Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 2
|

Chapter 2: Coding Standards and Best PractiCes.....mnesssssssssssssesesessessssssssssssss 20
The Purpose of Coding Standardsoceeenreereeneeseesneesessesssesssessessesssessesssessssssessesssesssssessesssesssees 20
Modern CoOAing STANAATASouueureereereesreereesseesessessesseessessessessssssssssssssssssssessesssessssssasssssssssssssssssssessssaes 23

Approaches to Naming, Comments, and FOrmats ... 23
NaAMING CONVENTIONS ...ocuierirircreesesis e ssss s ssssssssssssssssssssssas 23
CommeNting CONVENTIONS ...cuiuiueiecesressessessesssssesssssessessesssssss s sssssssssesssssssssssssssssssssessesssssesssssssans 25
FOormatting CONVENTIONS ... ssssssssssssssssssssss s ssssssssssssssssssns 26
FUNCtional CONVENTIONS ...c.ceueeeeerreesees s seessessesssessessesssessesssesssessesssssssessssssessssssesssessesssessesssssssesns 27

Established Standards for Visual Basic, C#, C++, and ASP.NETccocvrrrrssseeesrssseenes 28

Defining Coding Standards in Visual StUAio.....c.cceeereeneeneeserneeseeseesseesesseesssseesssssessssssesseens 29

Resistance to COding StAaNAards ... ssssssssssssssssssssssssssssans 30
Best Coding Practices, Processes, and ProCeAUIES ... eeneeneenneeneenesseesseesesseessesssessesssennes 32

IntelliSense and Code Refactoring TOOIS ... eeeeneereeneesseesesseessesseessesssssssssssseessesssessssssssseanes 32

Task List and COAe SNIPPELS ...ccuerererrirssersseessssssssssesssesssessssessesssssssssssssssssssssssssssssssssssssssesssssssassases 33

Background Compilation and Continuous Code Feedback.........ccormremensenenennenrenenernennens 34

Code COMPIEXItY ASSESSIMENTS....viieresresresssessssssssssssssssessessesssssssss s ssssssssssssssssssssssssssssssssssssssnes 35

INEEGTated DEDUGZET ...coeeeeeeeeeeeseeees et seesse s s s bbb p e 36

ViSUAL DESIZN TOOIS ..o ssss s s ss s 36

Software Development MethOdOlOZIES ... sesses s sessessesssessenaes 37

W ALETTALL ..ottt s s s bR 37

AGILE ottt RS 38

Incremental/Iterative (Extreme Programming).......o s 39

4 =) 3PP 40

Continuous Integrated Testing and Nightly Builds......cconneennencensenseneeseeseeseeeesseesneenee 40

Defining Your Coding Standards.......eeereressans 41

. i MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 2
|

Copyright Statement

© 2009 Realtime Publishers, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtime Publishers, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers, Inc or its web site
sponsors. In no event shall Realtime Publishers, Inc. or its web site sponsors be held
liable for technical or editorial errors or omissions contained in the Materials, including
without limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 2
|

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for

IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 2: Coding Standards and Best
Practices

Coding standards have been around for nearly as long as programming languages. In fact,
as soon as programming languages became complex and flexible enough that developers
could adopt their own individual styles, and as soon as one developer realized he didn’t like
another developer’s personal style, coding standards were invented.

Software development is, in many ways, more analogous to art than science. Like writing
prose, the author—or programmer—constructs algorithms and concepts in her head, then
translates those to the screen using the grammar of whatever language she is working in.
Because programming languages must offer flexibility in order to be useful, there is
inherently more than one way to accomplish any given task. Coding standards seek to
reduce that flexibility just a bit so that developers can more easily understand the code
written by others (or, frankly, that they wrote themselves).

In a way, coding standards represent the difference between “good grammar” and “bad
grammar.” For example, the English language is flexible enough to allow a person to write
“I ain’t got no candy” or to write “I do not have any candy.” Most fluent speakers will
understand either phrase but only the second one is considered proper grammar—in other
words, only the second one follows the accepted standards for the language. The standards
don’t restrict the language’s flexibility to express different sentiments, but they do try to
provide consistency and form to keep everyone more or less on the same page.

