Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 5
|

Chapter 5: Addressing Performance and Security Problems......... s 59
Common Sources of Performance Problems..........nenceneeseeesesseesseeseeseessessessesssesseeenes 59
Inefficient Coding 01 AlGOTItRIMS ... s s 60
Excessive Code Path LENGth.........ss s sssesssssssssans 61
ReESOUICE BOHIENECKS.....cooeececeeeeeeereeece s s 62
Poor Contention ManagemeENT ... sesssssssssssssesssssss s s ssssssssssssssssssssssssssses 63
Detect and Resolve Problems—Don’t Hide Them.......c.oneessesseessessesssesseenns 64
Detecting Performance Problems: SINGIE-Tiercminenisnensssssssssssssssssesssssssssssenes 64
Trace Application OPETratiONS ... sssssssssssssns 64
Differentiate Application from OS Calls ... sesssssesssseseesssssessessssssssaes 66
Use of Dynamic Call Graphs to Navigate App COMPONENES........veuermeemmesmemsseessessesssesssessnes 67
Monitor and Analyze Performance Datainissssssssssssssssssssssssssssssnes 68
Detecting Performance Problems: MUlti-Tierooenneeensesneesesseessesssesssessesssessesssessssssessseanes 70
Mapping Performance to Project REQUIrE€MENLSc.ocuiemerneernsrenissssssesssssssssssesssesssesssesssesssesns 71
Integrating Performance into TeStINGciiminemessnssessssses 72
Assessing Performance Impact: Before and After COmpariSonscooeoeeeneeneesneeseeseesseeseenns 72
Common Sources of SECUTItY ProblemS. ... ereeseeeeeseeseeeesseeseseessessss s ssesssssssessssssessssaes 72
Lack of Clearly-Stated Security Design GOalScueerrremeesnsessssssssessssesssessesssesssesssesssessns 73
Inappropriate, Ineffective SECUrity MOdels....onrennininnssssssssssssssssssssssssssssssssses 73
Failure to Consider and Protect Against “Unexpected Usage”ceenenmeeneessesssesscenes 74
Lack of Security in Coding Standards........eeeesmsssssssssssssssssssssssssssssessssssssssssans 75
Detecting SeCUTILY ProODIEIMNS ...ttt sses st ssessssssssessssssens 75
Integrating Security iNt0 TeSTING ... 77
Assessing Security Impact: Before and After COMPariSONSoeeeereenmesseesesssesseesessesssesseeens 77
Mapping Security to Project REQUIr€mMEeNtSscvrrrienenirnessssessessssessssssssssssssssssssssssssssssaes 78
COMING UP NEXE..oiurerrrerrereeressessesessessessssssess s sessssssssssssesssssssssesssssssessessssssssssessssssssssssssssssessssssssssessssssssssens 78

p i MICRO
Ht"(llumt‘ ClFochs

Chapter 5

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 5

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be

found at http://nexus.realtimepublishers.com.]

Chapter 5: Addressing Performance and
Security Problems

Performance and security: two aspects of your application that users are perhaps most
likely to perceive as poor quality. Sure, users might be irritated by a recurring bug, but bugs
can often be worked around, where poor performance becomes an unwanted and
unwelcome part of daily life. Security is likewise a great way for your application to earn a
reputation for poor quality: Either security is cumbersome and gets in users’ way, or it isn’t
complete and ends up causing a major incident within users’ organizations.

Too many development projects focus on performance and security last, if at all, but they
are every bit as important to your application as making sure all the necessary end-user
functionality is properly implemented. In fact, while security and performance are
commonly referred to as non-functional requirements, you should definitely consider them
to be a core part of your application’s general functionality—things users will notice if
they’re not done properly.

In this chapter, we'll look at common sources of both security and performance problems,
and examine specific ways to help eliminate those problems in a variety of scenarios. We’ll
also look at general techniques for measuring the results of your security and performance
tuning efforts so that you can begin to develop a feel for the exact amount of effort required
to generate a specific amount of additional value in your applications.

Common Sources of Performance Problems

“I'm sorry, sir, can [put you on hold for a minute? The computer is being slow today.”
Everyone who has ever called a customer service agent on the phone has heard this phrase
more than once, and it’s perhaps one of the things that end users most commonly perceive
as “poor quality” in an application. Major software developers—such as Microsoft—spend
millions to provide at least a better perception of performance, such as working to make the
Windows desktop appear quickly, even though other bits of the operating system (0S)
might still be starting in the background.

So where do performance problems originate?

p 59 MICRO
Ht"(llumt‘ ClFochs

http://nexus.realtimepublishers.com/

Chapter 5
-

Inefficient Coding or Algorithms

Inefficient coding is probably one of the most common performance problems I've seen in
the projects I've worked on. One reason, I think, stems from the fact that developers over
the years have become increasingly abstracted from the hard work that goes on to access
various resources. For example, in the “old days,” retrieving information from a database
meant pretty laborious coding: You had to set up a database connection, make database
library calls, wait for callbacks from the database as data began streaming over, read that
data from input buffers, and so forth. Today, with technologies such as the .NET
Framework’s rich data classes and LINQ, retrieving data takes a couple of statements, as
the hard work is all done under the hood. But the hard work is still being performed, and
poor coding can easily result in performance problems.

For example, consider this pseudo-code:

Rows = Get_Rows_From_Database(query)
For Each (Row in Rows)
If (Row.Column = Value)
Update Row_In_Database(query)
End
Next

Inefficient? Absolutely. Pulling over a few thousand rows, enumerating them in a client
application, and then sending single-row changes back to the database would be
considered abusive by most experienced developers. A single database query could
accomplish the same thing, but with less processing on the client and with far more
efficient processing on the database server.

There’s a joke amongst experienced software developers that systems administrators—
folks who tend to write short scripts to help automate administrative tasks—will write five
lines of code, run it, and if it works, call it a day and go home. Good developers, however,
will spend two additional days trying to reduce those five lines to three. Why? Efficiency:
Less code may mean less processing, and less processing tends to lead directly to better
performance (obviously, “fewer lines” doesn’t necessarily equal “faster,” but it is a joke).

