Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 4
|

Chapter 4: Addressing COAING EITOTS. .. sssssssssssssessssssssssssssssssssssssessessessssssssssans 59
A Taxonomy Of COAING EITOTS ...ereereeereeseereesseeseessessessesssessessessssssssssssssessssssessssssessssssssssessssssssssesns 59
SYNTAX ETTOTS coueuteeeeeceseesesseessesseesseseessssss s s s se s s s b e nn s 59
NYE 00 E Lo La (0 0 o) 60
0 o ol 23 0 P 60
Memory and RESOUICE EITOTScereeneeeessessessessesssessessessesssessssssesssssssssssssssssssssssssssssssssssssssanes 62
LiBAKS ettt ettt s s bR 62
Pointer/Reference Errors, Overruns, and Uninitialized Memory ... 63

APT FAIIUTES oottt sses s s s 66

D g 0) WY 1000000 F= T 66
Addressing COAING EITOTS.....rreeessssssssssssssssssssssssssssssessssssssssssesssesssssssssssssssssssssssssssssssssssssses 67
0 L 0V 0T TP 67
0003501 0 153 3 TSSOSO 70

D T=] 010 o o) PP 70

y L0 00 =T T0 R o0) PP 72
Error Handling in COAe ... ereeceeeeeseeseseessessessesssessessesssessssssesssessessssssesssssssesssssssssssssessssanes 73
Managing the Native Code/Managed Code Boundary and Monitoring API Calls............ 74
Case Study: Fixing @ LEaKY APP .coeeeersessesssesssessssssssssssssans 75
ETTOTS FIXEQ coeuieceereereeseeseeeesseeses e sees s sssesss s s ss e es s s nnanes 76

Realtime 1 CIFochs

Chapter 4
|

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 4

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 4: Addressing Coding Errors

Without a doubt, coding errors—that is, bugs—are one of the first things anyone thinks
about when they speak of code quality. And obviously, code that works is perceived as
being of higher quality than code that doesn’t! As I've mentioned in previous chapters,
focusing on bugs as your exclusive measurement of quality is shortsighted, but that doesn’t
mean we can’t spend plenty of time getting rid of bugs, because bug-free code is definitely
higher-quality code.

In this chapter, then, we’ll focus on types of coding errors because there are quite a few.
Each type has distinct techniques for avoidance and removal, and we’ll spend the bulk of
this chapter focusing on these techniques as well as the tools that help implement those
techniques more quickly and efficiently.

A Taxonomy of Coding Errors

Because there are many different types of errors, [think it's important to pull them out
individually, describe them, and focus on the techniques involved in either avoiding them
or removing them. Again: The techniques involved. Although I'm a big fan of tools, and in
the second portion of this chapter I'll look at plenty of tools, it’s really important to
understand that tools do not remove coding errors. Tools simply implement key
techniques—often more quickly and efficiently than you could do so manually—but it’s the
techniques, whether implemented automatically or manually, that save the day.

Syntax Errors

Syntax errors occur when a language compiler or static code analyzer is parsing the code
that you've typed. Typically, syntax errors result from typos, incorrect use of statement
syntax, and so forth—illegal characters, missing operators, missing end-of-line characters,
unbalanced parentheses or quotation marks, a misused or misplaced reserved word, and so
on. Syntax errors can nearly always be avoided or caught if you're using the right tools and
techniques.

Here’s a straightforward example of a syntax error:

If (var) {
Log("Var is True")
Return False

)

p 59 MICRO
Ht"(llumt‘ ClFochs

http://nexus.realtimepublishers.com/

Chapter 4
-

The If construct’s enclosing braces aren’t balanced; the programmer has mistakenly typed
a closing parentheses rather than a closing brace. Actually, depending on the programming
language, there might be another syntax error. In most C-based languages (including C#),
each line of code should be followed by a semicolon, which isn’t the case here. In fact, that
illustrates one of the difficulties in manually catching syntax errors: They’re entirely
dependent upon the language syntax. Developers who are new to a language, or who are
used to working in multiple different languages, often make (and miss) these simple
mistakes.

