Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 6
|

Chapter 6: Testing Code for Errors, Inefficiencies, and Performance ... 79
Overview of TeSting TeCHNIQUES......o e resses s s sessees s sesss s sssessssssessssanes 79
CONSLIUCLION Of TESE CASES.ruueureurereesrerseesseesresseessessesssesssesssessesssessssssessssssessssssassssssasssssssssssssssssssssssssanes 80
002 T 0T 0 =TS 01 ¥ 85
Test Management: Reporting, Monitoring, Tracking, and Resolution.......cccuneenreneenns 86
TESTINE TOOLS cereeeeeeureeeesserreseesses s seesees e s s s s s e s R AR 89
Code COVETrage ANALYSISciuiereesreesersesssesssesssssssesssess s ssssssssssss s ss s sssessssssasssans 89
SYSEEIM COMPATISON c.uruereuerceeeesreessessessessssesse s ssessesss s sesse s s s s s s ss s sesse s ssssnsseass 90
Resource Utilization and CONSUMPLION ...uernenneeneesresssssssssssesssnes 91

D0 0 o) ol D 1= ool 1 (o) o PP 92
Memory and Resource Leak Detection.........eeersssssssssssssssssssssssssssssssssessssssssssssesans 92
Native/.NET Interoperability ANalySiS.....isssssssssssssssssssssssssssssssssnes 93
Code Performance ANALYSiS. ... eereeseesseeesssessessssssssssessesssessssssessssssessssssssssessssssssssessssssssssses 94
Testing Phases and EffOrts ... sssssssssssssssssssssssssessssssssssans 95
L8 0 o =] PP 95

o U=y g = 1 (o) T =] TP 95
N1 =) 40 T T PP 96
AlPha aNd Beta TeSES .. essssessessssssssssssssessssssssesssessssssssssssesssess s sssssssssssssssssssssssssssssses 96
MaINtENANCE /FIX TESTS...vrrrrrrrsesnenesessessesssssssssssssssssssss e ssssssssssss s ssssssssssssssssssssssssssssssssssssssnes 96
LiOQA TESTINE .. ruueueeureeeesreeseessesseesseessesseessessessssssesssessessse s R s R s bbb nnaes 97
000D 000 0 Vgl U o T8\ PP 97

. i MICRO
Realtime CIFGEDS
yublishers e, T

Chapter 6

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 6

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology eBooks and guides from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 6: Testing Code for Errors,
Inefficiencies, and Performance

Testing, testing, testing. It certainly isn’t the only way to improve the quality of your code,
but testing is definitely one of the most important tools we have as developers to produce
higher-quality code. Although testing can’t help improve things like not following best
practices and coding standards, it can help catch two of the main problems that end users
perceive as poor application quality: bugs and performance. In this chapter, I'll take a look
at tools and techniques that can be used to spot more code errors, detect inefficient code,
and home in on performance problems.

Overview of Testing Techniques

When I began testing the first commercial-quality code I ever wrote (a retail point-of-sale
system written for Windows 95), testing was simply running the application through as
many scenarios as I could think of, checking to see whether anything broke, and checking
to make sure I got the correct results for whatever input I provided. That’s really still the
essence of testing, but I've since learned to be a lot more formal and systematic about it.

One problem with the way many developers test—just running the application as if they
were an end user—is that we developers aren’t usually our application’s end users. We
tend to use an application the way it was meant to be used; we don’t actively try to break it,
we don’t approach it from the same viewpoint as our end users, and we’ll almost never use
it in exactly the same way as the application’s end users.

For example, in writing my retail application, I spent hours testing the software’s ability to
dial-in to our corporate headquarters via modem (this was 1995—none of our retail
locations had a connection better than a plain old telephone line) and upload its daily
transactions. With a lot of work, I had the process working smoothly every time. However, |
never anticipated that one of our end users might unplug the modem—and the first time
someone did, the application crashed. I came to understand that unplugging the computer’s
modem was actually pretty common in the field because the store used a single phone line
for that modem, for the credit card authorization terminal, and in some cases for a fax
machine and back-office phone line. Store personnel would often unplug one or more
devices to improve line quality or to troubleshoot a line problem, then forget to plug
something back in later. My viewpoint as a developer didn’t include that scenario, so [
didn’t test for it—and so our stores had a reason to perceive my code as poor quality
because they saw it crashing fairly frequently until I fixed the problem and rolled out an
update.

. 79 MICRO
H{:’dlumt‘ CIFochs

http://nexus.realtimepublishers.com/

Chapter 6
|

The moral of the story is that testing techniques are important, and though they may
frequently seem like adding extra work for no reason, there is a valid reason: to help bring
more of the end users’ viewpoint into the testing process. That unique viewpoint can help
spot performance problems, logic errors, and other problems in code that might otherwise
go unnoticed.

Construction of Test Cases

One of the chief tools for incorporating the end users’ viewpoint is the construction of test
cases. Test cases help ensure that software can be consistently run through every practical
scenario—Ilike a critical device being unplugged—with specific inputs so that the
software’s behavior, performance, and output can be analyzed and verified.

Test case definition should, as with most of software development, start in the
requirements. The application’s requirements should describe the conditions under which
the software will be used, most of the major usage scenarios and workflows, and so forth.
Formal test cases will include a workflow, a list of inputs, and a description of the expected
behavior and outputs. Because these test cases are driven by the requirements, it's
important to track which test case goes with each requirement, something that’s often done
in a traceability matrix. Figure 6.1 shows an example matrix, with requirements as the
columns and test cases as the rows. You'll notice that a single test case is capable of testing
multiple requirements, which the matrix helps to document in an easy-to-read format.

REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQ1|REQH
UC |UC |UC |UC |UC |UC |UC | UC | UC | UC | UC |TECH|TECH|TECH
11 112 |13 | 21 | 22 |23.1|23.2|233| 24 | 3.1 | 3.2 | 1.1 | 1.2 | 1.3

Requirement | Regs
1dentifiers Tastad

Test Cases| 321 3 2 3 i 1 1 i 1 1 2 3 i 1 1

Tested Implictty] 77
1114 1 X
1.1.2] 2 x X
113 2 X X
1.1.4] 1 X
1.1.5] 2 kS S
1.1.6] 1 X
117 1 X
1.21] 2 X X
1.2.2] 2 X X
1.23] 2 ® %
1.3.1] 1 X
1.3.2] 1 X
133 1 X
1.3.4] 1 X
1.3.5] 1 X

etc...
5.6.2] 1 X

Figure 6.1: Example requirements traceability matrix.

. 80 B
Realtime ClFochs

publishers

Chapter 6

However, test cases shouldn’t stop with the requirements. Additional test cases can be
added to the lineup by any developer who writes code that needs to be tested in a specific
fashion. In my example, [should have added a specific test case for situations in which the
modem is unplugged simply because [was writing code that depended upon some factor
(the modem) outside my control. I obviously wouldn’t expect the “unplugged” test case to
result in successful operation of the software, but [would expect the test case to end
gracefully, with the software perhaps prompting the operator to attach the modem.