The point here is that nearly any working code can be optimized for better performance.
Algorithms can be tuned to be more efficient, and code itself can be reduced or rewritten to
work more effectively.

Note that Microsoft’'s own code, in the .NET Framework, is no exception—although you
obviously can’t make corrections to that code. Just be open to the possibility that portions
of the built-in .NET Framework might not be as efficient, performance-wise, as some third-
party replacements. Using alternative database drivers, for example, might gain you
significant performance gains in an application that makes heavy use of database
connections; using a different set of charting components might offer better performance
than your existing charting components can provide.

S PEI 60 MICRO
Realtime CiFoeis

Chapter 5
-

Efficient Runtime vs. Efficient Design-Time

Many developers tend to choose components for their ease-of-coding rather
than for performance or even for intrinsic security. There’s certainly value in
working with components that are easy to code because they make the
overall application easier to work with. But when selecting components—
whether user interface (UI) components, I/O components, or anything else—
do your homework and consider performance and security as well. A
component that runs significantly slower than its competition will inflict that
performance hit on every end user who uses the application; the better-
performing competitor might have a more complex coding model, but that
coding inefficiency will only be experienced during the project’s
development.

Excessive Code Path Length

Modularization—encapsulating pieces of code for easier re-use—is fantastic. So is database
normalization, which is in essence a form of modularization. However, every good database
designer recognizes the necessity of de-normalization—breaking the rules of normalization
in order to achieve a better degree of performance or to realize some other important goal.
Modularization should be viewed the same way: It’s fantastic insofar as it encourages code
reuse and helps make debugging easier, but as developers, we need to be willing to back off
from modularization when it starts to affect other goals, such as performance.

The code path is the number and relationship of individual code objects, functions, and/or
proxies involved in executing a method. Consider a deeply-modularized application where
Module A calls Module B, which in turn calls Module C to perform some task. Module C
relies on Module D, which needs to call Module E, and so forth. At some point, the
application is spending more time traversing code boundaries and managing the call stack
than it is doing any useful work, and you’ve created a performance problem. In these cases,
it might be better to strategically flatten the application a bit to achieve better performance.
The same kind of deeply-modularized structure is seen in applications that leverage object-
oriented techniques such as inheritance: Object A inherits from Object B, which inherits
from Object C, and so forth—creating a deep code path.

In the database world, for example, designers know that any query that has to join more
than seven to nine tables is probably excessive, and that some de-normalization may be
called for. In the broader world of software modularization, however, there’s no hard-and-
fast rule, which is why you’ll need to become adept at using performance-tracing tools to
determine where bottlenecks exist in your application, at examining those bottlenecks, and
at deciding whether a bit less modularization might help improve performance.

Note

Chapter 1 spent some time looking at quality metrics, some of which focused

on factors such as code depth and code complexity. Intelligently reducing the
code path in your application can also realize other benefits, such as reducing
debugging complexity.

61 MICRO
I:IFEII::LIE

Chapter 5
|

Resource Bottlenecks

Developers often work in a perfect world: Their own, high-end development computer,
where they’re the only user and where there is little to no contention for resources. In the
real world, where the application will run, however, users have less-powerful computers
and are all trying to use the application at once—which can create unforeseen resource
bottlenecks.

In modern computing, there are essentially four key system resources that will be a
bottleneck for your application:

e Memory

e Disk

e Network
e Processor

On a 32-bit Windows-based computer, each application is normally assigned a 2GB chunk
of memory, even though the computer may not have that much space available (Windows
can be configured to offer more to applications using Address Windowing Extensions—
AWE—and 64-bit editions of Windows can offer much more). Any difference between the
amount of space offered and the amount of memory actually available is made up from
virtual memory stored in a page file on disk—meaning that memory bottlenecks can also
lead to disk bottlenecks. Also, because disk access times are typically much slower than
memory access times, a heavy dependence on the page file will reduce application
performance.

A bottleneck is essentially any condition where one of these resources (or other resources,
for that matter) is present in insufficient quantity, and your application performance
suffers because of it. Insufficient or inefficient use of memory, for example, may result in
heavy use of the page file, which slows Windows as a whole. Insufficient or badly-managed
network bandwidth may slow a network-dependent application.

There are two straightforward ways to address these bottlenecks once you find them: Add
more of the resource or rewrite your application to need less of the resource. Typically,
only the latter solution will be within your purview. Be aware that eliminating one
bottleneck will often simply move the “choke point” to another resource: Adding more
memory may speed things enough for you to realize that you now need more processor
power, for example. The trick is in finding the bottlenecks in the first place.

P 62 MICRO
H{:’dlumt‘ ClFochs

Chapter 5
-

Poor Contention Management

Closely related to resource bottlenecks is the idea of contention, although it actually goes
far beyond physical resources. For example, an application that modifies a database may
find itself waiting while other users modify the same portion of the database—a wait that
users perceive as poor performance. This type of contention can’t be resolved simply by
adding more resources, so you'll have to focus on coding techniques that help reduce the
contention itself. For example, optimizing database access so that less of the database is
locked at any one time, optimizing changes to the database so that they occur more quickly,
or modifying the application so that changes to highly-contested resources can happen
asynchronously are all possible approaches to a problem. To give more detail for this
particular example:

e Databases typically try to lock as little data as possible, to avoid contention.
However, managing locks on data takes up server resources, so databases will lock
more data than is strictly needed if doing so helps cut back on server utilization. So,
for example, a user attempting to change a couple of columns in a table might wind
up locking an entire row, creating more opportunity for contention. Writing your
application to recognize how the server manages resource contention can help you
write code that triggers less-broad locking, creating fewer opportunities for
contention.

e Ifyouneed to lock data in the database, releasing those locks quickly can help
reduce the opportunity for contention. You can write code that gets its lock, does its
thing, and gets out as quickly as possible so that the resource can be freed up for
others to use.

e Asynchronous changes can also help. Rather than everyone attempting to lock and
change the same resource at the same time, submit changes to a queue and have a
middle- or data-tier component process items from that queue in order. This
obviously doesn’t work in every data-manipulation scenario, but when it does work,
it can improve client application performance because those applications aren’t
sitting around contesting for access to the same data.

