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Copyright Statement
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by international copyright and trademark laws.
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Chapter 7

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology eBooks and guides from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 7: Benefits of Automated Debug,
Analysis, and Test

Much of this book has been about improving your processes and procedures, adopting
tools for automation, and improving practices for both development and testing. But what
are the real-world advantages of these improvements? In other words, after investing time
and money in adopting changes and tools, what kind of return can you expect on that
investment? That's what this chapter is all about: Wrapping up everything that has come
before with a focus on the actual business benefits.

However, before I dive into that, let me remind you that this book has never been simply
about tools. It is extremely unlikely that simply purchasing and using tools will gain you the
many benefits I'll be writing about. These benefits come primarily from changes in your
practices and procedures; tools are—as I've written previously—simply a way to
accomplish those practices and procedures more quickly. Tools can also make it a bit easier
to stick with certain practices and procedures by offering to help enforce them for you, but
it’s ultimately your dedication to improved practices and procedures that will set you on
the path to achieve the various benefits I'll be describing.

Tools are obviously beneficial in that they provide automation and enforcement, so you’ll
definitely want to add good development and code quality tools to your environment.
Which tools will you select? I have a couple of strong opinions that I'll share.

Selecting the Right Tools

First and foremost, 'm a huge believer in the “right tool for the right job.” That is, figure out
exactly what features and capabilities you’ll need—this chapter will actually help with
that—and then adopt tools that provide those. As this book is primarily focused on .NET
development, I expect that you're working in Microsoft Visual Studio. Most third-party tool
vendors supplement Visual Studio and integrate with it in various ways. Integration in this
manner that is essential because it keeps developers within the development environment
that they’re accustomed to, making it easier for them to use these new tools and features.

Microsoft itself offers supplements for Visual Studio in the form of the high-end “Team
System” version of the product. I have mixed feelings about this version; I'm glad to see
Microsoft incorporating better code quality and analysis tools into its product line, but at
this stage, those tools are fairly primitive compared with offerings from more mature tools
from third-party vendors. Team System costs a premium over the more commonly-found
editions of Visual Studio, so if you elect to go with Team System, exercise due diligence and
carefully compare its features, capabilities, and extra price with the features, capabilities,
and pricing of third-party products. Select the candidate that best meets your needs and
budget.
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Heightened Developer Productivity

There’s little question that automation can improve developer productivity. In fact, I really
wanted to highlight this benefit first because some of the practices I've recommended—
naming conventions, coding practices, and so forth—can definitely be perceived as
lowering developer productivity. To be frank, [ think you can expect a lot of those practices
to initially lower developer productivity as developers tend to slow down a bit when
they’re diligently observing new practices and standards for the first time. Automation—
through the use of various tools—can help offset that initial productivity hit.

One improvement is in unit testing. ['ve seen developers waste a lot of cycles testing the
same code over and over and over, while neglecting other sections of the code. A good unit
testing tool (see Figure 7.1) can help developers focus by indicating which code has been
tested and which hasn’t. This denotation helps ensure that developers are spending the
right amount of time on unit testing rather than “chasing their tails.”
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Figure 7.1: Identifying code that has not yet been tested.
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Another improvement can be gained from tools that help developers during debugging. For
example, tracking down a difficult-to-reproduce bug can be an enormous waste of time,
especially when the difficulty in reproduction comes from differences between two
systems. Tools can help compare two systems at a very detailed level, as Figure 7.2 shows,
helping developers arrive at the root cause of the problem much more quickly.
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Figure 7.2: Finding differences between systems.

When it comes to identifying performance problems in code, you're typically looking at
more wasted time. In fact, without the right tools, it can be impossible to determine exactly
where in an application performance is being lost. With the right tools (see Figure 7.3),
performance problems can often be traced to a few lines—or even a single line—of code,
letting the developer quickly shift focus to the code that’s actually causing the problem.
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Figure 7.3: Identifying poorly-performing lines of code.

Finally, performance tools can help developers profile their code’s performance, giving
them insight into resource consumption. Figure 7.4 shows an example, with a breakdown
of the time spent in given methods, the amount of memory consumed, and other
performance data. This information helps developers quickly gauge overall performance
and promptly focus on problem areas—without creating endless cycles of less-direct tests
and fix attempts.

Realtime FOELS

publishers Leading the Evolution

101 MI i



Chapter 7
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Figure 7.4: Performance profiling.