Test cases are often (and should be) documented. Each test case is typically accompanied
by standardized information such as:

A test case ID, which helps everyone on the project team refer to specific test cases
without ambiguity

A description of what is being tested
Information on the order in which the test case should be executed

Any requirements that the test case has, such as prerequisite software, hardware, or
data

Information on the inputs that the case uses as well as the expected outputs

Information about whether the test case has been included in an automated testing
cycle or if it needs to be performed manually

Instructions for completing the test case, including step-by-step directions

As Figure 6.2 shows, test cases may start out as simple descriptions that eventually evolve
into a more fully-documented format. This simple description may derive from
requirements or may be contributed by developers who want to ensure that specific
conditions or dependencies are thoroughly tested.

. 81 MICRO
H{:’dlumt‘ CIFochs

Chapter 6
|

Customer Order File
* Ensure that 'orders.txt' file permissions are as restrictive as possible. If these permissions are loosely defined then this as a severity 1 security issue.
* Ensure that sensitive data within the 'orders.txt' file is encrypted using a known strong algorithm. This is a severity 1 security issue.

Customer Data Stored in a SQL Database
* Ensure that sensitive data within the SQL Database is encrypted using a known strong algarithm. This is a severity 1 security issue.

Registration Form

* For each user input perform common security related input validation tests. See The Web Application Security Consortium's Threat Classification for a
list of common input vulnerability types. For each input perform each vulnerability type. The severity level of a vulnerability will be determined by the
vulnerability type, and probability.

* (If sSqQL is Used) Perfarm both standard sSqQL Injection, and Blind sSQL Injection tests as outlined by
http://www.spidynamics.com/whitepapers/Blind SOLInjection.pdf and http://www.securiteam.com/securityreviews/SDPON1P76E.html. If SQL
Injection is present file this as a severity 1 issue.

Login

* For each user input perform common security related input validation tests. See The Web Application Security Consortium's Threat Classification for a
list of common input vulnerability types. For each input perform each wulnerability type. The severity level of a vulnerability will be determined by the
vulnerability type, and probability.

* (If SQL is Used) Perform both standard SQL Injection, and Blind sQL Injection tests as outlined by
http://www.spidynamics.com/whitepapers/Blind SOQLInjection.pdf and http://www.securiteam.com/securityreviews/SDPON1P76E.html. If SQL
Injection is present file this as a severity 1 issue.

Buying Items

* Ensure that the user is unable to modify the price for a given item. Ensure that the price is not exposed in a web form, cookie, query string, or POST
data. If the price is exposed through one of these vectors ensure that if changed, the application detects the modification on the server side and refuses
to sell the itemn for anything other than the stated price.

* For each user input perform common security related input validation tests. See The Web Application Security Consortium's Threat Classification for a
list of commaon input vulnerability types. For each input perform each vulnerability type.

Search Engine

* For each user input perform common security related input validation tests. See The Web Application Security Consortium's Threat Classification for a
list of comman input vulnerability types. For each input perform each vulnerability type.

* (If user text is echo'd back) Test for Cross site scripting vulnerabilities. If discovered file a severity 2 issue.

Figure 6.2: Example test case descriptions.

Project teams with a higher maturity level will often rely on tools to centrally manage test
cases. For example, Figure 6.3 shows an example of Micro Focus QADirector, which
provides a dashboard view that helps project members see which tests have been run and
get a high-level feel for the application’s overall quality—based on which tests have passed.
Such tools can not only help keep track of which tests exist, which have passed, and so
forth, but also provide management with useful tools for tracking the application’s
readiness for use and the time left to complete a higher-quality application.

. 82 i
Realtime CIFochs

Chapter 6
|

Project « || % Dashboard
: = = -
Project Information Folder, &l [Test Cere] @
[Statistice Cycle: &l
—————— Rel I W AequirementshT est coverage;
Re F!-Ol't i elease staluz ' A i
[I Requirement Coverage s |
@ 5§ Test Details Qualty index:
(5 Swint Detals
- E“: Resulls Tests executzd (05 un):
@ 1§ Prject Summary Achusl (AQ11=0.00 = |
@ I Test Density & Efficiency o -
= L:‘s Defect Management Plarnad (POI}=0.00 1rpnssrda:=1]%
@ (i Public
@ (g Private Test distribution
Pricuity Mo. Test. Test Plan E. Test Pla. |Test Cases E.. Pa. Fail Oth. Actua T.
tiboe fg i} =l 4 0 0 o o 0 oy
| Average 0 a0 0 a o o 0 o
Below Avg o T 0 i} 1] o o oz
| Low 0 B0 0 a o 0o o0 (154
lgnere 0 50% 0 1 o 0o 1 0%
| Total 1] - a 1 a o -
L Gl i o EJ = 8 2N Defect status -

Figure 6.3: QADirector Dashboard.

Tools may make it easier to construct traceability matrices. Figure 6.4 shows QADirector’s
ability to track project requirements and connect them to specific tests, and to track which
of those tests have been successfully completed. At a glance, you can see which
requirements are not fully covered by existing test cases—indicating that more tests need
to be created—and you can see which requirements are not yet met by the application.

Realtime

publishers

.ﬂi[_'h iew: Coverage 'Q_*lx&d-" r % @« @ MGQE.@@N&M'G_%@@
Requirements « || 9 Default Requirement Folder
Favorite Folders & ES Dizplay ID Tests [|Covelage (- Passed Faled |Mot Execul
) NoFavorite Folders | |F115 Deiauk Requirement Folder 117 (10 79% 73 20
|| B Suginet TestMaragement SURGIFODD 117 (10. 9% fz]]
= fl Surgiret Functional Testi SURGIFIOND 49(42%) a6 0 7
. & 4 sURGFOs B |BILENGOIIINZ (67 MNT0% M & S I
lé}%';‘:ﬁ:"@’"ﬂi: F — |l I BILLNGOI.01 Endo.. BILLNGO1.01 1(100%) 1003] 1
) CAF HW',, Felder — |l [BILLNGOI.O2 0B C.. BILLNGOLOZ 1(100%) 100% i 0
3 Integretion Cpce 2] I BILLNGO1.03 LitBr. BILLNGO1.03 1(100%) 100% [} 1
) Lawson Interfaces | W I BILLNGOL.D4 Torsi. BILLNGOLO4 1(100%) 100% 0 1
=) Master Backup | [BILLNGOI.0S Teta.. BILLNGOIL06 1(100%) 100% 1 i
) Master Surgine cycle 1 [] I BILLNGO1.06 Ured.. BILLNGOLOS 1(100%) 100% 1 0
=) SC2 Billng Cycis 2 [| | BILLNGDI07 ¥itua.. BILLNGOLO7 1(100%) 100% 1 il
S :Eg Eﬁlﬁ:ﬁ::ﬁm < & % SURGIFO0S Diders ORDERS 101%) 0% il i
el e @ % SURGIFON3 CASE TR CASETRKAT 3(1%) 100% 1 2
Reports # # SURGIFO0T SCHEDU.. SCHEDOM 18[15%) 100% 18 i
= ﬁ SURGIFO02 PREFER.. PREF<001 4[3%) 100% 3 1
% SURGIFOD4 CLINICA.. CLINDOC! 16114%) uz 14 1
— # i SURGIFD09 CARE MDB .. CAREMOBO! 1[1%) 0% i} 0
— & £ SURGIFO0? INTERFAC.. INTRFAOT 13(11%) 100% 13 0
S MsmiiPrmincts & % SURGIF002 INTEGRATI.. INTEGRATIO. 43(37%) 7% 20 13
ai Project = % SURGIFOND SYSTEM 1s.. SYSTEMOOO 11 (9%) 0% i i
| Requirements
i D= @ | i
Figure 6.4: Tracing requirements to tests.
83 i
MICRO