Databases are one of the most commonly-used examples of resource contention simply
because they’re where so much contention occurs. That doesn’t mean other resources can’t
come into contention, though: Shared files, two threads within the same application
waiting on a specific condition, and so forth are all examples of resource contention that
can slow applications unnecessarily.

. 63 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 5
|

Detect and Resolve Problems—Don’t Hide Them

Microsoft’s technique of getting the Windows desktop to appear quickly—even while the
rest of Windows is still getting itself up and running—has inspired a few application
developers to similar efforts. A notable one in my experience was a developer who knew
his application was taking a long time to populate a particular screen with information
from a database. Rather than working to correct the underlying problem, however, he
decided to distract users from the performance problem using what he named “the
Mesmerizing Eye.” This animated icon would float around the screen while the application
churned away, allegedly occupying users’ attention and making them ignore the significant
lag time. Bad idea: After a few hours with the “Mesmerizing Eye,” users disliked the
application even more than they had disliked previous versions that simply sat there while
retrieving data.

The moral is that poor performance is a sign of poor application quality, whether you
choose to try and mask the performance problem or not. Instead of coding your own
“Mesmerizing Eye,” spend the time analyzing your application’s performance problems and
correcting them.

Detecting Performance Problems: Single-Tier

In this section, we’ll discuss techniques for detecting performance problems in single-tier
applications—that is, applications that run entirely on a client or server computer and
don’t rely heavily on another application tier located elsewhere. However, note that these
techniques can also be useful in multi-tier applications for resolving performance problems
that are constrained to a single one of the tiers in that application—such as problems
entirely within a client application.

Trace Application Operations

Tracing your application’s operations—that is, keeping a detailed log of how long each
element of your application takes to execute—is the first step to finding where
performance problems occur. By logging a “start operation” and an “end operation”
timestamp around key tasks within the application, you can detect those tasks that are
taking an excessive amount of time to complete, and start thinking about ways to speed
those tasks. In other words, tracing helps you focus on the areas where you can achieve the
biggest performance improvement by highlighting those areas of the application that are
contributing the most to poor performance.

Manually tracing an application typically requires you to add your own trace logging
functionality: perhaps a StartOp() and CompleteOp() pair of functions or just a Trace()
function that logs a text message and a timestamp to some external log file.

Note

The very act of tracing your application will negatively impact its
performance. Be sure to remove or disable trace code prior to deploying the
application.

P 64 MICRO
H{:’dlumt‘ ClFochs

Chapter 5

Other, more general trace information can be obtained from performance counters that
.NET applications register to report thread utilization, time spent on specific methods or
garbage collection, and so forth. You can obtain this information from Windows’
Performance Monitor utility and analyze it on your own. Table 5.1 highlights key

performance counters.

Performance Counter Description

Gives an indicator of the total processor utilization in
the machine. A value of 80-85% is acceptable. Lower
the better.

Processor (_Total)\% Processor Time

.NET CLR Exception\# of Excep
Thrown /sec (_Global_)

This is the number of managed code exceptions thrown
per second. More exceptions mean more performance
degradation. This has to be 0 under normal
circumstances.f

.NET CLR Interop\# of Stubs

Indicates the number of stubs created by the CLR. This
value has to be as low as possible. However, for calls
being made from managed to unmanaged code and
vice-versa, this counter gives an indication to the
interaction between unmanaged and managed code.
There is always a performance penalty for such
interactions.

.NET CLR Loading\Current Assemblies
(_Global)

Indicates and records the number of assemblies that
are loaded in the process. It includes all the
AppDomains in the system.

.NET CLR Loading\Rate of Assemblies

Rate at which assemblies are loaded into the memory
per second.

.NET CLR Loading\Bytes in Loader
Heap

Indicates the number of bytes committed by the class
loader across all AppDomains. This counter has to be in
a steady state; large fluctuations in this counter indicate
there are too many assemblies loaded per AppDomain.

.NET CLR Memory\# Bytes in all
Heaps

This counter indicates the number of bytes committed
by managed objects. This should be less than the
Process\Private Bytes counter. The difference between
the same is the number of bytes committed by
unmanaged objects.

65 MICRO
I:IFEII::LIE

Chapter 5

Performance Counter Description

This counter records the explicit calls to the GC.Collect
NET CLR Memory\# Induced GC method. This value should be close to 0.

This indicates the percentage of time spent performing
the last garbage collect. Values in the range of 5-10%
are acceptable. There can be spikes in this counter, but
those are acceptable. There is a temporary suspension
.NET CLR Memory\% Time in GC of all the threads during this activity, so there is a
performance overhead. Allocating large strings to
cache, heavy string operations, and so forth leave a lot
of memory spaces that the GC has to clean up, creating
a performance hit.

.NET Data Provider for
SQLServer\NumberOfActiveConnecti
ons

Number of active connections in the pool that are
currently in use.

.NET Data Provider for
SQLServer\NumberOfFreeConnectio | Number of connections free for use in the pool.
ns

.NET Data Provider for Indicates the number of connections that are being
SQLServer\SoftConnectsPerSecond received from the pool every second.

Table 5.1: A sampling of Performance Monitor counters.

Manually tracing application performance can be a real nightmare, though, which is why
there’s a robust third-party market in tools that can collect this information automatically,
analyze it for you, and provide reports that help you focus on the parts of your application
that need improvement. Tools include dynaTrace (dynatrace.com), SpeedTrace
(ipcas.com), and VantageAnalyzer (Compuware.com), along with literally dozens of others.
Note that application tracing isn’t the only capability you're going to want to automate, so
give special consideration to products that come as part of a suite or family of application
analysis products, as the integration between family members often means less work and
more accurate results for you.

Differentiate Application from OS Calls

When analyzing performance, be sure to differentiate between calls made within your own
application and calls made to the underlying OS. Although it’s entirely possible for the OS to
create a performance bottleneck, there is not much you can do about it except to stop using
that OS call and to implement an alternative—either something of your own or a different,
more efficient OS call.

66 MICRO
I:IFEII:LIE

Chapter
-

Tip

One root cause of slow OS calls is simply using outdated, deprecated calls.
Read Microsoft’s documentation carefully, and make sure that the OS calls
you're using are of the current generation—rather than using calls that might
have been around for years and are comfortable to you but are deprecated
and perhaps supported only through underlying “hacks” that keep them
working for a bit longer.