The Purpose of Coding Standards

A Web search for the phrase “coding standards” turns up thousands of results. Many are
different coding standards that have their own name, their own fans, and their own sets of
rules. Some of the oldest documented coding standards are for the COBOL language, which
was originally used on mainframe computers before the advent of personal computers. The
COBOL Style Forum (http://home.swbell.net/mck9/cobol/style/style.html) collects
commonly accepted styles for that language, and neatly categorizes them into groups:

e (Cosmetics—How to format comments, indentation, the use of white space, etc.

¢ Names—Naming conventions for variables and other language elements

e Subprograms—Ways in which modules are implemented, how parameters are
defined, and so forth

e Error handling—Types of errors, how errors are reported, aborting errors, and
more

P 20 MICRO
H{:’dlumt‘ ClFochs

http://nexus.realtimepublishers.com/
http://home.swbell.net/mck9/cobol/style/style.html

Chapter 2
-

This list is useful because it helps to define the purpose of coding standards (or “coding
style,” if you prefer): To help achieve consistency in not only cosmetic considerations such
as comment formatting but also functional issues such as how modules are entered,
executed, and exited.

One seminal work on coding style is The Elements of Programming Style, written by Brien
Kernighan and P. J. Plauger in the 1970s and illustrated with examples from Fortran and
PL/I—two commonly used languages of the time. Accepting the concept of coding style as
analogous to the grammar of a human language (such as English or Spanish), the authors
patterned the book after Strunk & White’s The Elements of Style, a standard work used by
writers and journalists. Although revised in a second edition in 1978, the book has fallen
largely into disuse simply because its examples are no longer relevant to modern
programming languages. However, the book’s suggested standards survive in numerous
derivative works on programming style.

Style and Complexity

It’s easy to understand how cosmetic issues such as comment formatting
could be considered “style.” It's even fairly straightforward to understand
how “style” can dictate how code is modularized, at least at a high level. It's
less straightforward to see how “style” can dictate things like how clever a
programmer should be. Yet Kernighan filled his book with cautions on
writing overly complex or what he termed overly “clever” code. One quote
sums up his feelings: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.” Although this sentiment is difficult
to capture in a set of “style rules,” it nicely sums up the whole point of coding
standards—to help simplify code so that maintenance and debugging is
easier and can be more easily accomplished by someone other than the
original programmer (who naturally has a greater affinity for the code).

Consider this pseudo-code, which Kernighan might consider overly clever:
Var = FunctionA(FunctionB(FunctionC(Inputl),Input2),Input3);

A problem with this coding style—nesting functions as inputs to other
functions—is that it requires a human being to perform fairly complex
mental gymnastics in order to sort out what that single line of code is doing.
Some coding standards prefer that an individual line of code perform only
one granular task:

Varl = FunctionC(Inputl);
Var2 = FunctionB(Varl, Input2);
Var3 = FunctionA(Var2,Input3);

The idea is to make the code less compact and easier for a human to follow.
The compiler for most languages would treat these two examples nearly
identically, but one is distinctly easier for a human to read, debug, and
maintain in the future. This is perhaps the ultimate expression of the purpose
of coding standards: To write code in a consistent fashion that supports
future maintenance and helps reduce defects.

21 MICRO
I:IFEII:LIE

Chapter 2
|

It's important to understand that coding standards are, in fact, anything but “standard.”
Different standards conflict widely, often over the simplest of items. One standard for C#,
for example, requires that constructs’ opening curly brace appear on the line that follows
the construct statement:

Function myfunction() {

}

While another standard for the same language suggests that curly braces always appear at
the start of a new line:

Function myfunction()

{
}

Fortunately, these conflicts don’t matter. Different coding standards often have names,
especially once they’re widely accepted: GNU, Hungarian, NOAA, Macadamian, Horde4, and
many, many more. When it comes to picking and following a coding style, there are really
only three important factors:

e Everyone on the development team needs to be following the same standard. It will
make the code more uniform and thus easier to maintain.

e Ifyou can choose a standard that basically reflects the style already in use by the
majority of your team members, it'll be easier for them to follow. Most coders have a
style with which they are familiar. Once the style becomes internalized, it will help
them code more consistently.

e Ifyou are using automated tools to help enforce the coding style, you obviously need
to pick a standard that is supported by those tools. For example, putting comments
in the beginning of Visual C# functions using the tool-mandated format facilitates
automatic documentation of the code itself.