FOCUS

Leading the Evolution

Chapter 6

Test case management tools come in all shapes and sizes. Figure 6.5 shows a simpler open-
source tool, Radi, which is designed to centralize test case definition and provide a central
place for test results to be input and tracked. This Web-based interface offers a minimum
level of capabilities for tracking test cases and test results but provides less management
information and less comprehensive test case tracking than more full-featured, mature

solutions.

EDms | . ETES
Pl Edt WVew Faaortes Tock belp -
wback = = - Q) [H] O} Doearch LiFokes [GlFsodes @Meda o | 5] She - S (H 4 By B BS- 2

| Audress (] bitn)f fogi-binirack bestd second_new. =] e ||

[Logh'TagCha] H:h [Drocumentation]
[Eiadi Inbroy update config

" My Testable Object * Test results for the image w2705-1
Test Set .'Tzst D:s:ripbm statas Comments Save
sacngle el B g
pnat g |FATIPIE test case [fai =F aue
Fadi |Introduchon page contain all the feataes nfo update = = |
Inire: :urcﬁg'im@ t:smgh'i:w .’:su]tsﬂo_gir. |MTE5L&U J | M
Fadi Intro page should be accessed from all the states ke

Mok T =1 5
Tritres update confighmage testnglogin [Not Tested =] f ﬂ
Fadi [From Intro page afl the states Bloe update configimage & =
Iniro testinglogn should be able to access |M{TESL&U J | M
f:;’ Eadi testdir should show login and logont page [Mot Tested =] Save
Radi [From Logn page all the states bee updats confighmage ; =1ln
Laog testingflogn should be able to access |M Ll J | M
Eadi Login and logout page should be accessed from all states T = g
Log of the application [Not Tested 1 ﬂ
Fadi [legma cperation can be dons accessed Brom all states of | =1ir
Log the application |h-" e J | M
Fadi login operation shouwd succeed an corvect logmipassard T = g
Log walues [Not Tested =] ﬂ
Fadi [l operation should fal on meorreet bgnipasswd - = 1|
b og i [Mdct Tested =] || Save
Fadi wy 4 & A4k i 5 rrre—— e | ﬂ

(% Lol rin

Figure 6.5: Tracking test results in Radi.

Test cases form the basis of an overall testing plan: They define what must be tested, and
may provide details on how those tests are to be conducted. Diving into the how brings us
to the different types of tests your project may utilize.

Realtime

publishers

84 MICRO
I:IFCII:LIE

1

Leading the Evol

Chapter 6
-

Types of Testing

On the face of it, testing can seem complicated and even endless. The more complex an
application, the more complex the associated tests become. In the end, though, most tests
utilize a fairly limited set of core tests to determine whether an application passes that
particular test. Although a complete list of these “test primitives” is beyond the scope of
this guide, reviewing the following examples will give you an idea of what's commonly
used:

¢ Logic and calculation testing: By providing certain known inputs to the application,
you should be able to generate specific, known outputs. Checking the actual output
against your test case expectation allows you to quickly determine whether all the
underlying code is working properly. In my point-of-sale application, for example,
the purchase of two specific products should always result in the same total amount
for the transaction, inclusive of sales taxes; I could calculate that expected total on
my own and compare it with what the application produced. Early on, my code was
improperly rounding off the tax amount, producing a transaction total that was a
penny off. Because the transaction-processing code was extensive and complicated,
I needed to continually repeat tests such as this to ensure that recent changes hadn’t
introduced another calculation bug.

e Range checking: Given certain inputs, an application should produce specific output.
Although it's important to test for the output created by specific inputs, it’s also
important to test across the entire range of allowed inputs—and to test outside that
range. For example, if an application will accept monetary values, it's important to
provide test inputs that check the entire range of expected inputs and beyond. Out-
of-range inputs should be handled gracefully by the application, and should not
result in a crash or undesired behavior. In my point-of-sale application, things
worked great when product prices were less than $999.99; when the company sold
its first high-end computer, however, the six-digit price threw off formatting on the
receipt and resulted in “$1899.99” being printed as “$899.99,” which is obviously a
problem. When writing the receipt-formatting code, I should have documented my
assumptions that the price field was a maximum of 5 digits, and created a test case
that specifically tested for larger—out of range—prices.

Note

Most tests should come in pairs: One designed to check the proper operation
of the software by feeding it valid inputs, and another designed to check the
software’s response to improper use—such as feeding it out-of-range inputs.
Both types of tests, commonly called positive and negative, are equally
important because you want to both verify the software’s proper operation
as well as explicitly try to break it.

85 MICRO
Realtime |:||=|:||:us

Chapter 6
-

¢ Random testing: Simply providing every possible value for a given input. This one
would have helped improve the quality of my point-of-sale application. Our stock
numbers when I started were four digits, but we allowed for five so that we’d have
room to grow. The only in-use stock number greater than 9999 was 11111, which
was a special number used when selling store gift certificates. However, by allowing
five digits to be keyed, I introduced a problem: The underlying code was using a
small integer type to store the number, and it could only accept values up to 32,768.
That was far in excess of what we needed for normal operations, but entering
32,800—as a random test would eventually have done—crashed the application.
We didn’t find this problem until we’d created special numbers 22222 and 33333
for other special-handling items—and the first time someone used 33333, the
system crashed.

Following this train of thought, you’ll realize that there are a large number of fairly
simplistic types of test that, when combined, can accommodate complex test cases and
scenarios to thoroughly test the software. In fact, it's because these testing primitives, as |
call them, are so individually simple that many such tests can be more easily automated for
faster and more consistent repetition.

Test Management: Reporting, Monitoring, Tracking, and Resolution

Simply documenting and defining your tests, of course, isn’t enough; you also need to retain
the results of each test, monitor the progress of your testing, and resolve problems that
have been uncovered by testing. These tasks drive most companies to adopt some kind of
centralized test management system because without such a system test management can
quickly become unwieldy.

Organizations differ in how they choose to approach test management. Let me describe the
approach [worked with early in my career—an approach that’s still pretty common, and
which I honestly regard as a sort of worst-case scenario:

e Test cases were documented in Word documents. Each document described a
specific test case, and yes, we actually printed them and worked from the
hardcopies.

e Problems encountered during testing were documented in our Help desk ticketing
system, under a category for whatever product was being tested. These tickets
would be assigned to the lead developer, who would dole them out to his colleagues
for resolution. Any anomalies from a single test case would be documented in a
single ticket.

e A test case would not be re-run until any tickets related to it were closed—meaning
a developer felt they had resolved the problems from previous test runs.