Semantic Errors

Semantic errors are more difficult, and sometimes impossible, to catch without running the
code. In other words, the code will look correct but still contain errors that are detected
during the execution of the code. This might include an incorrect variable type or size,
subscripts being out of range, and so forth. Some modern development tools can catch
many types of semantic errors without running the code. They do so through a few
different techniques, including very advanced code parsing and analysis, pre-compilation in
advanced compilers, and so forth. In fact, some of the most important advances in the .NET
Framework and Visual Studio over the years have been increasing the number of semantic
errors that can be detected while you're typing the code.

Here’s an example of a possible semantic error:

For (var; var < 10; var++) {
Console.WritelLine var;
}

This illustrates the difficulty of statically catching semantic errors, especially manually.
Was var initialized? We don’t see any declaration of var in this code snippet, so we’d need
to scan through the rest of the code to see whether var had been declared within our
current scope. Alternately, we could simply declare it right here, but if the variable name
had already been declared, we might generate another error in declaring it a second time.
That ambiguity is exactly why older programming languages and their development
environments don’t catch this type of error without running the code: They couldn’t keep
track of all the variables based solely on static parsing of the program code.

Logic Errors

Logic errors are among the more frustrating variety of errors. Typically—and this is an
oversimplification, but a good rule—logic errors are caused when a variable, property, or
some other container contains something other than what you thought it did. Usually, the
code will compile and run without error—but it won’t behave the way you want. Here’s a
very simplistic example:

If (var) {
Delete(filel);

} else {
Archive(filel);

}

SR PER 60 MICRO
Realtime CIFGEDS

Chapter 4

Staring at this code as-is, you can’t detect any error. The code is syntactically correct, and
for the sake of argument, let’s say it's semantically correct as well. But when you run the
code, it sometimes incorrectly deletes file1 rather than archiving it—a logic error. The only
possible cause for this particular logic error is that var doesn’t contain what we expected it
to. Given the syntax, we're expecting var to contain a Boolean (True/False) value; a
problem is that most programming languages interpret any non-zero value as True, and
zero as False. Let’s expand the example and see a little more of the code surrounding it:

Declare int var;
Var = GetUserInput("Delete File? Click No to Archive instead.");

For (var=0; var < 5; var++) {
If (UserIsAdmin(UserID,var)) {
Exit For;
}
}

If (var) {
Delete(filel);
} else {
Archive(filel);
}

This example is, of course, vaguely C#-flavored pseudo-code, so let me walk through the
logic.

1. We begin by declaring a variable var.

2. We ask for the user’s input on whether to delete a file—let’s say the GetUserInput()
function is displaying a dialog box with Yes and No buttons, and that it returns True
if Yes is clicked, and False otherwise.

3. Then we enter a For loop, which uses the variable var as its counter. This is actually
where our logic error comes from: If the user had clicked Yes, then var would
contain a non-zero value. However, the For loop initializes it to zero, losing our user
response. If the user is an admin, the For loop will immediately exit, leaving var
containing zero, which most languages interpret as False—the opposite of what the
user was after. If the user was not an admin, var will eventually equal 5, which most
programming languages interpret as True—deleting the file, even if the user said
not to.

. 61 MICRO
H{:’dlumt‘ CIFochs

Chapter 4
-

Obviously, this is a simplistic example, but it shows how tricky logic errors can be in
comparison with syntax or semantic errors. It also illustrates how proper programming
techniques can often make such errors more difficult to commit:

e Ifvar had been declared as a specific data type, such as Boolean, the development
environment may have been able to treat var’s re-use as an integer (in the For loop)
as a semantic error.

e If clearer variable names had been used—such as UserChoice and Counter rather
than var—it might have been more obvious to the programmer what was going on.

e It's possible that the For loop was pasted in as a snippet or from elsewhere. Reusing
code is fine, but you always have to examine it to see if it needs to be refactored
(that is, variables and other elements renamed) in its new context.

Memory and Resource Errors

Finally, we come to what is definitely the most frustrating and difficult-to-catch type of
error. These errors are typically not detectable when coding, nor are they easily detectable
during the unit tests a developer would run. These errors often manifest only when the
code has been run for some time, with a broad range of input data and with input data that
is specifically selected to be outside the ranges of data that the code should find itself
dealing with.