Frankly, using these tools doesn’t require much additional effort for most developers; these
tools simply speed up tasks that developers are (or should be) already accustomed to
doing. That’s a benefit because it means more immediate productivity gains.

Improved Code Quality and Reliability

Tools won’t necessarily help improve code quality and reliability directly, but by using
tools to enforce good coding practices, you can encourage and assist developers so that
they're producing better-quality code all the time. For example, one feature of Visual Studio
Team System is the Team Foundation Server’s ability to enforce code quality guidelines
during source code check-in. Figure 7.5 shows how these rules are defined. The product
gives you the ability to define different rule sets for different projects.
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Figure 7.5: Defining check-in rules.

Using their copy of a Visual Studio Team System product, developers can apply the same
rule sets to their code for local analysis. If a developer attempts to check-in code that hasn’t
passed the rule set defined at the source control level, developers are presented with a
message like the one in Figure 7.6. This feature helps the developer realize the need to use
the top-level set of analysis rules, and helps to enforce a specific level of code quality across
all the developers in the project.

&
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Pending Changes - Policy Warnings El

j =i Check In
A\ TF10139: The following check-in policies have not been satisfied |

Description a

D The code analysis settings for one or more projects are not compatible with code analysis policy. Double-click this message for more information.

r 3
Code Analysis Policy Failure Details |@753|

The projects in the following list have one of the following issues: either the code analysis settings are
not compatible with the code analysis policy for this team project or the projects have not been
successfully built with those settings. To correct this, from the Analyze menu, select "Code Analysis
Settings for Solution”, choose how you want to update the settings, and then rebuild with those
settings.

BusinessLayer
DataAccessLayer
MainApplication

Figure 7.6: Enforcing code quality at check-in.

Third-party tools can also provide local code analysis using rule sets, all of which are
designed to improve overall code quality. Figure 7.7, for example, shows Micro Focus
DevPartner’s code analysis rules in action. Here, the rules defined are a bit more complex
than mere coding style and are actually looking for potential security and other functional
flaws. To keep developers productive, the analysis should not only highlight problems but
also offer an explanation and guidance—and examples—for fixing the problem and
improving the code.
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Figure 7.7: Code analysis in action.

Essentially, tools alone can’t improve code quality. What they can do, however, is
encourage developers to improve code quality by observing standards, conventions, and
best practices. Code analysis tools in particular can help developers learn about these
standards and best practices by providing developers with clear guidance when a standard
or practice has not been followed and by detecting that problem early on in the coding
process—ideally, before the code is even checked-in to a source control repository.

Superior Manageability

Management often shares too little of the code quality burden, often because management
has so little insight into any kind of actionable quality data. In other words, it’s tough to
make smart decisions when you have no data to work with.

Provided your development managers are willing to make the tough calls, the right tools
can give them the data they need to do so. For example, one simple set of metrics can help
managers understand the general complexity and overall risk associated with a given
portion of code. Figure 7.8 illustrates a simple, dashboard-style view that focuses on
maintainability: Portions of the code with a low maintainability index will usually require
more ongoing maintenance, create more risk, and definitely require more extensive testing.
These numbers help managers decide where to focus resources: either more testing and
more maintenance or more development time simplifying these components to raise their
index.
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Code Metrics Results @
= | Filter: Mone + Min: | - | Max: | v| 3| | = F | |
Hierarchy : Maintainability Index ~ Cyclomatic Complexity Depth of Inheritance  Class Coupling  Lines of Code
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----- ‘9 Save() : void i 13 129 2 130
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[]---E MainApplication (Release) = a4 10 7 5 16

Figure 7.8: Code maintainability metrics.

Tools can also help make it easier to develop, maintain, and track application
requirements—something that's absolutely critical in making project decisions. Figure 7.9
shows one way that requirements can be tracked. This tool also tracks how many tests
have been performed, how much of the code the test covered, and how many tests passed
and failed—crucial information for someone in charge of the project. This view essentially
tells a manager how much testing is yet to be done, and how much of the code is currently
in compliance with the requirements.
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Figure 7.9: Tracking requirements.

. 106 i
Realtime FOCUS

P iblishers Leading the Evolution



Chapter 7
|

Managers can also use higher-level views to get a feel for the application’s overall quality.
For example, Figure 7.10 shows a very simplified view with a very straightforward “quality
meter.” This perspective is perfect for executives concerned about the status of the project.
In this example, the project’s quality is shown, compared with the planned quality level,
and a simple indicator of the “release status” makes it easy to see whether the project is
ready for release.
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Figure 7.10: Code quality dashboard.