S PEI 86 MICRO
Realtime CiFoeis

Chapter 6
-

This approach is functional, in that it gets the job done, but it’s not practical. The sheer
amount of documentation lying all over the office was a testament to how much overhead
we had to deal with. It was also impossible to give our managers any clear idea of how far
along we were: We could point to the stack of “passed” test cases as progress, but you
couldn’t make any kind of meaningful measurements, unless you counted measuring the
height of the stack itself (“we’re 3-inches along, boss”). In The Definitive Guide to Quality
Application Delivery (Realtime Publishers), one sign of quality maturity is described as
management having “...useful metrics that give them insight into the project’s current level
of quality, at all times.” We certainly couldn’t provide that.

Modern test management tools bring everything together into one place—if you choose the
right tool. For example, here are some subtle considerations:

e Ifyour test management application can’t directly document your application
requirements and relate those to specific test cases, the tool isn’t doing you much
good. Application requirements will change over time; it’s not enough to simply load
them into the test management system once. You need to have a connection
between the test management system and whatever is being used to capture
business requirements. For example, Micro Focus does this with Optimal Trace for
business requirements, which feeds their QADirector product for test case
management; solutions from companies such as IBM and TestPine integrate in a
similar fashion.

e Areyou using automated testing? Many smart organizations are because
automation leads to greater productivity and consistency. However, if your
automated test system doesn’t feed test results to your test management system,
you're losing a lot of productivity by manually transcribing test results. Again,
integrated solutions that can talk to one another, feeding test results into the test
management system, are ideal.

¢ Your defect-tracking system should also integrate with your other tools. [deally,
defects from a test can be reported directly to that system so that the entire team
can communicate with less effort.

Note

“Integrated” does not necessarily mean “all from one vendor;” many vendors
offer integration points with popular solutions from other vendors.

Having all of this information available in a set of integrated solutions provides better
management tools. The dashboard in Figure 6.3, for example, is a direct result of test
results being fed into a central test management system that also integrates with the
project’s requirements-tracking system, giving managers a quick, high-level view of the
project’s quality progress.

87 MICRO
Realtime |:||=|:||:us

Chapter 6
|

More complex management information can also be made available. Figure 6.6, for
example, shows how this aggregated information can be used for risk-based management
decisions. Managers dealing with time and resource constraints can perform “what if”
analyses, allowing them to change the number of tests scheduled for various risk-based
categories. Riskier elements of the project might thus be assigned more testing, while less
testing is performed for less-risky elements. The software can then help predict the overall
impact, displaying test coverage information, projected project risk, and so forth. By
rearranging the test plan in this fashion, fewer resources may be able to contribute the
same level of quality to the project.

14 Default Requirement Folder
Sm:i'?:lﬁ'.‘l“;'f,;?fﬁ"’ — c:#mn wﬁ Wimm mezmmﬁ.mmf u.,...

: # B Cashbased (2) 54 7y [N
E i Debects Conter - - B o
| 3

Requirements o
Favorite Falders =]
00 he Freom Faizen

Tests fod Defects
2848 1518
FIT -

n|' LTE

Raguirement Felders

|- Dalen G

| Cuskorn A ity Uptiezer
I Dastbossd iy z
| Db Cery o

| Exeubion O
5 Fimars Felde
li imoont Exog)
1 atsilatizn

r

r

Folder

| 5 o9 oY

Wiew by tratus

@ Pasend

f o = m o

@ Mot Subrmi oed

Mk By Tiesa

sk Cabegony

YLl e e ety

Al By =r

Wutintion

ol ol T

Defwalt Beauintmens Falder Filngr

Sy

TS [e asecied B

Rtk By AeSUPImE

of Tests Lelected

=1 i

[—

Pl i et Cosaeage
B

Tont Cormnge:

7| Requierny
— —

Prrcer: Comparte
2 senrs "

Fans i
I
D“.'."!‘..‘?."

Fromied foa

== E

| Folder Bl Byl emaen? Falder
W By bt

¥ Paiied
@ Wot Dabrmited

Optinie ik fy Tine
FRisk Cote pory

=
- &l
=1

e =8

A Pk =t

Ana by Sratinticn Surmary

Tonle o Ten

08 (600 i et e

Filter [

¥ Fuiled

@ hot Marted

2kt Seuirement

& of Teats Selected

PR E

Sarerage

e

dol Tets

Brisrmart S
[

Te Comvge

Parcart C ol
%

Py i
I

[L
P
Propecied Misk

Firme fhry

S S S S S e S s s

T

Figure 6.6: Adjusting test workloads based on risk and resource availability.

Other analyses made possible by integrated test management systems can include:

A view of the overall application quality

Whether all requirements have been tested

What each tester is currently working on

What tests have not been executed, and what the risk may be

How long it takes to correct defects discovered during testing

How much testing remains to be done, and how long it will likely take

Realtime

publis

S
;
1ET5

88

Chapter 6

This information is invaluable to managers, and being able to provide this information
without a lot of manual overhead is one sign of growing quality maturity within an
organization.

Testing Tools

In addition to helping you better manage test cases, the right tools can make it easier to
actually execute tests, determine whether you're testing the right things, and make it easier
to resolve complex problems related to performance, errors, and even security. In the next
several sections, I'll look at key capabilities a good testing suite should provide.

Code Coverage Analysis

There’s a moment, just before a project team releases their application, where everyone
asks themselves, “Did we test everything?” With a good code-coverage analysis, however,
there’s no need to ask the question: You'll know. Figure 6.7 shows what a code coverage
analysis can look like.

DevPartner Studio - Microsoft Development Environment [design] - BugBench. dpcov®