Understanding these types of errors often requires that you understand a bit more about
what’s going on “under the hood” in your language compiler, in the computer’s operating
system (0S), and in any runtime libraries that you may be relying on. Modern programming
languages often abstract these lower-level elements, making it even more difficult to
understand, detect, and fix these types of errors. The .NET Framework’s Common Language
Runtime (CLR), in fact, will in large part keep these types of errors from happening in
managed code (that being one of the real purposes of managed code in the first place)—but
not always.

Leaks

Memory leaks are when an application gradually uses more and more memory over time.
This is often caused by the application not properly de-allocating memory that is no longer
in use. For example, when an application creates a new variable, memory is allocated to
store that variable’s contents. When the application stops using the variable, that memory
should be returned to the pool from whence it came so that it can be re-used. In managed
code, memory leaks are fairly rare (at least, the more simplistic ones are) because the CLR
takes care of allocating memory and periodically de-allocating it (a process known as
garbage collection) and returning it to the OS.

In fact, many memory leaks in managed code come from bugs in the underlying Framework
classes or components. (The site
http://blogs.msdn.com/joncole/archive/2005/12/15/Debugging-a-memory-leak-in-

managed-code 3A00 -Ping- 2D00 -SendAsync.aspx documents one such bug from several
years ago).

SR PER 62 MICRO
Realtime CIFGEDS

http://blogs.msdn.com/joncole/archive/2005/12/15/Debugging-a-memory-leak-in-managed-code_3A00_-Ping-_2D00_-SendAsync.aspx
http://blogs.msdn.com/joncole/archive/2005/12/15/Debugging-a-memory-leak-in-managed-code_3A00_-Ping-_2D00_-SendAsync.aspx

Chapter 4
-

[t's important to understand that memory leaks in managed code are not impossible. The
CLR’s garbage collector only handles managed memory; that is, it can only de-allocate
memory that it allocated in the first place. .NET-based applications use unmanaged
memory in a number of instances, and many developers are often unaware that their
applications are doing so (the most frequent cause is accessing unmanaged code, such as
legacy Component Object Model—COM—objects). The CLR itself may rely on unmanaged
memory, and some applications deliberately make use of unmanaged memory for various
purposes. There are also, of course, times when the garbage collector itself may not
perform correctly—often due to subtle programming errors that prevent the garbage
collector from doings its job.

Memory leaks can typically be resolved in the short term simply by restarting the
application, although in severe instances, an entire OS reboot will be required. This is
merely a workaround, however, and will have to be repeated as the application is re-
started and the memory leak starts anew.

Pointer/Reference Errors, Overruns, and Uninitialized Memory

Pointers and references can be tricky to work with. In a simplified example, the idea is that
a programmer places some data into an area of memory—variables are essentially easier-
to-remember names for memory locations. When that data needs to be provided to a
function or method or something, the programmer has two choices: pass the data itself
(often creating a new copy of it in memory) or pass a reference or pointer to the original
data. The difference is important. When passing by value (that is, passing a copy of the
data), any changes to the copied data will not be reflected in the original data. When
passing by reference, any changes made will be made to the original data because that is all
there is.

Reference errors occur when a bad reference is provided. Again, to oversimplify a bit,
imagine you put some data in memory location 5. It occupies memory locations 5 through
70. When you pass a reference, however, you lose track and pass 6 as the reference. The
result is that the code getting the reference isn’t getting the correct data. It may then
modify locations 6 through 71—the correct length, but offset by one from the correct
starting position.

Managed code makes all of this a lot easier, as you typically just pass variable names, and
the CLR keeps track of where the actual data lives in memory. But when managed code
starts dealing with unmanaged code, such as making OS API calls, you’ll have to do more of
the pointer management yourself.

Pointers can be more insidious, too. Keep in mind that you usually store a pointer in a
variable—meaning it’s stored in a location of memory. That means you have one bit of
memory acting as a cross-reference (or pointer, hence the term) to another. Figure 4.1
illustrates: Memory location a contains a value that points directly to memory location b.

. 63 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 4
|

1464
1463
—»b[17 |1462
1461
1460

876
875
— a| 1462 |874
873
872

Figure 4.1: Pointers in memory.