Today, any programming language with a sufficiently large audience will be accompanied
by one or more coding standards. Because many programming languages derive from
similar sources (most of today’s popular programming languages, for example, have a
general structure derived from C), some elements of various coding styles tend to overlap,
such as the standards on where to put braces. This chapter will focus primarily on coding
standards that are either completely generic or relate specifically to Visual Basic, C++, and
C#, the two primary languages included with Microsoft Visual Studio and two of the most
popular languages used to develop for the Microsoft .NET Framework. We’ll also look at
standards specific to Microsoft's ASP.NET Web development framework.

.__.
P
F

E 22 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 2
|

Modern Coding Standards

If coding standards began by addressing issues such as formatting and naming, they’ve
definitely evolved to include much more. In fact, the switch from the word “style” to
“standard” implies the additional depth that modern coding standards address: How
modules are linked, how error handling is performed, how classes are constructed, and
even in some cases, how user interface elements are utilized.

Recognizing that different organizations will adopt different standards for varying reasons,
this chapter will focus first on approaches to standards—general principles, if you will—
before looking at some of the more popular standards currently used for Visual Basic, C#,
C++, and ASP.NET.

Approaches to Naming, Comments, and Formats
These approaches fall generally under the “cosmetic” category and are intended to help
produce code that is more readable.

Naming Conventions

Naming guidelines typically seek to establish consistency in the naming of code elements:
functions and subroutines, classes, variables, constants, and so forth. Naming standards
focus on the use of capitalization, embedded data within names, and so forth. For example,
Microsoft’s Visual Basic Scripting Edition (VBScript) language was commonly used with
Hungarian naming conventions for variables in which each variable name included a three-
character prefix that indicated the variable’s intended data type: strName for a string
variable, for example, or intCounter for an integer.

Hungarian Notation

Microsoft so popularized Hungarian Notation, before abruptly turning away
from it, that you'll still see many developers using it. A brief explanation of
why it has fallen out of favor is, I think, in order.

Invented by Charles Simonyi in the 1970s, the basic gist for Hungarian
notation was to name things so that their purpose or logical type was evident
in the name. Prefixes such as “int” and “str” were straightforward enough,
but as languages advanced to include more complex data types, prefixes such
as “rgsz” began to diminish the intended purpose of the notation, which was
to make things easily understandable.

Hungarian Notation has a strong association with Visual Basic primarily
because Visual Basic introduced so many new people, often without formal
development training, to the world of development. Hungarian was a great,
easy-to-understand way for them to produce variable names better than “x”
and “y.” Hungarian had some specific and unique advantages for Visual Basic.
For example, prefixing a variable with “obj” not only let you know it
contained an object but also reminded you that you needed to use the Set
statement to assign something to it.

23 MICRO
I:IFEII::LIE

Chapter 2
-

But when .NET came along, the old Visual Basic went away. Today’s Visual
Basic has more in common with C++, in fact, than its own predecessor
languages. Everything in .NET is an object, and prefixing a variable name with
“obj” is redundant. Tools such as Visual Studio keep track of variable data
types so that the tool will help you remember that something is a string
object whether its name has an “str” prefix or not. .NET supports extremely
long variable names, and IntelliSense auto-completion will have Visual Studio
help you type those names with less actual typing on your part. In short, all
the things that Hungarian Notation helped fix are, by and large, no longer a
problem.

One place you might still see Hungarian Notation is in the naming of user
interface elements, with prefixes such as “frm” for a form and “btn” for a
button. Some developers do this so that their form controls are grouped in
Visual Studio’s IntelliSense code-hinting menus, which list elements
alphabetically.