Fle Edt Yew Projct Buld Debug Tools DevPartner Mindow Help
» Debug - - BE R
&= Errur detection - | Ry | .
32/ BugBench.dpcov* | 4 b % || Selution Explorer - DevPartne... 3 X
2 |[= Al (29.31% of 1,992 lnes)
e £ s 200 af 463 lines executed (39.7%)
: B il o e IR 2% Soltion BugBench (3 profects)
= aurte (26.3% of ines
d — %] =l [Z4 BugBench
Y ACE A1 (8.5 of 327 s 33 of 58 methods called (56.3%) @gReferences
advn [0.0% of 07 s) Method List Sourceltugbenchce] | Session Summery | = [0 Source Fies
atlcom.h £ 0.0% of 124 lines) 51 (B3 Header Fils
athost b { 0.0% of 100 lnes) (Ceizt_L Szt & T i et hise
iface.cpp { 87.5% of 16 lines) // Initialize COM. e
= 1 main.bug { 22.6% of 1,196 lnes) 1 £ BAITED Aolemniel) B Y = (2] DewPartner Studio
cpperr.cpp { 0.0% of 10 lines) {] Eugbench.dibcl
errerbase cpp { 0.0% of L1 lines) o MessageBox [NULL , "COM could not be initialized.” , "BugBench Initialize e
ugBench,dpcov
eakerr.cpp { 0.0% of 40 ines) o return -1 ; 2 xrncsg 2
afcll.h 0.0% of 7 lines) 4 B anny
bugutiity.cpp { 10.4% of 681 lines) 51 (3 Souree Flles
treectil.cpp { 12.3% of 65 lines) // Dynamically register the Interface Test Object that will be used by the e
ieader Files
ptrerr.cpp { 19.4% of &7 lines } // error generating COM code. 51 (B3 Resource Fles
wrteerr.cpp { 21.4% of 28 lines) 1 if [! RegisterInterfaceTestobject [)) : -
readerr.cpp (47.8% of 23 lines) {
haincep { 52.2% of 23 lines) 0 CBEring seeAppiane
comerr.cpp { 56.0% of 109 lines) o strippNate. LoadString (ID5_APPNANE) ; o
doingall.cop (63.6% of 11 lines) -
o TCHAR # szlisg = _T "Unable to register the IFACE.DLL Interface Test || [DevPartner Studio -
apierr.cpp { 66.9% of 121 lines) o c
=7 BugBench.exz (59.7% of 469 lines) "COM errors will not be generated.\n"
bbtrescontrol.cpp { 31.4% of S1 ine | 01 "Please re-install the BoundsChecker ssmples.”] : Q—'l&’G s e
bbcommandineinfo.cpp (46.4% of 2| O MessageBox (MULL , seMsg , stripplfeme , MB_APPLMODAL | MB_OK) : :éF:at'Sisg;:rwew
bugbenchelg.cpp (62,4% of 346 line | 0 % I {5 DevPartner User Interface Eleme
bughench.cop (79.5% of 44 lnes) e
[E] Methads Mok Covered // Create an instance of the main dialog & ég';m’:::gjﬂfgnd st
[E] Methods Less Than 20% Cavered CBugBenchbly dlg; o é e orerd T Fomain
[E] Cver 30 Lines, Less Than 10% Covered 1 m_pMainiind = &dlg:
& CodeReview
// Get the command line passed to the app = ({3 Coverage Analysis
1 CEECommandLineInfo cmdline: fggem"f Sltaf'te‘jl A
+ jow-Ta Infarmation For
1 ParseComeandl ine (crdline) ; o
! . +# &2 Collecting Coverage Data for|
// Dispatch commands specified on the command line 1 & DevPartner Coverage Langu
1 if [!ProcessShellCommand (ewdline) | * & Information for Distributed A
2 I T ot an. bt + 4 Reference
< 3| % | » =[] Error Dekection
+ & Getting Started
Output X # 4 Configuring Errar Detection
Debig = + &P Detecting Errors in four Prog
=& Memory Analysis
Deleting Key {79CCFOD1l-4AZ0-415C-E237-5BCEEUS4DF4C) e u Performance Analysis
'BugBench.exe': Unloaded 'C:\Program Files) Studicl\E: lesy. AbinyDebug) IFACE. d11' 3 @G Hing Started
The thread 'Win%Z Thread' (0xd90) has exited with code 0 (0x0). + o eting afre ¢
r e # &% How-To Information Far Al L
Biaping objoccs > g @ DevF.artner Language Suppol
{223} normal block at 0x00352BAS, 160 bytes lomg. # &P Profiing Server Applications
Data: <D 0 > 44 OF 14 01 30 OF L& 0L 00 00 00 00 00 00 00 00 +1+&2 Information for Distributed 4
Objact dump complets. # &P Reference
The prograw ' [3236] BugBench.exs: Native' has exited with cods 0 (0x0) o || @ Performance Expert
< >
Ready

Figure 6.7: An example code coverage analysis.

™ 89]
Realtime i
PUDISNETs

Chapter 6
|

Here, the tool actually analyzes the source code of the application, often examining
different execution paths based on logic constructs within the code language. Each possible
code path is another specific test situation, and once every one of those situations has
actually been tested—and therefore, every line of code executed—then you’ve reach 100%
coverage. These tools may highlight lines of code that have not yet been tested so that the
developer can figure out what’s needed in terms of input values or scenarios to complete
the tests.

System Comparison

“I can’t reproduce the problem.” That's something no developer likes to say because it
means they know there’s a problem in the code—but if they can’t reproduce it, they can’t fix
it. In some cases, the reason a developer can’t reproduce a problem is due to differences in
the system where the problem was originally identified and the developer’s own system.
One way to address the problem is to simply install the developer’s tools on the system
where the problem occurs—but that’s a pretty expensive proposition in terms of time and
resources (and seldom permissible on production servers). A better starting place is to get
a detailed comparison of the two systems, like the one shown in Figure 6.8.

 DevPartner System Comparison [E]Fg|
: 5 @ @
Differences by category Difference details @9
Installed Products 98 differences/428 compared Show: _AII differences b
- [ltem | MHT39345001 MHT42427H01 A
Services (39) i — Whware Workstation 56019175 [mizzing]
Startup ltems (25) - WebEx [mizsing] installed
:g%uaﬂaﬂ)ﬂk Cormpaonents (34) I Wwindows P Hatfix - KBA73323 [missinal 20050114.005213
S0L Server (2) = Windows ¥P Haotfis - KBB33310 20041027 095746 [mizzing]
Drivers (75) — windows <P Hotfix - KBSBIET3 20041116.086848 [mizzing]
Registry (0) i Windows XF Hotfiy - KB230047 [migsing] 20041221.124508
File {0) - indows 2P Hotfix - KBB33055 [missing] 1
T WirnZip Command Line Suppaort 4dd-On 1.1 installed [mizzing]
Category description: = System Components
— Connection Manager inztallzd [mizzing]
Installed Products — KBBa4me installzd [mizzing]
Shows differences in — KB893803 installed [mizzing]
fank produstssake L Microsoft MET Framework 2.0 2050727 [missing]
Version information is i~ Microzoft MET Framewark 2.0 Beta 2 [mizzing] 2045015
shawn (if available), — Microzoft Document Explorer 2005 80580727 42 [mizzing]
This is extracted from I Microsoft SOL Server 2005 Express Editon [SALEXPRESS) 9.00.1399.05 [rissing]
the AddfRemove
Programs section of — Microsoft SGL Server 2005 Tools Express Edition 9.00.1399.06 [mizzing]
the registry. | Micrasoft Wisual J# 2.0 Redistibutable Package 2.0.50727 [missing]
— Micrazaft Yisual Studio 2005 Team Suite - EMLU 8.080727 42 [mizzing] 3
Details for; Producks/Windows XP Service Pack 2§
Yalue on MHT 29245001 Value on MHT42427M01
[[wissimg] | [20040803.231319
Search the inkernet For more information on this ikem

Figure 6.8: Detailed system comparison.

. 90
Realtime CIFochs

Chapter 6
|

Often, a missing operating system (0OS) hotfix, registry key, or other component will be the
thing that makes the problem reproducible.