Now, let’s say memory locations 872 and 873 are being used to store something else. But
your code loses track of that pointer, and accidentally overwrites not 872 and 873, but 873
and 874—offset by one from what you should have done. The result is that you've
overwritten 874, which will now no longer point to the correct 1462. The resultis a
cascading effect of errors, often resulting in an application exception or crash—although
the results can be much worse, depending on exactly what data is overwritten.

This catastrophic effect is often the goal of a buffer overrun attack. For example, suppose
that your code expects two bytes of input to a function, and it writes those to 872 and 873
(keeping with the illustration in Figure 4.1). If an attacker can find a way to pass three bytes
to your function, and if your function is not doing boundary checking, then it'll overwrite
872 through 874. The attacker can control what’s in that third byte, so he can control the
memory pointer—directing your application to use his data instead of your data. This is
something we’ll cover in more detail in the next chapter, but it's an example of how pointer
errors can create truly devastating results.

Note

The danger of using pointers is one reason that the use of pointers in C#
requires the code to be marked with the unsafe keyword.

. 64
Realtime CIFochs

Chapter 4

Array overruns are related, conceptually, to pointer errors. An array is really little more
than a block of memory used to contain multiple related pieces of data. If an array is
originally allocated to contain 10 items, it cannot contain 11 items unless it is first re-
allocated. Attempting to stuff 11 items into 10 slots results in an array overrun, where the
11t item isn’t written to the array but rather to an adjacent area of memory that probably
contained something valuable. In the context of managed code, the CLR usually catches this
violation and instead returns an error, refusing to allow that 11th item to be written to
memory. This code demonstrates an array overrun in C#:

using System;

class MainClass {
public static void Main() {
int[] sample = new int[10];
int i;

// generate an array overrun
for(i =0; 1 < 100; i = i+l)
sample[i] = i;
}
}

The array sample was declared with 10 elements, but the for loop attempts to write 100
values to it. When the 11t value is written, an exception will be generated:

Unhandled Exception: System.IndexOutOfRangeException: Index was outside the bounds
of the array.

at MainClass.Main()

Note

Note that some programming languages (the Web programming language
PHP is an example) will simply dynamically re-allocate the array rather than
generate an error.

Last up is uninitialized memory—or uninitialized variables, which is a distinct but related
problem. We managed-code developers often get a bit lazy because things like the CLR try
to ensure that all variables have a default value—zero, null, an empty string, or whatever.
In reality, the CLR is initializing the appropriate areas of memory with those “default”
values because memory doesn’t have a default value. Any given memory location effectively
contains a random value until we explicitly put something into it, so reading a memory
location before we have explicitly written to it is inviting disaster.

. 65 MICRO
H{:’dlumt‘ CIFochs

Chapter 4

Using Figure 4.1 as an example again, suppose we read location 874 to get a pointer. We
write the code so that if we get zero back, we know the pointer doesn’t yet exist; if we geta
non-zero value, we use it as a pointer. That’s fine, provided we originally initialized that
location with a zero in the first place—we can’t rely on it to magically be zero just because
our application just started. Most programmers will initialize a when they create it (inta =
0). If the programmer does not (int a), that simple omission opens the door for trouble.

API Failures
Last up for resource errors are what [generically call API failures. An API—application
programming interface—is some chunk of code written by someone else, that we can rely
on to perform some action for us. This might be asking the Windows OS to allocate a block
on disk, or it might be asking Microsoft Office to open a Word document. APIs are
essentially “black boxes,” meaning we push their buttons and they go off and do whatever it
is they do—and give us very little insight into what that is.

When API calls work, all’s well. But when an API call fails, our code needs to recognize that
the result may be more than just a simple error, especially if the API is written in non-
managed code. A failed API call may leave the system in an unstable state, may not return
an error at all, may corrupt memory, and so forth. It's very important, when making calls to
external APIs, that your code be prepared for anything to happen, and that you verify the
results of the call before relying on them.

Error Summary
With these different types of errors, we're dealing with significantly different means of
detection, and different results when they’re left in the code during execution. Table 4.1
summarizes some of the key characteristics of these types of errors.