Naming conventions also strive for readability. Most coding standards discourage the use
of abbreviations or acronyms, preferring longer names such as “DirectoryUserName” over
less-obvious alternatives such as “ADUN.” The idea is to keep the code readable for months
and years into the future—and 2 years after writing “ADUN,” you might be left wondering
what it was supposed to mean in the first place. Exceptions are made that allow for widely
recognized acronyms in extreme circumstances: “DN” standing in for “DistinguishedName’
is acceptable because the shorter version is used industry-wide, and it does help create
somewhat more compact code.

)

Where Abbreviations Were Born

Abbreviations in code can be traced primarily back to early developers’
desire to have their code consume less memory. One of the most famous is
Bill Gates’ use of “OK,” rather than the more traditional “READY,” as a prompt
in early versions of Microsoft BASIC because his alternative used three fewer
bytes.

Modern programming languages don’t have to deal with any of the issues
that led to this space-saving approach. To begin with, neither disk space nor
computer memory is as precious as it once was: Both are relatively
inexpensive resources and most computers come equipped with more than
they’ll ever need. More importantly, though, and of particular relevance to
.NET Framework programming, is that your source code is going to be
tokenized into a more-compact intermediate language anyway. Using shorter
variable names does not necessarily lead to a smaller final assembly than
using longer variable names. Longer variable names can offer more
readability and clarity, so they are generally preferred—to a point, of course.
No developer wants to have to repeatedly type lengthy variable names
(although, as we'll see, modern tools help make that easier, too, making an
even stronger argument for longer variable names that are clear and
purposeful).

24 MICRO
I:IF‘EII:LIE

Chapter 2
|

Naming conventions also tend to favor clarity. A function name such as GetLength conveys
the purpose of the function even to a non-programmer; an alternative such as GetInt might
be technically correct if the length is indeed an integer, but it’s less specific and clear about
what the function is actually getting. In general, language-specific terms such as Int, String,
Char, and so forth shouldn’t be used. Instead, use variable names with more semantic
meaning, such as Length, UserName, and so forth.

Numerous other naming conventions exist; Microsoft offers

recommendations at http: //msdn.microsoft.com/en-

us/library/ms229002(VS.80).aspx to cover capitalization, general naming,
namespaces, classes, types, parameters, and much more.

Commenting Conventions

Any developer with a modicum of experience has had to, at one time or another, read
through a few hundred lines of code written by another developer—and without a
comment in sight. In contrast, I have personally had to read through code where every one
or two lines of code was accompanied by a dozen lines of witty commentary. Clearly,
comments are like food—you need a certain amount to thrive, but too much is definitely a
bad thing.

Some commenting conventions are designed to improve readability. It’s generally agreed,
for example, that comments following a line of code are a Bad Thing, because they’re simply
more difficult to read. Other commenting conventions can seem nitpicky, such as requiring
that the comment character be followed by a space and then a comment that starts with a
capital letter and ends with a period—conventions that contribute dubious value to actual
readability and technical documentation.

Most organizations adopt commenting conventions designed to convey a sense of how
comments should be used. Guidelines might suggest:

e Use a comment when a variable is first declared, to specify what that variable will be
used for.

e Use a comment before logic constructs to describe the logical decision being made,
and then again within each logical branch to indicate the decision that led to that
branch.

e Use comments before or at the beginning of functions and other modules to describe
their purpose, their expected input and output, along with any notes on expected
input ranges or other information.

¢ Comments on changes made when modifying code during maintenance. This can
help identify changes and provide a history of when, where, who, and why code
changes were made.

. 25 MICRO
1€ I:IFEIE:LIE

—

Real

http://msdn.microsoft.com/en-us/library/ms229002(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms229002(VS.80).aspx

Chapter 2
|

Some coding standards discourage the use of multi-line block comments, while others
encourage them. Note that some programming languages support a specialized comment
syntax that can actually help automate code documentation. C#, for example, uses a “triple
hack” syntax where three slashes indicate an XML-formatted comment:

/// <exception cref="BogusException">

/// This exception gets thrown as soon as a
/// Bogus flag gets set.