Resource Utilization and Consumption

When performance problems arise, how do you solve them? One way is to get a detailed
look at how the code is actually consuming system resources such as disk, network, CPU,
and memory. Testing tools can help produce that analysis right within an integrated
development environment, as Figure 6.9 shows. Here, CPU time, execution time, disk
activity, network activity, and more are all attributed to specific code paths within the
application. In addition, top consumers are highlighted (shown in red, in this example) so
that developers can focus on the areas where performance improvements may offer the
biggest positive impact on the application.

29 BNTMETWinApp - Microsoft Visual Studio
File Edit ‘“iew Project Build Debug Data Tools Test DewPartner SecurityChecker Window — Community Help

e R ™ W= N REETG a * = | Debug + Mixed Platforms - "71 = O =5 3 ;
- =2
T Oy R 9.0 0,10 & &
__/'éﬁﬁfﬁﬁnpp.dﬁarm' frmabout.vb | Start Page - X

Back to Summary

Path analysis

Method CPU time... © Execution... Elapsed time {us) Disk activity (bytes... Network activity (bytes.. | Wait time (ps) A!
= FrmBNTHETWinAppMain, Main 4,211,339.0 1 19,637,700.0 52,333 2,431 2,509,319,0
’;Il-Fr EMNTME TWindppfai 2,335,486.0 1 7,388,656.0 3&,050 2,507,895.0

| s
[=%
o
ol
=
L)
. I I
2 | OrderDetail . GetOrderDetai 872,144.6 1 3,664,351.0 0 2,506,544.0
= [OrderDetail, . ctor 445,570,9 1 1,506, 776.0 32,050 0 1,350.8
K | FrmwWait. Dispose 6,593.5 1 712003 u] o 0.0
| £k Fremvidait. . char 5.AR4.5 1 A.57NLE n il |

Method detail For : fFrmorderInguiry., frmOrderInquiry_Ackivated

Source | Call Stacks |

ECPU time including user children (ps) » l For each line in froQrderInguiry . frmOrderInguiry _Activated

§72,593.0 0.0
950: A
951: ' create aconnection to the web service and get the order detail data zet =
952 Dirn s &5 Mew BMTHET OrderDetaila'S. OrderD etail
953
957: EndIf
958
955 dgQrderDetail. D ataS ource = de. T ables("'OrderDetail”]
SE0; dglrderDetail. ReadOnly = True
9E1:
962 SubTotal=0
363 PerlternT otal = 0
964
965: Dim myFow Az D ataFow =
9EE: For Each myR aw In ds. T ables('OrderDetail']. Rows B
| >

Figure 6.9: Performance Expert output from Micro Focus DevPartner Studio.

. 91
Realtime

publishers

Chapter 6
|

Error Detection

Some developer tools have the ability to detect potential run-time errors during design
time—that is, while you're coding. Unsupportable code, runtime errors, and mishandled
exceptions can therefore be addressed earlier rather than when they actually become run-
time errors. Difficult or tricky code—such as Windows API calls—can be validated as you
write the code, helping to avoid code that may result in an error later on down the line.
Figure 6.10 shows how such tools can integrate into an IDE such as Microsoft Visual Studio,
providing a breakdown of potential errors and highlighting the exact line of code that’s
causing the alert.

% BugBench - Micrasoft Visual Studia EEX

File Edit Wew Projct Buld Debug Tools DevPartner ‘Window Communty Help
- E-p3 % G 2 2| b Debug - Win32 - LR S DR
3 @ FOT I, RN R AR LR] Ermrdetectiun v By
‘BugBench.dpbcl X iy
Type \ Quantiy | o | e Urisigred integer argument 5 was int cwsight = 1000 in CreateFontd but ?
5 ¥ TowEios o must be between 0 and 900 £
+ X AP Ermor | 1 = 3
X APl Falus 24 © # HFONT_ CresteFontA[] ~
- Bad Pointer Use 5 & th Parameters 5
+ X COM Irterface Method Failre 2 & int cHeight =0 ?’
=% Dangling Pointer 1 @ int clfidth =0 .
X Dangiing pointer 1 main.bug, ptrerr.cpp, Fainter_EspiUsesDanglFlr - ine 108 128 & int cEscapement = 0 s
+ X Deadock Related Emor 1 @ int cOrientation = 0 I
= X Inwalid Format 3 @ int cWeight = 1000 =
X Invalid Parameter 3 @ unsigned int bltalic = 0 lEd
© % Inwalid Fange 4 @ ursined int blnderiine = 0 v
Fagument tange: CrsaleF et . Main.bug, apisir.cp] Current Cal Stack - Thiead 0 [0402C3] |
ol " i) Curet N |
X fagument 1ange GeleySiate . SN R En AP TSI o] Function File Line / Difset
¥ Structure size: GelversionExé, 1 main, bug, apierr cpp, AP_StuctSizeZer - fne 326 55 A U A e e S e DT) 288
T o ExeruteFunclion bugbenchdg.cpp £95
1 X vl OnDblekTreslist bugbenchdia cpp 421
=& Mavesble Memary Enor 3 _ARDispatchCrodisg cmdtarg.cpp 17
¥ Monzsto lock count il main, bug. apierr.cpp, AP_FresdHandieStilLocked - ne 71] Bnirudilsg it 396
¥ Ay unlocked 1 main.bug, apier cpp, &F1_HandiebleadyInkocked - Ine 65 61 OnCmdhsg diacere.cep oa
X Danging pointer i ain.bug, phiett.cpp, Poirter_PiefniockedBlock - e 126] Onoify wincore cpp 2575
X Dangiing pointer il main. bug, ptrerr.cpp, Fointer_DeallocatedPt - ine 204 424 Oriwndsg winCors.opp 1771
X Danaling poirter 1 main.bug, phrerr.cpp, Painter_DeallocatedPh - ne 205 15 "windowProc wincare.cpp 1745
X Danging poirter 1 main b, ptrer cpp, Fointer DeallacatedP - ins 206 427 Sl o, i L
> 9ing p = b = AlwindProc wincare. cpp 388
= X Pointer Enor 3 . AfdwindProcBase alvstate cpp 209
X Pointer arthmetic range error 1 main.bug, witeen cpp, Wite_Witelverlowshdem - Ine 117 63 2dl 000000731
X Fointer argument range ertor i main.bug, phiert.cpp. Pointer_ArayParamE xFiange - e 153 420 user32 dl 000008811
3 Poirter arthmetic range snar 1 main, bug, phrerr.cpp, Fointer_AssignDutdiRiange - ne 140 22 use32dl O+0DDDBEI6
+ 3 Pointer Local Retumed 1 uselEﬁ.adzﬂdH %xg%%uuasﬁgg
5 come! i
2% Read Duenn : cometz2 dI 000058343
-) Uniniiaized E rox comet32. dl 00001 465D
B) Wiite Overtun 4 wserdzdl 00000731
B summary | & Memory Leaks | 8 Other Leaks | 3¢ Errors | 22 MET Perfomance | ¢ Modules | + Tramscrint
C\program fles\compuwarhdevpaine: studiceramples sougbenchmanapiet. cpp
FALSE : &
ANSI_CHARSET .
0UT CHARACTER_PRECIS
CLIP_DEFAULT_PRECIS
FROTF_QUALITY i
VERIABLE_FITCH | FF_SWISS |,
I T hial] 5
#[NULL I= ot)
i DeleteDbiest | (HGDIOBJ] HFant)
CATCH
{ v
=] output
Ready

Figure 6.10: Detecting potential run-time errors while coding.