Error Detectable Detectable Detectable Code Code runs | Error can be caught
Type statically by by running compiles and manually without
(without compiling the code and runs behaves any specialized
compiling the the code without generally tools
code) error as
expected
Syntax Usually Always N/A N/A N/A Yes
(since the
code will not
compile)
Semantic Sometimes Usually Always Possibly No Yes
Logic Not usually Not usually Yes, with Usually Usually not Typically yes
thorough
testing
Memory Almost never Almost never Only with Usually Usually Usually not
and special
Resource monitoring
and tools
Table 4.1: Key characteristics of common error types.
66 i
JI P MICRO
NEalulllc FOCLUS

Chapter 4

The general idea here is that as you move through the taxonomy of more complex and
difficult errors, it becomes more difficult to catch them statically. At some point, even fairly
thorough testing won't catch the problems; instead, you'll need to use specialized
monitoring and testing tools to catch specific types of problems.

Addressing Coding Errors

So how do you address coding errors? Obviously, some errors are detectable before you
even compile or run your code, while others aren’t detectable at “design time” and require
that you execute your code.

Editing Tools

Editing tools can help catch both syntax and semantic errors, and modern editions of Visual
Studio have plenty of power built right in to help address these kinds of issues. For
example, a feature as simple as syntax color-coding—something most of us take for granted
in a development environment—can easily help prevent syntax errors. Once you become
accustomed to the “proper” color for keywords, variable names, and so forth, it’s easier to
avoid typos by simply looking for things that don’t turn the proper color as you type. It’s
almost a form of automated “spell checking” that, with practice, can be very effective at
avoiding simpler syntax errors. Figure 4.2 shows this in action, with a misspelled “For
Each” keyword that didn’t turn the blue that keywords normally turn.

Dim wvar, coll

Freach wvar in coll

AAAAAA AAAA

ei=b. 4%

For Each wvar In coll

Next

Figure 4.2: Color-coding in Visual Studio.

Visual Studio’s code-hinting and code-completion features are certainly convenient, but
they also help avoid syntax and semantic errors by reminding you of the proper code
syntax and by helping to complete elements of that syntax for you. If the proper syntax is
right in front of your eyes, you're more likely to get it right; if the computer is doing some of
the typing for you, you're less likely to make simple typos that result in errors later. Figure
4.3 shows the code-completion feature, which tries to guess what you're typing and offers
to finish it for you.

. 67 MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 4
|

Dirm s As New System.Data.sq{

i O E |Foreipace Sq

{} SqIClient
{} SqiTypes

SS

Common | All

Figure 4.3: Code completion in Visual Studio.

Figure 4.4 shows the related code-hinting feature, which helps to remind you of the correct
syntax and even offers multiple versions of the syntax (typically for overloaded methods).
Reminding yourself to use these tools, rather than just typing manually, takes some
practice—but it’s worth the effort.

Dim s As New System.Data.SqIClient.SqlConnection(I

4 lof 2w New {connectionString As String) j.&cceptButtor
as | ' AccessibleDe
V% AccessViolati
Y% ActivationCo
=] AddressOf

=] Aqgreqgate

Figure 4.4: Code hinting in Visual Studio.

For several versions now, Visual Studio has offered live syntax checking. This uses a
combination of static code parsing and pre-compiling through the .NET Framework CLR,
and helps alert you to semantic errors by using a squiggly underline—not unlike the
automated spelling- and grammar-checking in Microsoft Word. You should make the effort
to fix any of these, and Visual Studio will in many cases offer pop-up help that explains the
problem it sees and may even offer to automatically fix it. Figure 4.5 shows an error, along
with the pop-up tool tip that described the problem Visual Studio sees.

. 68 B
Realtime FOELS

publishers Leading the Evoluti

Chapter 4

Name 'coll’ is not declared.

For Each var In cq-ll

A l

Next

Figure 4.5: Static error detection in Visual Studio.

Figure 4.6 shows the assistance that Visual Studio offers. In this case, it's guessing that we
misspelled “color,” and is offering to correct the problem.

For Each war In coll

Next Name 'coll' is not declared.

Change 'coll' to 'Color'.

Sub

Figure 4.6: Automated error resolution in Visual Studio.