/// </exception>

These XML-formatted comments can be scanned by automated tools that produce
attractive, hyperlinked documentation for the code.

Note
Microsoft’s documentation for these XML comments can be found at

http://msdn.microsoft.com/en-us/library/b2s063f7.aspx; a good article

about their use is available at http://msdn.microsoft.com/en-
us/magazine/cc302121.aspx.

Formatting Conventions

Formatting is designed to make code easier to read and, believe it or not, to help prevent
bugs. Probably the most universally accepted formatting convention is that code within a
construct be indented:

ForEach ($server in $servers) {
$server.Restart();

}

This technique has numerous advantages:

e It's easier to make sure that each construct has been properly closed

e It's easier to see the conditional, looping, or other code contained within the
construct

e The white space directly under the construct’s statement (“ForEach” in the above
example) helps draw the eye to the construct itself, making it easier to follow the
code’s logic

This is such a universally accepted practice that most development environments,
including Visual Studio, go to great lengths to produce this formatting automatically.
Automated code-reformatting tools (sometimes called “code beautifiers”) automatically
indent code in this fashion, as well. As with any standard, of course, interpretation leads to
inconsistency: Most organizations (and tools) get very specific about this formatting,
requiring that each indentation be a tab character with tab stops every four spaces, for
example.

. 26 MICRO
H{:’dlumt‘ CIFochs

http://msdn.microsoft.com/en-us/library/b2s063f7.aspx
http://msdn.microsoft.com/en-us/magazine/cc302121.aspx
http://msdn.microsoft.com/en-us/magazine/cc302121.aspx

Chapter 2
|

Other formatting conventions are also designed to improve readability, such as requiring
whitespace around operators:

A=(b+c)*d

Rather than:

A=(b+c)*d

Note

A list of commonly-accepted formatting conventions can be found at
http://wiki.scummvm.org/index.php/Code Formatting Conventions.
Although these conventions were produced for a particular software project
(and are, in fact, a good example of how your organization might choose to
document your standards), these conventions are generally accepted and
used by a wide range of developers.

Functional Conventions

Coding standards become more complex and language-specific when you move away from
mere formatting and naming and start moving into more functional conventions. These
conventions might include considerations such as

e All functions must have only a single exit point—functions must not exit midway
through the code unless they are raising an error.

e All elements must be declared with the tightest scoping possible that still enables
their intended purpose. For example, variables must be declared as private unless
they are explicitly needed in different scopes.

e All functions and other modules must accept a Boolean parameter which defaults to
True, but when set to False, will cause the function or module to skip any permanent
action and to instead log a description of the action it would have taken.

Note

That last example was taken from a consulting project I worked on. The
intent was that by setting all the parameters to False, you could test the
entire application without actually committing information to a database or
other storage. Instead, you'd get a log file describing what would have been
done. Eventually, that organization created a kind of framework that
encompassed that functionality, making it easier for their developers to
implement. The point is that strictly internal coding standards are absolutely
fine if they’re needed to meet business or management goals regarding
development projects.

. 27 MICRO
1€ I:IFEIE:LIE

—

Real

http://wiki.scummvm.org/index.php/Code_Formatting_Conventions

Chapter 2

As with all coding standards, the goal is twofold: One, to make the code easier to read and
more consistently implemented; second, to help reduce code defects by more clearly
defining how code will be implemented. For example, a code module with fixed entry and
exit points will be easier to debug simply because the ways in which it can be called are
limited. With fewer scenarios to test for, unit testing can catch more bugs, leaving fewer
bugs for integration testing.

Note

[stated earlier that coding standards seek to partially reduce a developer’s
flexibility within their programming language, and that is certainly true. It
might be more accurate, however, to say that standards really seek to reduce
and control the complexity of code. Less-complex code is easier to debug
earlier in the development life cycle, and is easier to debug throughout the
development cycle.