Memory and Resource Leak Detection

Poor memory utilization is a major cause for poor application performance as well as for
stability issues caused by things like memory leaks. Tracking memory usage down to
specific objects and classes makes it easier to detect problems early on—which is a huge
benefit because these types of problems become increasingly difficult to identify and
correct as the application grows and moves through its life cycle.

. 92
Realtime CIFochs

Chapter
|

Tools should generally focus on three major areas: potential memory leaks, the creation of
temporary objects, and the overall memory utilization (or footprint) of the application. This
information may be displayed in a graph (as Figure 6.11 shows) and may be accompanied
by a list of classes currently loaded into memory. Experienced developers can also utilize
heap views, which display in-depth information about how the application is utilizing its
memory and help identify lines of code responsible for the most memory use.

3L Performance Analysis Sessions - DevPartner Project [run] - driverZ.dpprf o [4]
File Edit ‘ew Project Build Debug Tools Window Help
F-rE-cdd fRR oo E-B)|) o) | AR T

EAX BE S 2| L iBa?ie g o o).

DevPartner Memory Analysis
Memary Leaks [& FaAM Footprint I@ Tempoarary Objects |

[y View RAM Footprint B 11 [RSRAIGHT w2k - 1512 [Driver.exe] |
[] System Memory [Profiled Memory
500,000
E 400,000
Z 300,000 o
&
E 200,000
= 100,000
ik Page | driver.dpprf | driver - ram Foo, . .nalysissnap. dpmem | driver - kemparar. ..ct analysis.dpmeml WBdothet. vb | driverl.dpprf driver2.dpprF | 48X
E| - Al { Madules: 26 | Method List |Source [Driver.csl| Session Summary |
E- Q RSRAIGHT 4 Method %oin | with | |, il
; [+ Source hame Method Children el Rl
--EI System (| DialogBoxParama 4.3 2.9 1 188,627.7
Top 20 Source M | LineTo 1.8 1.8 10,060 7.9
Top 20 Methods SpeedBump,Driver Forml,.ckor 1.7 358 1 7Z,073.8
Top 20 Called 5o System.Reflection. .. 1.4 2.7 2 30,577.5
Syskem, Windows. .., 1.3 9.9 64 52,7
Top 20 Called Me | o aeDC 1.2 13 503 10.5
4 | | _>| System, AppDomai, .. 1.2 1.8 1 51,1492 Ll
|.ﬁ.utos n ><|
| Ready | | | 4

Figure 6.11: Memory analysis of a running application.

This memory analysis occurs in real time, as the application is being executed on the
developer’s computer during development and unit testing.

Native/.NET Interoperability Analysis

Of special importance in .NET Framework applications is the ability to track performance
when native (non-managed) code is being called from within .NET (managed) code. The
transition from managed to non-managed code can result in several problems that, due to
the way the .NET Framework itself interacts with non-managed code, can be difficult to
catch. Potential problems include:

e Range and boundary errors resulting from differences in managed and non-
managed data structures

e Performance issues related to memory, disk, network, or CPU consumption—with
memory and CPU consumption being among the trickier aspects

. 93 B
Realtime D?é':cfug

publishers

Chapter 6

¢ Insufficient testing, especially for tools that offer code coverage analysis but only
cover the managed code

e Detection of potential run-time errors, especially for tools that don’t understand
native code and Windows API calls

e Security scanning, especially for tools that treat native code as “out of scope” and
focus entirely on managed code

The key is to make sure that whatever tools you adopt fully understand, support, and
exploit the managed/non-managed connection that the .NET Framework makes possible.

Code Performance Analysis

Finally, tools can provide detailed, end-to-end performance profiling of an entire
application. These tools analyze the application as it runs, and can pinpoint performance
problems down to specific lines of code. Displays like the one in Figure 6.12 make it easier
to see where performance is lost or bottlenecked within a single-tier application (or a
single tier of a multi-tier application).

2% DevPartner Studio - Microsoft Development Environment [design] - Deadlock Demo1. dpprf*

Fle Edt Yew Project Buld Debug Tools DevPartner Window Hep
Pro-cEg B » Debug - - REHRRF-,
r MR- -B [pg,fm(E orcoverage a v | 4y | <2y CDeadiockPhilosophersView: :0nDraw ~ _ .
32 Deadlock Demol.dpprf* | % || Schttion Explorer - DevPartne.., @ X
5 [00 Al ol 15 Wetheds: 769) Method List_Sousce [deadockphilasophersview cpp | Session Summary | 2
g : glwr;z:zm(uzl wf ;H (eadeckDenl | Coun % with Children Time | Source ||| A solution Deadiock Demo' (1 project)
B :“__J"* Sl 318 0.2z 4,435.6 doMemory. CreateCompatibleDbC (pDC) ; = (7 peadiock Demo
= Ead’wnam;:e (hz'%) 318 0.1 1,568.7 CBitmap *pBitmapOld = dcMemory.SelectObject {sbmpFood) ; (5] References
. M‘“*"m”h”‘;’fw““ 318 0.0 31.9 CRect foodRect = tableRect: () Source Files
&) deadockphiosophersdoc.cpp 5 5 0.0 380.6 foodRect.DeflateRect (foodRect. Wideh() /2.5, foodRect.Height & (] Header Files
5] mainfrm.cpp (0.3%) BITHAP hm: # (0 Resource Fies
chopelt s ‘“’(0(‘;’:;) 318 8.0 530.8 bropFood. GetBitwap { Shm) ; = [DevPartner Studo
P""‘”r““ ”-‘Wﬂ 3 memDC. StrecchBlt (foodRect . left, foodRect.top,] Deadiock Demo.dpprf
phidig.cpp (0.0%) foodRect.Width(), foodRect.Height(), Deadack Demol.dpprf
leadlockphiosophers.cpp (0 sdeNewory
phihooser.cpp (0.0%) 2. "
= sﬁt'-?m E’L"”“:be?"’?"pp("'w“) 318 18.8 | 515,188.4 bm.brWideh, bm.bmHeight, SRCCOPY):
= Ly & 8.7 & :
5] Top 20 Source " 318 0.1 2,478 delemory. SelectObject (pBitmapOld)
E:"“igxx‘? ok 318 0.0 388.3 const double increment = CaleingleIncrement({):
E”“’ZD%MM‘ & 318 0.0 1,306.2 const double radius = CalecSeatRadius(): <
op othods 318 0.0 438.5 stick vect::const_iterator iterSticks = pDoc->GetChopsticl =
318 0.0 79.3 if (m_vecState.size(]) Contents 2 x
{ Filkered by:
318 0.0 33.1 fur(xnt i=0:; i < m nDiners: ++i) [oevPartner Studio =
Coll Gl [| (W DevPartner Studia
o = | | # @ ettng started
= P || = € Features Overview
% CodiccPhiloaopn |- 293% #8468 (mbc71d.dll) # & DevPartner User Interface Eleme]
= 16% B 00% = &
& Instrumentation
R # & Command Line and Configuration)
& General Information
+ 4 Code Review
192% #346 (mfc71ddll) 98.9 % Cr = ([Coverage Analysis
06 % 100.0% & ? Getting Started
B v + g How-To Information For AL
&P Collecting Coverage Data for|
& DevPartner Coverage Langu
28% #2943 (mfc71d.dll) 0.1% CrtsetDbgFlag 143% RtlE % 4% Information for Distributed A
03% * 1% = é
+ &P Reference
S ny R = ([Error Detection
* & Getting Started
+ & Configuring Error Detection C
20% #5623 (mic71d.dil) 0.0% IsBadReadPtr RelLe = & Detecting Errors in Your Prog|
2% + 100.0 %] & Bl
| 1 4@ Memory analysis
L i || = (1 Performance Anslysis
+ & Getting Started
&P How-To Information For All L
= g | 15% #2766 (mic71d.dll) 0.0% GetObjectType # &P DevPartner Language Suppol
= i it % & Profiing Server Applcations
MR i # & Information for Distributed A
- o 5 # & Reference
@ - = = & Performance Expert
| S 21 T« >
Ready 2

