 2688 1518

& Custarm drnibutes (20 FILT =Y G a [o '} 4 imare dld 2§
| Cmna # 8 Cashboard I2) 54T Cuankity Oprimizes " |
Regquirement Felders - | | & Defects Conter B :3_ Y- a2
-‘H,._L___,m Qualty Optrvizer . C .
Daertose| (3. 0 @ =

i Dilescis Corf

r

o bl cher Filser [

f'rl"!'

) Exncutbion O} poider Defwait Recuirement Folder Fibter ™ % Fuiled @ Not Execatable
3} Fissrs Faideg
i roer Exad) Wiew by atus
I retiation

o Y o

& . ¥ Passad g Faied LT |-
R 5 —
: i g ot Subrmi o i . i e Seak b Sec e

£l Merage
7| oyl Tesd

Marasl Tesl| Optmize: ek By s YT Tr——

Risk Cate pory & of Teats Sulected deiTevts Firme fhry

-

2l Progects Cafll sk Cokrgary # 0f Tests Selected #of Tests I | »

"f'l"l!'
{1
i
i

Regaal gy = 4 =] @& 245 = =

Reehs Con(- = g & 2w & 9

FPPREEE
-

e Al & . ¢ 2 arvove &8

£ Tools Foigey .
5 Vpgrade My] =l - Fr AN o = - = 232

5] 7 =g o o o] =Y o 2y o
E

1]

i
E
E
i

| s o - -
| Roports M) P = =1 " ey Annbyre: Statinticy Sureary Corragn

S S S S S S e e e

& il Public Tedna T 308 e B Geeed e ol et K30

[l Prvane || Anstie Wt Sy Comrage [T—— Fane R

Tital # of Tmata. M e v bar Sebeied e el Teala. L3323 L. d L1 3

e Ry b st C b g Pass Lo Tew Covwipn [T L

r— i = e it -
7| Mequieeny ’.‘“cq:""‘ Lot it) Farcent Coroie ; Frapmesnd sk
Percers Compirte Frcmcied Bk

2 s e -
e [

Figure 7.11: “What if” scenarios with code quality.

Much of code quality comes from smart, informed management decisions. With the right
tools to provide the right information, management decisions can focus on the desired level
of code quality and drive decisions throughout the project that align to help achieve that
level of quality.

Better Performance and Real-World Behavior

Of course, one of the things you're really looking for when pursuing better code quality is a
better experience for your end users, both in terms of performance and behavior. By
behavior, I'm referring to both crashes (you want fewer of them, of course) as well as an
application that works the way users need it to.

Again, practices and procedures are the way to start improving performance and behavior,
but tools can help automate and enforce your goals. Figure 7.12, for example, shows how
tools can help profile an application during development, assigning performance values to
individual methods and displaying a sort of call tree to help developers visualize the
execution paths of their code and spot code that is contributing to poor performance. In
this example, one method is contributing more than 70% of the application’s run time,
suggesting that this method could use some re-thinking. This type of visualization helps
developers improve performance during development and unit testing, when making
changes is more straightforward and less disruptive to the project in general.

. 108 i
Realtime CIFochs

publis

AT y P
L f oI .
1€T5 Leading tl

Chapter 7

2% DevPartner Studio - Microsoft Development Environment [design] - Deadlock Demo1. dpprf*

Fle Edt W¥ew Project Buld Debug Tools DevPartner Window Help
@ FE@ B » Debug) - REERRE-,
.- RE-D- § G [B]performance or coverage 3 = | £y <3 | CDeadiockPhilosophers¥iew::OnDraw ~ _ .
32 Dpeadlock Demol.dpprf* | % || Solution Explorer - DevPartne... 8 X
2 [T A Modes: 15 Methods: 769) Method List_ Source [deadockphlosophersvien.cop] | Session Summary | 2
g = STH;Z:NNDZI ;;'f“ ©eadiockDemo) | oy % with Children Time | Source & ||| T4 Solution ‘Deadiack Demo’ (1 project)
T Jj’;(ﬁku) — 318 0.2 4,435.6 dellemory. CreateCompat 1b1eDC (pDC] = [veadiock pemo
z E?aaml Em;:e; %) 318 0.1 1,568.7 CEitmap *pBitwapOld = delewory.SelectObject {shmpFood) : (5] References
2 MI“EWWH"":W"” 318 0.0 31.9 CRect foodRect = tableRect: # [Source Fies
% srpospennonRlll 318 0.0 380.6 foodRect.DeflateRect (foodRect.Uidth() /2.5, foodRect.Height #- (2 Header Files
E] nmfrm;:w(UB/w) BITHAP bm; + [Resource Files
pre ey = 0.0 930.8 brpFood. GetBitmap (Shm) : = (2] DevPatner Studo
B LY membC . StretchBlt (foodRect. left, foodRect.top, 2] Deadiack Demo.doprf
1E] phidig.cop (0.0%) foodRect.Vidth(), foodRect.Height(), Deadiack Demot..dpprf
[B) deadlockphilosaphers.cpp { 0 SdeNemor
L‘sj phichooser.cpp { 0.0%) il ¥
E]Sﬁfm ?’;“:Z}bj’@'w"("'w“) 318 18.8 | 515,188.4 bre.bwWideh, bm.bwHeight, SRCCOPY):
= iy i 78.7 § z
[Top 20 Source M 5 318 0.1 2,478 dclemory.SelectObject (pEitmapOld)
g:““igxh\:‘;’ e 318 0.0 388.3 const double increment = CalcingleIncrement():
E‘ﬂﬂzuCa;dM:;‘:d = 318 0.0 1,306.2 const double radius = CalcSeatRadius(): < >
P, ® 318 0.0 438.5 stick vect::const_iterator iterSticks = pDoc->GetChopsticl
318 0.0 79.3 if(m vecState.size()) Contents nx
{ Filtered by:
318 0.0 39.1 fur(lnt i=0: i < m_nDiners: ++i) [pewatnerstuda =]