Dashboards like this can offer a deeper level of management, too. For example, if code
quality is poor and a limited amount of time and other resources is available to improve it,
where should those resources be focused? By allowing managers to play “what if”
scenarios, a tool can show where development and testing resources can be best deployed
to achieve the highest quality improvement. Figure 7.11 shows an example: Here, two
scenarios are shown, each with different levels of testing devoted to different levels of code.
The tool shows the change in overall quality that will be achieved by each action. This data
makes it easier for a manager to achieve the desired balance between code quality and
available resources.
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Figure 7.11: “What if” scenarios with code quality.

Much of code quality comes from smart, informed management decisions. With the right
tools to provide the right information, management decisions can focus on the desired level
of code quality and drive decisions throughout the project that align to help achieve that
level of quality.

Better Performance and Real-World Behavior

Of course, one of the things you're really looking for when pursuing better code quality is a
better experience for your end users, both in terms of performance and behavior. By
behavior, I'm referring to both crashes (you want fewer of them, of course) as well as an
application that works the way users need it to.

Again, practices and procedures are the way to start improving performance and behavior,
but tools can help automate and enforce your goals. Figure 7.12, for example, shows how
tools can help profile an application during development, assigning performance values to
individual methods and displaying a sort of call tree to help developers visualize the
execution paths of their code and spot code that is contributing to poor performance. In
this example, one method is contributing more than 70% of the application’s run time,
suggesting that this method could use some re-thinking. This type of visualization helps
developers improve performance during development and unit testing, when making
changes is more straightforward and less disruptive to the project in general.
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Figure 7.12: Tracking down performance problems in code.

Another advantage of using automation tools is that they can help do the things you know
you should be doing but probably can’t afford to do manually. Workflow-based testing, for
example, is a form of functional testing (generally done by a QA team, not developers) that
duplicates the way a user interacts with the application. In order to be useful, this type of
testing needs to follow fairly precise “scripts” so that the desired portions of the application
are tested consistently. Undertaking this task manually is tedious, time-consuming, and
frankly, inefficient: People aren’t robots and don’t typically excel at sticking to a strict script
again and again and again. Computers, however, really are robots and are great at running
through a script over and over. Tools like the one shown in Figure 7.13 help test developers
create those testing scripts by allowing them to walk through an application (in this
example, a Web application), designate input, indicate desired output, and so forth. The
testing tool then executes the script against the real application, over and over—as many
times as needed.
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Figure 7.13: Developing workflow-based tests.

These same scripts can often be used to enable other forms of testing, such as load testing
and stress testing, which both help to ensure the desired level of performance from the
application under real-world, production scenarios involving multiple end users working
simultaneously.

Improved Maintainability

Better quality code means code that can be maintained more easily over time. Typically,
one component of “better maintainability” is “less complex.” Here again, tools—and the
right procedures for using them—can help. Code analysis tools that can produce
complexity reports—Ilike the one illustrated in Figure 7.14—can help developers and
project managers reduce code complexity as the project is underway. High-level reports
like the one shown, as well as the drill-down reports that typically come with them, help
pinpoint areas of high complexity and offer an opportunity to re-engineer the code to
improve its chances for better long-term maintenance.
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Complexity and Completeness Report
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Total number of padkages. 4

Tatal nurnbar af Fequirsrnants! 13
Total nuriber of seanarios, I35
Tatal number of steps, 121
Tatal nurnber of actors, 3
Tatal number of Mon-Functional Bequirements (Froject Lewel): 5
Tatal numbar af Nan-Functional Baguiremsnts (Requiremsant Lavell: L~}
Awerage number of requirsments per pediege: 3 {13/4]
axaraga numbar of stEps pEr Soanario: o e i
Maximum reguirernents ina single packaga: £
Minim um requiremeants in a single packags: ik

1fillrm
Mazirmum nested depth: i

Sheps per ackar:

Administrator It}
Muraber af had nks: o
E*I’\I-\.lr“l:mr of empby glozsary defintions:

i
Mumber of smpby actor defintions: o
lﬁ]Number of arnpty pacoapes: o

s el

Tatal number af regquirerments,
Tatal number of sesnaros,
Tatal nurnber of steps,
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Figure 7.14: Code complexity report.