Figure 6.12: Application performance profiling.

. 94
Realtime

publishers

Chapter 6
-

In the example, overall performance is broken down and attributed to each element of the
application, allowing the tool to highlight—in yellow, in this display—elements that are
consuming an above-average amount of time or other resources. For multi-tier
applications, more complex tools are required. These typically include some kind of agent
that runs on middle- or backend-tiers and communicates performance information to a
master tool running on the developer’s computer. This setup allows the application’s entire
performance to be traced more accurately: With it, you can see that what appears to be a
long execution time in a client module may in fact be due to performance problems in a
remote tier that the client is simply waiting for.

Testing Phases and Efforts

Testing isn’t something that occurs only during a specific phase of a project’s life. Rather,
it’s a continuous activity, with different types of testing during different portions of the life
cycle, each designed to accomplish a slightly different purpose.

Unit Test

A unit test allows a developer to gain confidence that their code is fit for use. Unit testing is
commonly performed by developers on an ad-hoc basis as they code, and may include ad-
hoc tests as well as tests from formally defined test cases.

Developers should ideally work from test cases that are completely independent from one
another. To this end, they may create substitutes such as method stubs and mock objects so
that the code they are testing has as few external dependencies as possible—so that, in
other words, only a single unit is being tested. For example, suppose that Method A calls
upon Method B; to test Method A, a mock Method B might be provided that delivers static
output to Method A—thus eliminating any code in Method B from impacting the test on
Method A. The test case for Method A, then, tests only Method A, and can be re-used as
often as is necessary to ensure Method A continues to behave properly. In theory, if every
unit of code operates perfectly as a set of independent units, they are more likely to operate
correctly as a complete application.

Integration Test

Integration testing focuses on entire portions of an application rather than individual units
of code. Integration testing is often performed by dedicated quality assurance (QA) testers,
rather than by developers, and most commonly focuses on making sure the tested portions
behave properly and meet their requirements. Developers typically participate in
integration testing to some degree, and in some organizations, may be responsible for
integration testing.

—

SR PE R 95 MICRO
Realtime CIFGEDS

Chapter 6
-

For unit testing, I said that, “In theory, if every unit of code operates perfectly as a set of
independent units, they are more likely to operate correctly as a complete application.”
Integration testing starts to prove that theory by aggregating related units of code and
testing them together. Essentially, it is testing the integration between those units because
the units have (ideally) already been tested individually. Test cases focus on the interaction
between units, ensuring that data is properly passed between them.

Integration testing does not necessarily seek to test the entire application; thus, test assets
such as test harnesses and other “fakes and stubs” may still be needed. Once a group of
units has passed integration testing, more groups may be added, building an increasingly-
larger compilation of tested code until the entire application is represented.

System Test

System testing focuses on the entire application, with an emphasis on testing against
requirements. It should require no knowledge of the internal code and is usually performed
by QA testers and not by developers. System testing is the final level of formal, pre-release
testing that an application receives.

Alpha and Beta Tests

No matter how well an application is tested prior to release, you'll usually encounter more
than a few defects once real users get their hands on it. That’s where alpha and beta tests
come into play.

Note

There’s a joke around the term beta test: It means you're using software
that's “beta (better) than nothing.” It's a tacit acknowledgement that beta
code isn’t expected to be perfect.

Alpha-test software is generally complete (although different organizations have different
standards and definitions in this regard), but is usually not ready for end-user
consumption. In some cases, alpha software is what is used in system testing, and software
that passes system testing is, by definition, no longer “alpha.”

Beta software, by contrast, may be released to a limited audience to get that “real world”
effect and to flush out more defects. Typically, beta software is the first release that is seen
outside the development team; it may contain known (documented) problems that the
team is still working on.

Maintenance/Fix Tests

After the software is released, defects will likely be discovered and they will need to be
fixed. It's impractical to perform a complete system test for every fix that comes along, and
so maintenance testing—sometimes called regression testing, although that term is also
applied by some to other types of tests—is used. Maintenance tests typically focus just on
the units of code that have been modified, and may include some major system-level tests
that exercise those modified units.

S PEI 9% MICRO
Realtime CiFoeis

Chapter 6
|

Load Testing

This type of testing is designed to run against the entire application and to automatically
perform key operations that would normally be performed by an end user. The trick is that
load testing uses tools that simulate dozens, hundreds, or even thousands of users, to place
the application under a more realistic production workload—or even to test it to the
breaking point to see what kind of workload the infrastructure can handle. This kind of
testing is often the most difficult, simply because it can often only be performed—if you
desire accurate results—against a full-scale production environment. Testing against a
smaller environment and extrapolating the results can provide insight on overall load
capability, but the answers won’t be definitive because computers don’t scale perfectly
evenly. In other words, a test environment with half the capacity of the production
environment might be able to handle 60% of the production environment’s load; just
because the production environment is twice as powerful doesn’t necessarily mean it will
support twice the workload.

Coming Up Next

The next chapter is the last in this guide, and I'll use it as an opportunity to bring together
everything that I've discussed so far, but from a slightly different perspective: the business
and developer benefits. I'll look at how automated debugging, analysis, and testing tools
can help boost productivity, shorten development cycles, and improve overall code quality.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 97 MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

	Chapter 6: Testing Code for Errors, Inefficiencies, and Performance
	Overview of Testing Techniques
	Construction of Test Cases
	Types of Testing
	Test Management: Reporting, Monitoring, Tracking, and Resolution

	Testing Tools
	Code Coverage Analysis
	System Comparison
	Resource Utilization and Consumption
	Error Detection
	Memory and Resource Leak Detection
	Native/.NET Interoperability Analysis
	Code Performance Analysis

	Testing Phases and Efforts
	Unit Test
	Integration Test
	System Test
	Alpha and Beta Tests
	Maintenance/Fix Tests
	Load Testing

	Coming Up Next
	Download Additional eBooks from Realtime Nexus!