A related feature helps track potential logic errors, including the use of undefined variables,
or variables that might not be assigned a value in every possible code path. Highlighted
with a less-urgent green underline, you should still ensure that these issues are addressed.
In many cases, you’ll be fixing them as you code, if you're using good coding practices; any
green underlines that remain after you think you’re done should still be addressed. Figure
4.7 shows this feature, calling attention to a variable that has been used but not yet
assigned a value within the current context. Underline-free code is definitely a goal to have
in mind!

Dim var, coll
For Each wvar In J:o.l]l

l"JariahIe ‘coll' is used before it has been assigned a value. A nu

Next

Figure 4.7: Detecting potential logic errors in Visual Studio.

. 69 B
Realtime FOELS

publishers Leading the Evolution

Chapter 4
|

Third-party Visual Studio add-ins can offer even more capabilities to this list, helping Visual
Studio spot increasingly-complex types of errors at “design time” and helping to improve
the quality of the code before you even run it for the first time.

Compilers

Language compilers, including Visual Studio’s .NET Framework compilers, are invaluable at
catching syntax and semantic errors. Of course, you typically want to catch as many of
those as possible as you write the code, and the features discussed previously are designed
to do exactly that. But the compiler is a sort of last line of defense for many types of
semantic errors. Visual Studio’s is capable of not only flagging errors—that is, code that just
won’t work as-is—but also warnings, which indicate code that may execute but might
produce logic errors at runtime. Figure 4.8 shows Visual Studio’s compiler output with
several errors and no warnings given.

Q 4 Errors | | 1\ UWarnings\ i)l Messages.

J | Description
J 1 Name 'ForEach'is not declared.

Q 2 Method arguments must be enclosed in parentheses,

W 3 Comma, "), or awvalid expression continuation expected.

Figure 4.8: Visual Studio’s compiler.

Debuggers

Visual Studio’s built-in debugger is a mature and powerful tool for finding logic errors
(because you’ve usually found most syntax and semantic errors by the time you come to
the point of using this tool). Remember that I described logic errors as primarily deriving
from properties and values that contain data other than what we expected; the goal of a
debugger, then, is to help review the contents of those items as the code executes so that
you can correct your assumptions. Essentially, the debugger is a way to get inside your
code as it executes and examine the data your code is actually using.

. 70 i
Realtime CIFochs

Chapter 4
|

Here’s my debugging methodology: I sit down with the code—often a printout of it, believe
it or not—and document my expectations for its execution. I make notes about what values
[expect to find in certain properties or variables, and [make notes about the code paths I
expect the execution to follow. Granted, a more experienced developer can do all that in
their head on the fly, but the act of noting those expectations is key. Once [have my
expectations, I run the debugger, and I look for the point where reality doesn’t meet my
expectations: That's generally the point where the bug lives, or very close to it.

There’s a caution here, however: A debugger is fundamentally useless if you don’t have a
solid idea of what your code should be doing and a firm expectation for what data you’ll see
in advance of running the app. In other words, if you've no idea what your code should be
doing or what data you should be looking at, you won’t recognize the point at which things
go wrong. Figure 4.9 shows an overview of Visual Studio’s debugger.

HPublic Clas=s Forml

-

=] Private Sub Forml Load(ByVal sender As System.Object, ByVal e As System.Eventirgs) Handles
Dim var = InputBox ("Enter a number")
Dim i As Integer
o
Console.WriteLine (i * wvar)
Next
End Sub
“End Class
I
ind
«| |
Locals - 2 X
Name Value Type
@ Me {Windowsapplication1.Form1} Windowss
®H @ge {System.Eventargs}t System.E
@i i} Integer
@ sender {Windowsapplication1 .Form1} Object
sy JHb & [sting |
Figure 4.9: Debugging in Visual Studio.
71 P
Realtime MICRO
ealaine FOCUS
pul lishers Leading the Evolution

Chapter 4
-

Here’s quick overview of some of the main features:

e The yellow highlight indicates the next line of code that will be executed. You can
manually set the next line if you want to step back to an earlier point in the code.