Commercial application profiling tools can typically include this information in application
traces, making it easy to detect and differentiate between internal and OS calls.

Use of Dynamic Call Graphs to Navigate App Components

A call graph (also called a multigraph) is a graph or chart that depicts the relationships
between subroutines in an application. Each node in the graph represents a procedure and
each edge in the graph represents the procedures called. These graphs can be static or
dynamic. A dynamic one is a record of the program’s actual execution, as monitored by
some tool. A static graph is simply a theoretical depiction of every possible run of the
program, as generated by some static analysis tool. Both are useful, but for performance
purposes, the dynamic call graph helps you trace code depth, detect modules that are
making excessive calls (and slowing execution), and detecting the use of specific modules.
Figure 5.1 shows a simplistic example of a dynamic call graph.

i |
| index called TiamE |index called Tiame |
| 72384 /72384 sym_id_parse [S54] | 1502/1502 cg_dfn [15] |
| 72384 match [3] 1[13] 1508 pre_visit [13] i
i | i
i 4,/9052 cg_tally [32] | 1508/1508 cg_assemble [33]]
[30169032 hist_print [43] | [14] 1508 propagate_time [14]]
' S032/9002 propagate_flags [32] | '
L o[4] 2052 sym_lookup [4] | 2 cg_dfn [15] :
| | 150741507 cg_assemble [3%] :
b STEG SSTEG core_create_function syms [41]][15] 1507+2 cg_dfn [15] 1
V9] -t core_sym_class [3] | 15091509 is_mumbered [9] d
[| 1502/1502 is_busy [11] g
' 24 /1537 parse_spec [19] | 150841502 pre_visit [13] '
| 1513/1537 core_create_function_syms [41]] 1508/15028 post_wisit [12] |
LIel] 1537 sym_init [6] | b cg_dfn [15] i
i | i
i 151171511 core_create_function syms [41]] 150541505 hist_primt [49]]
07 1511 get_src_info [7] |[16] 1505 print_line [16] |
' | 249 print_name_only [25] '
| 2/1510 arc_add [31] | :
| 1502/1510 og_assemble [32] | 142041420 core_create_function_syms [41]]
Vo[E] 1510 arc_lookup [2] | [17] 1430 source_file lookup_path [17] 1
i |]
! 1509/1509 cg_dfn [15] | 24 724 =ym_id_parse [S4] d
o [3] 1503 i=_mumbered [3] | [15] 24 parse_id [18] '
i | 24/24 parse_spec [19] i
; 1508/1502 propagate_flags [52] | f
vo[10] 1502 inherit_flags [10] | 24724 parse_id [12] i
i | [19] 24 parse_spec [19]]
| 1508/1508 cg_dfn [15] | 2441337 sym_init [6] |
o[11] 1502 is_busy [11] | '
i | 24424 main [1210]]
| 1508/1502 cg_dfn [15] | [20] 24 sym_id_add [20] |
LO[1E] 1508 post_visit [12] | i
I i

Figure 5.1: A dynamic call graph example.

) P : ne 67 MICRO
Realtime CIFGEDS

Chapter 5
|

Different applications generate different-looking call graphs; better ones of course are
easier to read and provide more information. For example, although the graph in Figure 5.1
was generated by a freeware script, commercial applications such as Micro Focus
DevPartner offer visual call graphs, which utilize tool tips and other graphical elements to
bring more information to you (including details such as memory consumption). Figure 5.2
shows an example of this functionality, which as you can see, makes it much clearer about
which module is calling what, and how much of the application’s performance and time is
spent in each module.

B ODevPartrer Java [dition Call Czraph - Mécrosoft InEernet Explorer :
Fie Edt Wew Favories Toos Mg -

Sawe Dabte; 10/7/02 12:24 PM
Types: Parformance

 Ihiocle Lot s teolecton,

it uhon Count 1

Caligiagsh Legpirng
O swtessed Methoa
@ crical Fain
Cafles Mothods
O Emecuted methoss

wlani
% Time intluding Childeis 1.11% |

Figure 5.2: An example visual call graph.

Other commercial code analysis tools provide similar functionality. As with most code
analysis and profiling tools, these tend to be specific to a given programming language or
environment, so if you're working with the .NET Framework and Visual Studio, you’ll need
to select compatible tools.

Monitor and Analyze Performance Data

Carefully reviewing performance data from your application—using performance counters
such as those described earlier in this chapter—can also help spot performance problems.
Even better than those raw performance counters, however, are application profilers,
which can produce information like the dynamic call charts just discussed.

. 68 B
Realtime FOELS

publishers Leading the Evolution

Chapter 5

Profiling tools can provide a number of useful functions:

e Object lifetimes. Continually creating and destroying objects consumes a certain
amount of overhead and can fragment memory, leading to more frequent garbage
collection in the runtime engine.

e Memory analysis. Although use of memory does not necessarily equal poor
performance, using a lot of memory may result in poor performance if users’
computers don’t have enough memory to go around.

e Application traces. These can identify external calls, including OS calls, as well as list
all internal calls and display call graphs.

e Performance bottleneck isolation. This feature can help spot problems across an

entire computer, for a given process, in specific code modules, or even at specific
lines of source code.

Figure 5.3 shows an example of a full profile output, including a call chart. This example is
taken from Micro Focus DevPartner Studio. In it, you get a complete text call list, a call
graph, access to run-time information and performance details, and much more.