Remember, complex code isn’t inherently bad; it can be, however, more difficult and risky
to maintain. You can’t necessarily eliminate all highly-complex portions of code in every
situation, but when you can reduce complexity, doing so will help save time, money, and
effort in the long run. Reports like this simply offer management information so that you
can make better decisions during your project.

Another aspect of better maintainability is better testing. Think of it this way: If you release
version 1.0 of an application but haven’t really, completely tested the code, you're that
much closer to needing v1.1—because untested code is very likely to have defects.
However, code that has been fully tested before release is likely to have fewer defects, need
fewer immediate fixes (including the ones that keep developers up late at night), and
instead allow v1.1 to focus on revised features and capabilities that help meet changing
business needs. Fully-tested code, in other words, is code that requires less maintenance.
Actually testing code completely, however, can be difficult simply because most
applications offer thousands of potential code paths that each needs to be tested. Tools, of
course, can help.

In addition to automating the testing process—thus allowing you to accomplish more
testing in less time—testing suites can work with code analysis tools to help identify every
possible code path and track each one that has been tested. Similar to the test coverage
tools used by developers during unit testing (which [ wrote about earlier in this chapter),
reports like the one shown in Figure 7.15 help QA teams see how much of the code they’'ve
covered in their full, functional, and integration testing.
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Test Coverage - Summary of tested code, test gaps and code volatility

Project C:\Program Files\Compuware\BNTNET \BNTNETWinApp\bin\BNTNETWinApp.exe
Session date 8/19/2008 12:33:54 PM

Total Line Coverage 4913 of 9044 lines. 54%i

Total Method Coverage 230 of 481 methods. 48%i

Volatility 0%

Stability 100%

W Details

Test Coverage Results

Session File: Zi\ BNTNETWinApp\ bin\ ENTNETWinApp.dpmrg

System:
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System:

Project All Methods All Lines
LoginClass.dll E4%ﬁ 5?%i
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comutilh . pEm— - PE—
ehvecdtr.cpp 0% _ 0% _
managdeh.cpp D%_ D%_
internal.h 40%— 36%—
mstartup.cpp T45% ﬁ 5% i
puremsilcode.cpp Go%i 44%—
msilexit.cpp 86% ﬁ 82% ﬁ
loginclass.cpp wD%ﬁ Bs%ﬁ

Figure 7.15: Testing coverage report.

Every team might aim for 100%, and if you have the resources to test to 100%, you’ll have
a better application for it. But even if 100% isn’t reachable, this type of report helps QA
teams ensure that they’ve applied the needed testing to the riskiest portions of the code,
intelligently applying the available resources. The right tools can even help identify the
riskiest portions of code, either by complexity or—as shown in Figure 7.16—by identifying
the portions of code that are utilized the most in the application (or that consume more of
the application’s run time).
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Figure 7.16: Identifying the most-used code in the application.

Access to Modern Methodologies

With the improved code quality that comes from using the right practices and procedures,
and with the streamlining and efficiency that code quality tools can contribute to the
development process, your development team may find themselves able to utilize more
modern development methodologies. For example, teams using a monolithic, top-down
development approach such as Waterfall may now find themselves able to work in smaller,
shorter project cycles using a newer development methodology such as Extreme
Programming, Agile, Scrum, and so on. Many of these methodologies are specifically
intended to work with high-efficiency teams on smaller, incremental development projects,
and they help teams to release smaller revisions of their applications more frequently. That
approach helps increase the application’s ability to respond to changing business needs.
However, the approach is difficult to execute successfully with a team that isn’t used to
producing high-quality code with the help of code quality tools.
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The bottom line: Better code quality not only brings direct benefits from having better
applications but also offers development teams new opportunities for flexibility and
change.

Conclusion

Well, there you have it: The Definitive Guide to Building Code Quality. In this book, I've
touched on numerous aspects of quality and examined ways to improve the quality of the
code in your applications. Together, we’ve covered code analysis and quality metrics,
looked at various aspects of testing and QA, and examined ways to track performance
issues and implement performance improvements in code.

Code quality is a journey. Cliché as that might sound, it’s true. The idea is that there is
always some room for improvement, and you tackle a small bit of quality at a time,
gradually improving code quality and educating developers, testers, and managers. With
the right processes and procedures—and with the right tools to help enforce them and
speed things along—you’ll begin to realize significant business benefits.

Good luck!

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.
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