Call Graph ® ['5) D_zwartnsrww
= + & Getting Started

2 | # @ Features oversien
E | O Comdncbulonpi [Ba% ;) #esSinEnLs) 1 &% DewPartner User Interface Eleme]
+ @ Instrumentation
MI% Il | # @& Command Line and Configurationf

% & General Information
% @ Code Review
192% #346 (mfc71d dll) 98.9% L CreatePatternBrush =1 ([Coverage Analysis
06 % + & Getting Started
« V/ How-To Information For AllL:

92% 03 S
& Collecting Coverage Data for]
+ g DevPartner Coverage Langu:
283 #2943 I(]»;i:zld.dll) ‘ o1 Cﬂ.’.;gbrzﬂq - 143% RiE 1 4 Information For Distributed A
= # 4 Reference
s e, Tisi = ([Emor Detection

+ 4 Getting Started
&% Configuring Error Detection d
20% #5623 (mfc71d.dll) 0.0% IsBadReadPtr RelLe 1l = & Detecting Errors in Your Prog|
2% 100.0% il
) 4@ Memory Analysis
= (1) Performance Analysis
4 4 Getting Started
4 How-To Information for AllL
15% #2766 (mic71d.dl) 0.0% GetObjectType &8
o) + & DevPartner Language Suppol
I & Profiing Server Applications
4 Information for Distributed &
4 4 Reference
,'_' 1 @ Performance Expert

|
K| U | >

Figure 7.12: Tracking down performance problems in code.

Another advantage of using automation tools is that they can help do the things you know
you should be doing but probably can’t afford to do manually. Workflow-based testing, for
example, is a form of functional testing (generally done by a QA team, not developers) that
duplicates the way a user interacts with the application. In order to be useful, this type of
testing needs to follow fairly precise “scripts” so that the desired portions of the application
are tested consistently. Undertaking this task manually is tedious, time-consuming, and
frankly, inefficient: People aren’t robots and don’t typically excel at sticking to a strict script
again and again and again. Computers, however, really are robots and are great at running
through a script over and over. Tools like the one shown in Figure 7.13 help test developers
create those testing scripts by allowing them to walk through an application (in this
example, a Web application), designate input, indicate desired output, and so forth. The
testing tool then executes the script against the real application, over and over—as many
times as needed.

. 109
Realtime ClFochs

publishers Leading the Evolution

Chapter 7

: ScreenPreview : 'Actinr'\s f’ 1 Test Steps Actions
S P Stens B
73 I@ Attach ko ‘Caption="Compuware TestPartner - Product Preview"
24 ¥ dick'Caption="Strong Object-level Testing and Configuration”
25 @3 Scrol window to position 827
7 I@ Attach ko ‘Caption="Compuware TestPartner - Product Preview"
28 ¥y Click 'Caption=Top Index=3
an |3 Attach bo ‘Caption='Compuware TestPartner - Product Preview"
31 ¥ Click "Caption="Contact s’ Indsx—=2'
3% g8 Attachto Caption="Contact Compuware - Request Information”

Repeat this loop 2 timets)
5| |m Enter Purct
36 Enter 'Joe’
37 Enter 'Qualityguy'
38 Enter 'ACME Inc'
3 Enter ‘Quality Assurance Manager®
40 Enter '27334 Parry’'
41 Enter Roseville
2 =R Select Michigan'
43 Enter '48066"
4 =R Select United States’
45 Enter '313-227=7300'
46 Enter ‘sxampls@compuware. con’
47 =R Select "Computer Hardware, Software and Services'
48 Enter 'This is a test'
S [t o) End Repeat
50 ¥y Click Name=RESETZ
51 ¥ Click'Caption='Compuware Corparation >3 The Leader in IT alue"
53 l@ Attach bo ‘Caption="Compuware Corporation 3 The Leadsr in IT Yalue"
Oes 54 [gh VeriFy "Typehlame=HTMLARchor Caption="TFederal Govarnment Solutions™."Caption” ...