2% DevPartner Studio - Microsoft Development Environment [design] - Deadlock Demo1. dpprf*

Fle Edt YVew FProject Buld Debug Tools DevPatner Window Hep
P-a-cld s » Debug - REERE-,
. X8 SN =[] performance or coverae a + | 8¢ <2y | ChasdiockPhinsaphersViswi:OnDrsw ~ -
3% Deadlock Demol.dpprf* | 1 b % || Solution Explorer - DevPartne.., 3 X
g || 2D Al Modules: 15 Methads: 769) Method List Seurce [deadiockphilosophersvievs.cpp] | Session Summary | L=
g || oS mra2eziNo: - 1644 @eadock0em) | oy | 5 wihChideen Tine | Source ||| b soltion Deadock Dena’ (1 project)
= -3‘55"’ (;:I’“) 318 0.2 4,435.6 deMemory. CreateCompat ibleDC (pDC) : = (73 peadlock Demo
= Dead’ad‘oﬁ”‘;"':e (hz'%) 318 0.1 1,568.7 CBitmap *pBitmapOld = deMemory.SelectObject {sbmpFood) : (55 References
. M‘“‘bm”h“"gw““ 318 0.0 31.9 CRect foodRect = tableRect; # (] Source Files
2 E°"‘° oprersaoc.elll sz 0.0 380.6 foodRect.. Def lateRect (foodRect . Wideh () /2.5, foodRect.Height % (1 Header Files
izl ".”:W(D‘a %) BITHAP bm: 4+ (L1 Resource Fies
B m;nch;n:(o(;ﬁtl) 318 0.0 930.8 brpFood. GetBitmap (Sbm) : =1 (2 DevPartner Studio
I i i (-um;w \ menDC. StretehBle (foodRect. left, foodRect.top, %) Deadock Demo. dppif
0.EppL 0.0 foodRect . Width(), foodRect.Height()., Deadiack Demol .dpprf
deadiackphiosophers.cop (0 sackemory
phichooser.cpp (0.0%) 0, 0 ’
= sﬁfm ?’;“:T?’dwpp(""m) 318 168.8 | 515,1688.4 bm.bmiideh, bm.bmHeight, SRCCOPY);
i e o ,478.7 s :
1 Top 20 Source M " 3is 0.1 2,478 delemory. SelectObject (pEitmapOld)
g:““igm\:‘? o 318 0.0 388.3 const dowble increment = CalchngleIncrement():
E“WZD%M:;;Z © 318 0.0 1,306.2 const dowble radius = CalcSeatRadius(); ¢
o & 318 0.0 438.5 stick vect::const_iterator iterSticks = pDoc->GetChopsticl
318 0.0 9.3 if (m_vecState.size()) Contents 2 x
{ Fitered by:
318 0.0 39.1 fnx:(xnt, i=0: i1 < m_nDiners: ++i) |
Call Graph = () DevPartner Studio
e = = | = @ oetting started
e = || = @ Features Overview
4 ° CDeadlockPhilosop... | 29.3% > #3468 (mfc71ddll) = &P DevPartner User Interface Eleme)
kel A % & Instrumentation
Sir Ml | ® €& Command Line and Configuration)
4 & General Information
1 4@ Code Review
15.2% #346 (mfc71ddll) 383 % > = ([} Coverage Analysis
Lo L + & Getting Started
52% 3% + g How-To Information For Al L
& Collecting Coverage Data forl
& DevPartner Coverage Langu
28% #2943 (mfc71d.dll) 1% CriSetDbgFlag 1431 % RtlE + & Information For Distributed A|
03% ¥ T.2% = é
® & Reference
22% 01% 13.5% & u Error Detection
+ & Getting Started
+ & Configuring Error Detection ¢
= 20% #5623 (mic71d.dll) 00% IsBadReadPtr RelLe i % &P Dekecting Errors in Your Prog]
- i e | % @ Memary Anysis
- 18% 00% = () Performance Analysis
= + & Getting Started
&% How-To Information For AllL
| 155 #2766 (mic72dal) 00% GetObjectType % &9 DevPartner Language Suppo
i % &9 Profiing Server Applications
3ol o &P Information for Distriuted A
5 & + &P Reference
. x: X 3 & Performance Expert
4| T Y 2 < >
Ready /

Figure 5.3: An application profiling example.

. 69 B
Realtime ClFochs

publishers Leading the Evolution

Chapter 5
-

Some application performance tools—notably, commercial ones—can even help provide
“what if” performance scenarios. For example, some features can help analyze your
application’s performance under more real-world conditions by simulating the load of
multiple end users, real-world network conditions to constrict your application, and even
less-powerful computer hardware.

Detecting Performance Problems: Multi-Tier

An application allows a user to set parameters and display a chart that the application
receives from SQL Reporting Services. The report takes 15 seconds to return once the
request is sent (quite a long time to make a CFO sit there waiting). Where is the bottleneck?
[s it in the database, trying to pull together a complex query? Is it the Reporting Server,
trying to render a complex graphic? Is it the ReportViewer control, trying to draw the
resulting chart on the client application screen? How can a developer know where to focus
his or her efforts to make this application more responsive?

Multi-tier performance problems are inherently more complicated to track, primarily
because the components of the application are so distributed. You also get the added
complexity of more physical infrastructure, meaning things like the physical network
components can contribute to performance issues, as can supporting applications such as
Active Directory (AD). Many of the same techniques used in troubleshooting single-tier
performance problems apply but grow more complex and difficult. With multi-tier
applications, you're nearly always going to want to rely on a toolset specifically designed
for multi-tier performance analysis, such as Micro Focus’ DevPartner Server, Crescendo
Networks’ AppBeat Suite (crescendonetworks.com), or Precise (precise.com).

Multi-tier tools are designed to collect data from multiple remote systems to enable
analysis of memory, performance, and other key factors across a large, multi-tier system. In
some cases—DevPartner is an example—the main developer product (DevPartner Studio)
still does all the work; the “Server License” simply enables new functionality for collecting
remote data. Each toolset works differently in this regard, so you should consider this when
evaluating solutions and discuss your specific requirements in some detail with potential
vendors.

Optimize Tier Performance

A first step in optimizing multi-tier application performance is to simply treat each tier of
the application as a standalone application and apply single-tier performance techniques.
Doing so will help remove any of the “local” performance issues, which are often easier to
detect and resolve than the specific issues brought about by the multi-tier aspect of the
application.

—

SR PE R 70 MICRO
Realtime CIFGEDS

Chapter 5
-

You do have to be a bit careful, especially on server tiers that are designed to eventually
communicate with multiple clients at once. Some techniques that work well for
performance optimization in a single-tier application don’t work so well in a server tier; the
server can’t be “jealous” and simply devote all its resources to one task; be sure to always
keep in mind its essentially multi-user nature and troubleshoot and optimize performance
accordingly.