Established Standards for Visual Basic, C#, C++, and ASP.NET

Microsoft has published a number of standards for code, which the company uses in most
of the samples and documentation they produce. Although these are by no means
comprehensive, these standards serve as an excellent start. An advantage to using an
external set of conventions—at least as a starting point—is that you'll be developing code
that is more easily interchanged. If, for example, one of your developers needs to use a
snippet from a Microsoft example, she won’t have to re-work the code to meet internal
standards if your internal standards are based upon Microsoft’s.

Note

As the world’s largest software company, you can also argue that Microsoft
has a vested interest in producing coding standards that help produce
higher-quality code. There are certainly worse things you could do than to
copy the basic standards of a company that employs tens of thousands of
developers and produces millions of lines of code annually.

Resources for major coding conventions include:

e Visual Basic coding conventions are available at http://msdn.microsoft.com/en-
us/library/h63fsef3.aspx; most of these are actually applicable to C# as well. This is
one of Microsoft’s most comprehensive yet concise documents on coding
conventions.

e A C# Coding Style Guide by Salman Ahmed is at
http://www.csharpfriends.com/articles/getarticle.aspx?articleid=336. This is a
concise guide with commonly accepted conventions, focusing on both cosmetic and
functional issues.

e An ASP.NET-specific guide is at http://www.visualize.uk.com/resources/asp-net-
standards.asp, and applies to both C# and Visual Basic. Based on Microsoft
guidelines, this guide provides a few ASP.NET-specific items, such as naming for
user interface elements (using Hungarian Notation), and a focus on XML-based
comments.

S PEI 28 MICRO
Realtime CiFoeis

http://msdn.microsoft.com/en-us/library/h63fsef3.aspx
http://msdn.microsoft.com/en-us/library/h63fsef3.aspx
http://www.csharpfriends.com/articles/getarticle.aspx?articleid=336
http://www.visualize.uk.com/resources/asp-net-standards.asp
http://www.visualize.uk.com/resources/asp-net-standards.asp

Chapter 2
|

Visual Studio Auto-Generated Code

Interestingly, the code that is auto-generated by Visual Studio doesn’t always
follow a particular set of coding standards. You'll notice this especially in the
code generated by the Visual Studio visual forms designer. That's okay,
though; that auto-generated code isn’t intended to be especially human-
friendly, and you’re actively discouraged from editing that code manually.
Changes to the code are accomplished by working in the visual forms
designer, allowing it to re-generate the code. Because the code isn’t intended
for “human consumption,” any real or perceived lack of standards
compliance isn’t important.

Given the many different coding standards available, it would be impossible
for Visual Studio to generate “standardized” code that would comply with
every possible coding standard an organization might use. Given that
impossibility, Microsoft decided to just have Visual Studio produce “neat”
code rather than trying to force any particular coding style or standard.

Understand that [have no particular attachment to any one set of coding standards, and
most organizations will need to develop their own. In fact, developing your own—using
some industry standards as a starting point—can be a great way to help overcome
developer resistance to standards, which I'll discuss shortly.

Defining Coding Standards in Visual Studio

Visual Studio 2008 helps developers observe coding standards in a few nice ways (some of
these features also exist in earlier versions of the product). First, the product’s Options
dialog box enables developers to configure various auto-formatting features (see Figure
2.1). The “pretty listing” feature in particular helps maintain proper indentation within
constructs and offers other cosmetic features.

29 MICRO
Callllll€ DFDBUE

Chapter 2
|

Optigns 7| x| !
=1 Emvironrment [v Automatic insertion of end constructs
General [v Prethy listing (reformatting) of code
Fonts and Colors [v Emable outlining mode
keyboard
% Projects and Solutions [v Automatic insertion of Interface and hMustOwverride members
=1 Text Editar [v Show procedure line separators
=| Basic [v Enable error correction suggestions
Editar
+ HThL
+ “Windows Forms Designer E:

+ Device Taals

[Show all settings Ok | Cancel ‘ &

Figure 2.1: Configuring Visual Studio to help “prettify” your code.