Note

The debugger’s features differ a bit between .NET Framework languages. In
Visual Basic, for example, you can edit the code while execution is paused.
You cannot edit code on the fly for C or C#.

e The red circle indicates a breakpoint, which you can set manually. Breakpoints
cause code execution to pause, allowing you to review the current state.

e The Locals window at the bottom displays the contents of local variables. Here, you
can see that var contains the string “Hello,” which is a problem because the code
specifically prompts for a number and expects to use the contents of var as a
number. This, then, is where the bug lives, and we might choose to fix it by first
validating the user’s input rather than accepting it blindly, or we might declare var
as a numeric data type, thus forcing an exception if the user enters something other
than a number.

I realize that most developers are familiar with Visual Studio’s debugger; I mention it only
because I see a lot of developers struggling to use the debugger effectively, typically because
they haven'’t taken a moment to articulate their expectations for the code’s execution.
Without those expectations, there’s nothing to debug: Debugging is fundamentally about
determining where your expectations and assumptions differ from the real-world
conditions.

Automated Tools

Automated tools that either integrate with Visual Studio or run independently can help
spot additional code problems—typically without running the code. Some of the
advantages offered by these types of tool include:

e Static source code review with an emphasis on detecting common coding errors,
inappropriate language usage, and an examination of calls to underlying services
and frameworks.

e Error detection primarily for identifying nonstandard or poor programming
practices, validation of Windows API calls, resource tracking and leak detection for
unmanaged code, and tracking of transitions between unmanaged and managed
code.

e Memory analysis is often running alongside your code to monitor considerations
such as overall memory consumption and memory leaks

. 72 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 4
|

We'll look at some of these areas in more detail in upcoming sections. However, the overall
message is that third-party tools can often provide greater breadth of code analysis, greater
specificity for problems such as API calls and memory leaks, and deeper reviews of coding
practices. By working with Visual Studio, these tools help developers spot code quality
problems as they work without adding a great deal of additional process or overhead.

Error Handling in Code

Some errors that occur at “run time” can’t be handled merely through debugging, correct
syntax, or proper semantics. These errors can, however, be anticipated and dealt with by
the code itself. Examples include things like missing files, unreachable server resources,
insufficient user permissions, and so forth. It’s important to understand where these types
of situation-specific errors can occur so that your code can be prepared to deal with them.

Figure 4.10 illustrates the preferred way to handle errors in most .NET Framework
languages—a Try...Catch block (each language has a specific syntax, and some languages
may use alternate constructs, but the idea is the same). In the Try portion, you execute the
code that you anticipate an error for; the Catch block receives the error and takes
corrective action, notifies the user, and so forth.

Dim filename As String = InputBox("filename?")
Try
OpenFile(filename)
Catch ex As Exceptiod
MsgBox ("File could not be opened")
End Try I

Figure 4.10: A Try...Catch block in Visual Basic.

This type of construct is really your last line of defense against run-time exceptions that
“crash” the application: Anticipating errors and dealing with them gracefully.

Note

've seen instances of developers wrapping entire functions in one big
Try...Catch block and not putting any code in the Catch portion. That has the
effect of suppressing errors, which looks nice, but is ultimately self-defeating.
Errors are useful; you should at least log the errors so that they can be
reviewed later. No application should generate exceptions and crash, but you
should achieve that by properly handling and eliminating errors, not by
simply ignoring them.

. 73 MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 4
-

Managing the Native Code/Managed Code Boundary and Monitoring API Calls

Dealing with code errors becomes much more complex when managed code needs to
execute unmanaged code or vice-versa. Visual Studio, for example, offers great tools for
debugging managed code, but it can’t step the debugger into any unmanaged code that your
application may need to call on. The boundary where unmanaged code connects to
managed code is something largely handled by the .NET Framework’s CLR (through a
mechanism often referred to as the interop layer). It is an area rife with possibilities for
memory leaks and other difficult-to-catch issues simply because the CLR itself has very
little control over what the unmanaged code does.

This is an area where third-party tools—even some free ones, although commercial ones
tend to offer a more mature feature set—can be invaluable. By carefully tracking resources
and memory, these tools can point to specific instances where memory is leaked, either by
the unmanaged code component, by the CLR, or by managed code. In some cases—such as
when the unmanaged code is a third-party component you're using—you may not be able
to fix the problem but at least you can positively identify it and escalate it to the

appropriate party.