Analyze Multi-Tier Performance

Although factors such as disk [/0 or CPU utilization are important in single-tier
applications, they become even more important in multi-tier applications that have
multiple computers—and thus multiple disk subsystems and CPUs—contributing to the
application’s performance. In addition, the network—the links that allow the different
application tiers to communicate—becomes a major factor. In my experience, the network
is often the first bottleneck you’ll run across, especially if some of your underlying code
(such as database drivers or other low-level communications components) isn’t very
efficient. Although there’s nothing a developer can usually do about the network directly,
you can tune your use of it to be more efficient: Transfer less extraneous data, transfer
blocks of data rather than continuously opening and closing connections, and so forth.

Measuring thread wait times also becomes more important. Long wait times on a server
tier, for example, can hold up multiple end user client-tier applications, so what might seem
like only a minor performance issue in and of itself can contribute to major performance
holdups across the entire application. Think database locking, which is analogous,
conceptually, to thread wait times: Most developers are familiar with, and have
experienced, the performance damage that poor lock management can do. Poor thread
management can be even worse.

The trick here is the phrase, “what might seem like only a minor performance issue in and
of itself.” In other words, it’s tough to spot performance problems by just looking at a single
tier of the multi-tier application. Is a long thread wait time on the server a problem? That
depends—is it holding up client application requests? Tools that can analyze the entire
multi-tier application at runtime are about the only way to discover this. Factors such as
thread wait states can come and go faster than a human can see them, and correlating them
to delays on one or more remote machines is simply beyond human capacity to accurately
measure. That’'s why performance analysis toolsets exist in the first place.

Mapping Performance to Project Requirements

How much performance does your application need? The answer needs to be spelled out in
the applications’ requirements, as already discussed earlier in this guide and at length in
Definitive Guide to Delivering Quality Applications (Realtime Publishers). Without
requirements for performance, you're flying blind: You can do the best job you can at
improving performance, but you'll never know whether you've improved it enough for it to
be considered high quality, and you'll never be able to make good judgments about the time
required to achieve a certain level of performance.

S PEI 71 MICRO
Realtime CiFoeis

Chapter 5
|

Integrating Performance into Testing

Application testing should always involve performance testing. This of course ties back to
the application requirements. The requirements must specify a required level of
performance, and application testing must verify that the requirement has been met.

Good commercial software test suites typically include performance measurements as a
part of their feature set. Unlike code profiling tools, which may measure technical specifics
such as memory consumption and module execution time, testing applications may instead
measure more end-user-visible performance metrics such as the time required to complete
specific transactions or business processes.

Assessing Performance Impact: Before and After Comparisons

When you hire a good personal trainer at the gym, one of the first things they’ll do is take
measurements: weight, size, body fat, and so forth. Periodically, they’ll re-take those
measurements as a means of charting your progress at the gym. It's a sensible approach: If
you’re not making progress, you'll be able to tell and perhaps alter your tactics or look for
problems (like failing to follow the suggested diet!).

Application performance is no different. It’s truly important to carefully measure
performance both before and after any major changes you make so that you can measure
your progress at improving performance. If your changes aren’t making the improvements
you’d hoped for, you may need to look elsewhere for performance problems, or you might
have hit the practical limit of what you can improve given what your application does and
how it works. Knowing when you've hit that limit is good information because it helps keep
you from spending any more of your valuable time chasing after increasingly smaller
improvements.

Good tools can help you do all this by saving performance results and profiles, and
comparing them to one another. This helps highlight improvements—as well as
inadvertent dis-improvements—and helps you build management reports and make
smarter decisions about how to proceed.

Common Sources of Security Problems

Security is one of the things that people tend to think about after the application is written.
Witness Microsoft’s security troubles in the late 1990s and early part of the 21st century,
when it seemed that every Microsoft product was awash with security problems. Microsoft
addressed the problem by essentially starting to think about security first and throughout
the development process—a concept they called their “Trustworthy Computing Initiative.”
There are a few broad categories of security issues that the Initiative is designed to stop,
and they can be useful in helping you develop more secure applications, too.

P 72 MICRO
Ht"(llumt‘ ClFochs

Chapter 5
-

Note

[completely acknowledge that security can be deadly boring, and that it
often seems to add very little value to an application. That’s why it’s often
referred to as a “non-functional” requirement, although you’ll find that
having good security doesn’t seem to add value, not having security is
definitely perceived pretty poorly. In other words, it’s worth the boring,
additional effort to include solid security in your application because
although doing so might be under-appreciated, not doing so will be very
loudly unappreciated.

Lack of Clearly-Stated Security Design Goals

One reason that security is often perceived as boring and of no additional value is that
project requirements seldom state what their security requirements are. That’s a no-no:
Project requirements must state the conditions under which the software will be used, how
it must be secured, what auditing must be provided, and so forth. Without any security
requirements clearly stated up front, nobody should be surprised later if the application
turns out to have no security whatsoever.

Inappropriate, Ineffective Security Models

Developers who write their own security models are usually asking for a world of trouble. I
like to say that security makes an application exponentially more complicated: If you have
an already-complex application, having to worry about an internal security model squared
or cubes that complexity. Instead, whenever possible, try to rely on external security
models from proven sources.

For example, Microsoft SQL Server provides an excellent security system, mapping logins to
AD, providing granular permissions on database objects, and so forth. It seems like nobody
uses it, though: I'm constantly running across applications that simply login to SQL Server
using a single, generic login account or an application role, then implement their own
security to control what users can access. There’s a perception that managing security in
SQL Server itself will be difficult, when in fact it’s several orders of magnitude easier than
re-inventing the wheel and building a good security system into the application.

The problem is that many applications that take the “I'll do it myself” approach don’t
actually do it themselves. They tend to rely on Ul as a security mechanism: If users don’t
have a Ul to delete customer records, for example, they won’t be able to delete customer
records at all. That's the type of thinking that leads to trouble, though, because all a user
has to do is simply bypass the application’s Ul and talk to SQL Server directly, which isn’t
that difficult—especially if SQL Server has been left wide open. Developers too frequently
rely on applications to provide security and avoid the hassle of truly protecting the data.
Something as simple as Microsoft Excel can execute SQL queries, letting a mischievous user
do all kinds of damage.