Another major feature is that Visual Studio is extensible, meaning that both free and
commercial add-ins from third parties can be included to provide additional “built in”
capabilities for enforcing coding styles. These include code formatters, refactoring tools,
and much more. One such freeware add-in is from Microsoft, and is called StyleCop (it’s

only for C# projects). You can find it at http: //code.msdn.microsoft.com/sourceanalysis.

Resistance to Coding Standards

Sadly, not every developer welcomes coding standards. As I've stated, software
development is often more art than science, and no artist likes to be told how to create.
Even coders who consistently use standards may be enamored with their own personal
standard. This can create friction when the developer is expected to employ the
institutional standards. Developers who don’t have a background in following coding
standards have almost always adopted at least a loose personal style, and switching over to
a formal set of standards can consume time and seem frustrating.

Organizations have resistance to standards, too, not the least of which is the additional time
and effort needed to observe and maintain the standards over time. Fortunately, modern
programming tools make this a bit easier, and in the end, the time and effort that goes into
observing standards must be seen as an investment. The return on that investment is a
decrease in defects coming out of unit testing, an increase in code maintainability (meaning
lowered future costs), and ultimately higher code quality.

P 30 MICRO
H{:’dlumt‘ ClFochs

http://code.msdn.microsoft.com/sourceanalysis

Chapter 2
|

There are techniques, especially useful in organizations that don’t have strong coding
standards, to make standards easier to accept and observe:

e Collaborate with developers when creating standards. Developers will be much
more likely to accept standards if they feel they have played an active role in their
creation. Align standards with the corporate culture as much as possible—for
example, smaller entrepreneurial organizations may adopt standards that allow
developers more personal freedom, while larger organizations with numerous
documented practices and processes will feel more comfortable adopting more rigid
standards.

e When you can’t agree, learn to pick your battles. Determine which of the standards
are really important and which aren’t. It is not worth losing sleep over missing
standards that are not important. Allow your developers’ creative sides to emerge—
don’t be too restrictive. Compromising on a few relatively unimportant standards
may pave the way to enforce more important ones.

o [Ifthere is still disagreement and no compromise is possible, determine whether the
dissenting opinions are really caused by displaced resentment for being told how to
code or some unexplained fear of code reviews. If your organization is serious about
having and enforcing coding standards, these developers will need to get over it.

e When all else fails, a management mandate may be necessary to resolve a particular
issue. This is best used as a last resort but can help in extreme situations. There have
of course been cases where developers have quit or have been fired due to their
unwillingness to follow (or even agree to) standards; ultimately, the organization or
the developer—correctly—decided that someone who couldn’t work on a team
didn’t belong on the team.

e Maintain a regular review of the standards and modify the standards when it is
obvious that there is a better way. In my experience, a small standards committee is
usually a good idea, as it allows developers to continue to have an active role in the
standards process. New team members should be given a voice in this committee,
because it helps bring a fresh viewpoint and helps rotate the committee
membership amongst the team members.

And did you see that I snuck in the phrase code review? It's coming in a later chapter, and
it’s crucial to not only enforcing standards but also creating much higher-quality code.

31 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 2

Best Coding Practices, Processes, and Procedures

Most developers are well aware of Visual Studio features such as IntelliSense, snippets, the
Windows Clipboard, and so forth; but they’re typically aware of them as convenience
features rather than quality features. What's the difference? Convenience is a pretty
relative term. When I started using IntelliSense for the first time, I didn’t like it—I'm
already a fast typist, and those little menus popping up distracted me. So I tended to not
use the feature. That’s the problem with convenience: If an individual developer doesn’t
find it to be personally convenient, she won’t use it. Quality, however, is different. Many of
Visual Studio’s “convenience” features can make a strong, positive contribution to code
quality—and that’s a reason to use them even if someone doesn’t find them to be
particularly convenient.

IntelliSense and Code Refactoring Tools

IntelliSense is an umbrella brand name for Visual Studio’s code hinting and code
completion features. There are two distinct IntelliSense features that most developers are
familiar with: code completion (see Figure 2.2) looks at what you've typed, what you might
be typing, and offers a list of suggestions. This list might include variable names, constants,
object member names, and so forth.