5 [Verify "Typehlame=HTMLANChor Caption="egal Industry Solutions”."Caption” Is Equ...

e & Lcireat 6 [gh Werify "Typeame=HTMLANchor Caption=Pressroom”."Caption" Is Equal to "Pressroom”
57 [} Activate window 'Classhame=ShockwaveFlash’
58 ¥ dlick ClassName=ShockwaveFlash' at 235, 49
&0 |3 Attach ko ‘Caption='Test Factory - An application testing solution for service provider...

Storyboard

T 29-31 52-56 53-61 62-5% 65-67

- i B G
= TR
= i " i ®
b ra

Figure 7.13: Developing workflow-based tests.

These same scripts can often be used to enable other forms of testing, such as load testing
and stress testing, which both help to ensure the desired level of performance from the
application under real-world, production scenarios involving multiple end users working
simultaneously.

Improved Maintainability

Better quality code means code that can be maintained more easily over time. Typically,
one component of “better maintainability” is “less complex.” Here again, tools—and the
right procedures for using them—can help. Code analysis tools that can produce
complexity reports—Ilike the one illustrated in Figure 7.14—can help developers and
project managers reduce code complexity as the project is underway. High-level reports
like the one shown, as well as the drill-down reports that typically come with them, help
pinpoint areas of high complexity and offer an opportunity to re-engineer the code to
improve its chances for better long-term maintenance.

Realtir

ne
NETS

110 MICRO
I:IFEII::LIE

Chapter 7
|

Complexity and Completeness Report

Froject Order System
Description An application used to allow Order Creation/Editing and general aspects of a Business Ordering s ystem

Tatal nurnber of Interaction Points, (Surn of 2/l packages, reuirernants, scenaros and feps) 174
Total number of padkages. 4

Tatal nurnbar af Fequirsrnants! 13
Total nuriber of seanarios, I35
Tatal number of steps, 121
Tatal nurnber of actors, 3
Tatal number of Mon-Functional Bequirements (Froject Lewel): 5
Tatal numbar af Nan-Functional Baguiremsnts (Requiremsant Lavell: L~}
Awerage number of requirsments per pediege: 3 {13/4]
axaraga numbar of stEps pEr Soanario: o e i
Maximum reguirernents ina single packaga: £
Minim um requiremeants in a single packags: ik

1fillrm
Mazirmum nested depth: i

Sheps per ackar:

Administrator It}
Muraber af had nks: o
E*I’\I-\.lr“l:mr of empby glozsary defintions:

i
Mumber of smpby actor defintions: o
lﬁ]Number of arnpty pacoapes: o

s el

Tatal number af regquirerments,
Tatal number of sesnaros,
Tatal nurnber of steps,

i pumber of bad linkis: o

Figure 7.14: Code complexity report.

Remember, complex code isn’t inherently bad; it can be, however, more difficult and risky
to maintain. You can’t necessarily eliminate all highly-complex portions of code in every
situation, but when you can reduce complexity, doing so will help save time, money, and
effort in the long run. Reports like this simply offer management information so that you
can make better decisions during your project.

Another aspect of better maintainability is better testing. Think of it this way: If you release
version 1.0 of an application but haven’t really, completely tested the code, you're that
much closer to needing v1.1—because untested code is very likely to have defects.
However, code that has been fully tested before release is likely to have fewer defects, need
fewer immediate fixes (including the ones that keep developers up late at night), and
instead allow v1.1 to focus on revised features and capabilities that help meet changing
business needs. Fully-tested code, in other words, is code that requires less maintenance.
Actually testing code completely, however, can be difficult simply because most
applications offer thousands of potential code paths that each needs to be tested. Tools, of
course, can help.

In addition to automating the testing process—thus allowing you to accomplish more
testing in less time—testing suites can work with code analysis tools to help identify every
possible code path and track each one that has been tested. Similar to the test coverage
tools used by developers during unit testing (which [wrote about earlier in this chapter),
reports like the one shown in Figure 7.15 help QA teams see how much of the code they’'ve
covered in their full, functional, and integration testing.