S PEI 73 MICRO
Realtime CiFoeis

Chapter 5
-

Thus, unless you're an expert at designing security systems, try to adopt simple security
models that leverage the professionally-designed security systems you already have at
your disposal. And if you do need to design your own security system, make sure it’s deep
(meaning it provides security at every level of the application, not just the Ul), and broad
(meaning it covers every possible circumstance under which the application may be used).

Failure to Consider and Protect Against “Unexpected Usage”

One reason developers—and I include myself in this statement—are so bad at developing
security systems is that we don’t have vivid enough imaginations. This is the same problem
that winds up causing most security-related bugs. For example, when Microsoft issues a
patch because a malformed JPG picture, when viewed in Internet Explorer, can suddenly
cause malicious code to be executed—well, that's a lack of imagination on the part of the
original developers. Call it a failure to implement boundary checks or whatever you like,
but it's essentially nobody thinking that the software would ever deal with this unexpected,
deliberately-malformed file.

Any time you make an assumption, also assume that someone else will neglect your
assumption and that another someone will deliberately try to thwart it. A customer name
can be 100 characters in the database? Okay, so you create a 100-character text field and
think you're okay, right? Wrong: Assume someone will find a way to access your code
directly, without the GUI, and stuff a 200-character name down the application’s throat to
see what happens. Assume they will bypass your entire application and try to insert the
data directly into the database. Yes, it’s a little paranoid. That's the world of security:
Considering protection against unexpected usage.

Note

Nearly every major security issue that’'s been well-publicized in the past
decade has been a lack of consideration for unexpected usage. The
“Conficker” worm of 2009 exploited a software flaw. The “I love you” virus of
the 1990s exploited a software flaw. The IIS-targeting “Code Red” virus
exploited—you guessed it—a software flaw. And these flaws were
universally a matter of developers not considering a certain type of
unexpected condition. This is one reason why I hate developing my own
application-specific authentication or security layers: It’s just a bunch more
code where my imagination won’t be as vivid as it needs to be.

.__.
P
F

E 74 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 5
|

Lack of Security in Coding Standards

We've discussed coding standards in previous chapters. Although coding standards are
often implemented to improve maintainability and debugging, they can also be used, to a
degree, to help improve security. For example, the Computer Emergency Response Team
(CERT) at the Software Engineering Institute of Carnegie Mellon University has a list of 10
security-relating coding standards:

e Validate input

e Pay attention to compiler warnings

e Design for security policies

e Simplify your code

e Deny privileges by default

e Use the “principle of least privilege”

e Sanitize data before sending it to other systems
e Practice defense in depth

e Use effective QA techniques

e Adopta secure coding standard

Resource
Read the full list, including descriptions and examples, at
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+S

ecure+Coding+Practices;jsessionid=5648C04E538EBE721DC23493B992763
1.

The point is that there are certain basic, everyday practices that can make applications
considerably less vulnerable, which require developers to have less vivid and paranoid
imaginations, and can be incorporated into coding standards that everyone on the team
follows consistently, checks through peer review, and so forth.

Detecting Security Problems

Although performance problems are typically noticed pretty quickly by application users,
security problems may go unnoticed until they’re exploited—which is why detecting them
during development and testing is so important. Finding security problems is usually tricky
because security problems aren’t what I call “active bugs.” In other words, an application
can run perfectly smoothly, without error, and still be laden with security problems.

. 75 MICRO
Realtime CIFGEDS

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices;jsessionid=5648C04E538EBE721DC23493B9927631
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices;jsessionid=5648C04E538EBE721DC23493B9927631

Chapter 5
|

Finding security problems really consists of two parts: Relying on best practices to avoid
them in the first place (which we’ve already touched on) and relying on industry
knowledge to look for known potential problems. The latter is basically a matter of
memorizing all the different security things that commonly crop up in an application, then
diving in and looking for them—a task eminently suited to automated tools, which can
remember a far larger set of potential conditions, and find them faster. Figure 5.4 shows
how one commercial tool works with security scanning. The product comes with a rich set
of security-related rules, along with detailed explanations about what each one involves. It
can scan for code that meets these rules, thus spotting potential security problems.
Commercial providers of security scanners include Micro Focus, Fortify, and Veracode, and
Microsoft offers a tool named PREFast (which scans C and C++ code) as part of its Windows
Driver Development Kit (DDK).

I™ DewPartnor Code Raview Ritbs Managsr - [Socurity Rubsc]

o Fe Rue Vew Window el
DIdgdlDa-aleaiz
Rueset | Secum =] Hurgann nan oot Dalmat
T rper P 4 Fue | Tiie - [Ty [Largpaage | Do -~
1730 Imgropes derial of SteldertitFemiveon on & lype High Secuty Winusl Basic. NET. Visual CHNET DevPatren
Seloct ot kst one fem from sach calngony WET Avond Wil Krown Hickder Frskd Narmes High Secuty HIML DevPstrm
= I VI Uneabe ThoasPocl Mathods Diop Sceaty brfermalaon High Grcvrly Witaaal By NE T, Vs CH NET UmePwtrm
I TEH VakdalrHrgued Deabied o web exedg Fis High Seeunly Urtrer
1B COM e 01 TS EnabieViewSImeMAL is Diabled 1 Fage High Secuty HIML [
{5 Daabze 1) 1674 Irelfnctive Demand Placed on Static Conatnuctes High Srcusty Wisial Blasic NET, Vieusd [NET DienPastrar
[= [1655 SupgeewsUinmanagedCodeSecuniy Detecled High Securty Wisual Basic NET, Vieual CHHET DevPartrar
| Dreapn Tirree Pogserties (0§ 1814 Use of LoadwithPatishiame High Secury Visual Basic NET, Visusl CHNET DvevPartrer
| EnoExiception Handing 101 16 P vy Elevaled Priviegst 5 . L ic. NE iET
[Garbiage Collection [0 1660 Ay ipen: to Partialy Truihed Calets High Securty Vitusl Basic NE CHNET DevPartrar
A Irdminatuonaiestion 10] 1650 Clats o Swuchae Dpen to File Parh Hacking High Securiy Visusl Basc NET. Vieusl CHNET DeerPartroe
[Language (0 1657 Puolerisl Exsts o Secusily Cotunmention High Secuty Vinusl Basic NET. Vieusl CHNET DevPatrm
Lo 0l 1642 Folenhal o Bulercvenn High Secunty Viinial BlascNE T, Vieusd CHNET Dt
[Matanabing 0] 174D Consden umrg 5L bo protect Fosms fahenisataon cockass High Securly Dty
& Fetomarce (0] TEEE Possbie Lo of Dery o Permilky Inbomaton High Seculy Vitsl Basec NE T, Visudl CRNET Dot st a
|5 Pomaediny (04
1B Provect 1 Sokusion Propessies 0] &
| Feekatsliy] Potentlal for Falsely Uevated Privilegas
B Sty 1581
B Stardaeds [0 Trigger: Trigger ttte and number of ceeurances
= Sntem 0% Original Source Line: Source line f svailable
B eataity) + Locatlon: Location details
| s Drsfined s (04
1B Versirina 0]
B windows 21 0] Explanation
B Sevety
BrghiEn Demanding privileges in 3 construchor sliows or prevents thal object fram being created based on its given permission seb. I the Demand fais, the object s not crested, and i
B Meam [77) - cannot be used by the calling code. I the Demand succoads, the members of this newdy-croate abject do nat noed ta Demand any othor permissions, While this simphfies secunng
B Lew 37 an ohject, permissions only have to be once in the , Nt in every p [{in VELNET Fublic/Frotected/Friend) member, which can open &
B Warwg23) securiy hole.
= ELsngusz
(Vi Basic NET 123] [C® Example
[EAVeus £ NET [143] pubbe chss MyObjact
= LN {
= [Ovner i MyObj:

Figure 5.4: An automated security analysis example.

. 76
Realtime

publishers

Chapter 5
|

Integrating Security into Testing

Perhaps it should go without saying, but let’s say it anyway: Security stuff needs to be
tested. This, again, can be tricky. You can take the approach of performing “white hat”
testing, where you actively try to break the application’s security. The problem with this
approach is that you can spend tons of time with little to show for it, and may not improve
the application’s security at all. The best you can usually do in this regard is to test for the
specific security goals called out in the project’s requirements to ensure those goals have
been met.

A second approach is to use automated security scanners as a part of the testing process.
Many tools can integrate security scanning into a continuous build process so that security
scanning is always being performed. This doesn’t by any means ensure an absolutely
secure application, but it does help provide a more secure application by calling your
attention to common coding practices that leave themselves open to exploitation.

Assessing Security Impact: Before and After Comparisons

Just as I discussed for performance, it’s important to measure your security progress, both
to confirm that you are indeed making progress and to help weigh that progress against the
associated time and costs. There are two general ways to do so, and you can use them both
because they’re actually complementary.

One way is to give your application a “security score,” awarding a point (for example) for
each security goal that has been met. This does, of course, require that you actually have
security goals, which is something I'll discuss next. As your application’s security matures
and you complete more of your security-related goals, the application earns more points
and you have a simple metric for gauging your progress. By measuring the time it takes to
complete each goal, you'll get an idea of resource expenditures, too.

The second way is kind of the opposite: Log all security problems as defects, then start
working them off. The fewer defects you have, the better your security situation is. Defects
should typically point back to a specific project requirement. Most defect-tracking systems
allow you to also track developers’ time, so you can start to get a feel for how much effort
has been spent, and how much more effort will likely be needed to work off all the security
problems.

Automated scanning tools like the ones I've already discussed also provide a means of
assessing your security before-and-after. By periodically re-running tools, you'll be able to
chart your progress based on their reports.

P 77 MICRO
H{:’dlumt‘ ClFochs

Chapter 5
|

Mapping Security to Project Requirements

If your project requirements don’t specify any security goals, your application will, quite
simply, not be very secure. Developers, designers, and testers should not be expected to
create a more secure application on their own initiative: Security, as with everything else in
the application, needs to be driven by project requirements. Having the right tools in place
to track project requirements, relate specific sections of code back to those requirements,
and build test cases that test for those requirements, is the best way to ensure that
requirements are being met.

Coming Up Next

In the next chapter, I'll look at code testing with a specific eye toward testing for errors,
coding inefficiencies, and performance. We’ll look at how to construct test cases and at
various types of low-level testing, along with test monitoring and reporting ideas. We'll
examine some specific types of testing tools, including code coverage analysis, runtime
error detection, memory tracking, performance analysis, and so forth. All of this will be
firmly from the developer’s point of view—think unit testing rather than the more
comprehensive and sweeping tests that might be performed by a quality assurance tester.
In other words, these are tests you, a developer, can do on your own to help improve the
quality of your application.

After that, our final chapter will wrap up everything with a look at the benefits of
automated debugging, analysis, and testing. With the rest of this guide behind you to define
the things you need to do, automation can help you do them more efficiently, accurately,
and consistently.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 78 MICRO
Realtime CIFGEDS
yublishers e, T

http://nexus.realtimepublishers.com/

	Chapter 5: Addressing Performance and Security Problems
	Common Sources of Performance Problems
	Inefficient Coding or Algorithms
	Excessive Code Path Length
	Resource Bottlenecks
	Poor Contention Management

	Detect and Resolve Problems—Don’t Hide Them
	Detecting Performance Problems: Single-Tier
	Trace Application Operations
	Differentiate Application from OS Calls
	Use of Dynamic Call Graphs to Navigate App Components
	Monitor and Analyze Performance Data

	Detecting Performance Problems: Multi-Tier
	Optimize Tier Performance
	Analyze Multi-Tier Performance

	Mapping Performance to Project Requirements
	Integrating Performance into Testing
	Assessing Performance Impact: Before and After Comparisons
	Common Sources of Security Problems
	Lack of Clearly-Stated Security Design Goals
	Inappropriate, Ineffective Security Models
	Failure to Consider and Protect Against “Unexpected Usage”
	Lack of Security in Coding Standards

	Detecting Security Problems
	Integrating Security into Testing
	Assessing Security Impact: Before and After Comparisons
	Mapping Security to Project Requirements
	Coming Up Next
	Download Additional eBooks from Realtime Nexus!