Note

The difficulty in dealing with managed/unmanaged code connections, and
your inability to correct errors in third-party unmanaged code, is why many
developers try to use extensions and components written entirely in
managed code. It's not that managed code is inherently better (in fact,
sometimes its performance can be poorer); it’s that keeping everything
within the CLR reduces the opportunities for problems such as memory
leaks.

API calls are a special situation. Typically, they have all the same risks and problems of any
dealing between managed and unmanaged code. To that, they add the complexity of
different language structures, different data structures, and in many cases, an inability to
really see what’s going on after you make the call. Again, third-party tools can be helpful.
Numerous free and inexpensive tools can monitor API calls, trace API call execution,
display input and output data, and so forth—essentially acting as a kind of “API call
debugger” that supplements Visual Studio’s own debugger. Some editions of Visual Studio
can even do a good job of monitoring API calls that your code makes, and commercial
Visual Studio add-ins can help by validating API calls (for example, making sure you're
using them correctly) and monitoring the actual calls made by your code at runtime.

.__.
P
F

E 74 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 4
|

Case Study: Fixing a Leaky App
Memory leaks are one of the most troublesome and difficult kinds of code defect to deal
with. Consider this C# code:

using System;
using System.Threading;

namespace MsdnMag.ThreadForker {
class Program {
static void Main() {
while(true) {
Console.WriteLine(
"Press <ENTER> to fork another thread...");
Console.ReadLine();
Thread t = new Thread(new ThreadStart(ThreadProc));
t.Start();
}
}

static void ThreadProc() {

Console.WriteLine("Thread #{0} started...",
Thread.CurrentThread.ManagedThreadId);

// Block until current thread terminates - i.e. wait forever
Thread.CurrentThread.Join();

}

}
}

This code launches a thread, which displays its thread ID and then tries to Join on itself.
This causes the calling thread to block, waiting on the other thread to terminate. So the
thread is caught in this kind of catch-22—the thread is basically waiting for itself to
terminate. Every time you press Enter in response to the prompt, the program consumes
another 1MB of memory. The problem is that the thread is being dropped each time
through the loop, but the CLR’s garbage collector doesn’t reclaim the memory that was
allocated—this is actually a good thing, given how threads are used by the system, but in
this case, the result is a memory leak. Tools in Visual Studio, third-party tools, and
commercial Visual Studio add-ins can all display this type of memory usage. In this
example, the memory usage comes from the CLR’s stack, and the tools would show you
that, allowing you to see where memory leaks were occurring, helping you tie that back to
the code that was causing it, and then fix the problem.

Note
This example was adapted from a longer discussion on memory leaks at

http://msdn.microsoft.com/en-us/magazine/cc163491.aspx; it’s definitely

worth a read as other types of leaks are also discussed, along with techniques
for solving them.

p 75 MICRO
Ht"(llumt‘ ClFochs

http://msdn.microsoft.com/en-us/magazine/cc163491.aspx

Chapter 4
|

Errors Fixed

This chapter offers a solid understanding of the different types of errors, and how to begin
addressing them. Perhaps most importantly, this chapter highlighted that different types of
errors can be avoided and handled in very different ways, so it's important to have a
complete toolkit and to understand a variety of techniques.

Next up, we'll look at addressing poor-quality code that stems from something more
complex than coding errors—performance and security. Often referred to as non-functional
requirements, they’re definitely trickier than most coding errors, but in many ways they
create a more visible and immediate perception of quality—or lack thereof.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 76
Realtime CIFochs

http://nexus.realtimepublishers.com/

	Chapter 4: Addressing Coding Errors
	A Taxonomy of Coding Errors
	Syntax Errors
	Semantic Errors
	Logic Errors
	Memory and Resource Errors
	Leaks
	Pointer/Reference Errors, Overruns, and Uninitialized Memory
	API Failures

	Error Summary

	Addressing Coding Errors
	Editing Tools
	Compilers
	Debuggers
	Automated Tools
	Error Handling in Code
	Managing the Native Code/Managed Code Boundary and Monitoring API Calls
	Case Study: Fixing a Leaky App

	Errors Fixed
	Download Additional eBooks from Realtime Nexus!