P 111 MICRO
Ht"(llumt‘ ClFochs

Chapter 7

Test Coverage - Summary of tested code, test gaps and code volatility

Project C:\Program Files\Compuware\BNTNET \BNTNETWinApp\bin\BNTNETWinApp.exe
Session date 8/19/2008 12:33:54 PM

Total Line Coverage 4913 of 9044 lines. 54%i

Total Method Coverage 230 of 481 methods. 48%i

Volatility 0%

Stability 100%

W Details

Test Coverage Results

Session File: Zi\ BNTNETWinApp\ bin\ ENTNETWinApp.dpmrg

System:

Projact All Mathods All Linas
ShoppingCartClass.dil su%i 4s%i
Filename Methods Linas
ShoppingCart.vb So%i 45%—
Session File: Z:\BNTNETWinApp\ bin\ BNTNETWinApp.dpmrg

System:

Project All Methods All Lines
LoginClass.dll E4%ﬁ 5?%i
Filename Methods Lines
comutilh . pEm— - PE—
ehvecdtr.cpp 0% _ 0% _
managdeh.cpp D%_ D%_
internal.h 40%— 36%—
mstartup.cpp T45% ﬁ 5% i
puremsilcode.cpp Go%i 44%—
msilexit.cpp 86% ﬁ 82% ﬁ
loginclass.cpp wD%ﬁ Bs%ﬁ

Figure 7.15: Testing coverage report.

Every team might aim for 100%, and if you have the resources to test to 100%, you’ll have
a better application for it. But even if 100% isn’t reachable, this type of report helps QA
teams ensure that they’ve applied the needed testing to the riskiest portions of the code,
intelligently applying the available resources. The right tools can even help identify the
riskiest portions of code, either by complexity or—as shown in Figure 7.16—by identifying
the portions of code that are utilized the most in the application (or that consume more of
the application’s run time).

112 MICRO
I:IFEII::LIE

Realtime

publis

Chapter 7

op 10 Mathods

W SeawehRequesiNDE onlditings JJobTereer Terviet ol Forfeduls g viewpbs fip ey Sk it
w Pape RequestviDB cink> gatupiendet ot o Stabement s oecute Suery serverendig jrp
@ Prepared anement sxecakeDigry g JobDRaWEIE_w&Td_Local Hamelmpl clat e

ke B clats dhglinod N sstrrh
Koihod Mame Typa Counl Tolal Tx HoneChild Ta TolalCPU A Respari

Figure 7.16: Identifying the most-used code in the application.

Access to Modern Methodologies

With the improved code quality that comes from using the right practices and procedures,
and with the streamlining and efficiency that code quality tools can contribute to the
development process, your development team may find themselves able to utilize more
modern development methodologies. For example, teams using a monolithic, top-down
development approach such as Waterfall may now find themselves able to work in smaller,
shorter project cycles using a newer development methodology such as Extreme
Programming, Agile, Scrum, and so on. Many of these methodologies are specifically
intended to work with high-efficiency teams on smaller, incremental development projects,
and they help teams to release smaller revisions of their applications more frequently. That
approach helps increase the application’s ability to respond to changing business needs.
However, the approach is difficult to execute successfully with a team that isn’t used to
producing high-quality code with the help of code quality tools.

. 113
Realtime ClFochs

publishers saetling the Evakitin

Chapter 7
|

The bottom line: Better code quality not only brings direct benefits from having better
applications but also offers development teams new opportunities for flexibility and
change.

Conclusion

Well, there you have it: The Definitive Guide to Building Code Quality. In this book, I've
touched on numerous aspects of quality and examined ways to improve the quality of the
code in your applications. Together, we’ve covered code analysis and quality metrics,
looked at various aspects of testing and QA, and examined ways to track performance
issues and implement performance improvements in code.

Code quality is a journey. Cliché as that might sound, it’s true. The idea is that there is
always some room for improvement, and you tackle a small bit of quality at a time,
gradually improving code quality and educating developers, testers, and managers. With
the right processes and procedures—and with the right tools to help enforce them and
speed things along—you’ll begin to realize significant business benefits.

Good luck!

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 114 MICRO
Realtime CIFGEDS
yublishers e, T

http://nexus.realtimepublishers.com/

	Chapter 7: Benefits of Automated Debug, Analysis, and Test
	Selecting the Right Tools
	Heightened Developer Productivity
	Improved Code Quality and Reliability
	Superior Manageability
	Better Performance and Real-World Behavior
	Improved Maintainability
	Access to Modern Methodologies
	Conclusion
	Download Additional eBooks from Realtime Nexus!