Friwate Sub Forml_ Load(ByVal sender Ais Jystem.Cbject, ByWal .
Dim CustomerNsmme
CustomerName = |

End Sub

class iy AcceptButton -

."~'.|:|:F-_-.:-.:ihIF-_[ZIr:-.:-:r'iptil:-n
“§ AccessViolationException

w4 Activation Contesdt

= AddressOf

= Aggregate

ﬁHAIIowTransparency

57 Anchar

“% AppDamain

= AppDomainManagednitializationOptions j

[l

Common | All

Figure 2.2: IntelliSense code-completion feature.

Why use this? Because if you let Visual Studio do the typing, you won’t make typos—pure
and simple. This IntelliSense feature also encourages the use of full class names because it
makes them easier to type; using full class names (rather than abbreviations) can help
make the code easier to read. Another IntelliSense feature, code hinting, takes the form of
tooltips that remind developers of the correct syntax for statements and methods. Figure
2.3 shows it in action.

. 32 i
Realtime CIFochs

Chapter 2
|

Private 3Jub Forml Load(ByVal sender As 3Jystem.Cbject, ByVal & As 3yste
Dim Customerlame Ls 3tring
Custoweriame = CustomerNa.me.Replace(|
End Sub alofiw Replace {oldChar As Char, newChar &3 Char) As String
Class oldChar: & Unicode character to be replaced.

5 AcceptButtan
7 AccessibleDescription
“% AccessWiolationException

Figure 2.3: IntelliSense code-hinting feature.

In addition to being a timesaver, this little feature can help prevent bugs by making it easier
for developers to “look up” the correct syntax without having to actually turn to the
documentation. This is especially important with .NET Framework class methods that have
multiple overloads. Without a quick reference for unfamiliar methods, a developer might
mistakenly use the wrong overload, resulting in run-time logic errors.

Finally, refactoring is a sometimes-complex process that helps implement code standards
in otherwise non-compliant code. Refactoring can search for variables that are declared but
not used and remove them (Visual Studio visually highlights these variables, as well),
rename variables to conform to code standards, correct formatting problems (such as
improper indentation), and rename variables, functions, and other items, and so forth.

Task List and Code Snippets

Visual Studio provides a number of features that help reduce typing—again, a convenience
feature on the surface, but one that ultimately provides a quality benefit in that it enables
code re-use with less potential for typos. Code re-use also makes it easier to observe coding
standards, provided the code you're reusing was standards-compliant in the first place. The
primary feature for code reuse is the Snippets feature, which consists of short code
snippets that your team can put together into a library. Pressing Ctrl+K and then Ctrl+X in
Visual Studio’s text editor summons a list of available snippets (numerous ones are
included with the product), allowing a developer to simply start typing a snippet name.
This can be useful for complex code blocks all the way down to simple skeletons for
constructs. Figure 2.4 shows an example.

Private Sub Forml Load(ByWal sender A= 3Jystem.Chject, ByWVal e L=z Syste
Dim CustomerMame Ls 3tring
CustomwerMName = CustomerMame.Replace (™ ", ")

Insert Snippet: Data - LING, XML, Designer, AD0.MET > |
End Sub

Class

i Designer Features and ADOMET
. LIMGQ Queries
1 Xl

Figure 2.4: Using the Snippets feature in Visual Studio.

. 33 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 2
|

Snippets can be especially useful for helping developers incorporate new or unfamiliar
techniques or technologies. By having one senior developer produce a set of snippets, other
developers can save time—and remain consistent and correct—by using those snippets as
starting points.

Visual Studio’s auto-generated task list also helps developers stay on track. As Figure 2.5
shows, developers can insert comments that begin with special predefined tokens (and you
can define new tokens); the task list scans for these and assembles a task list automatically.
This feature allows unfinished code, hacks, debug code, and other non-production code to
be easily identified and documented for the entire team, and makes it easier to jump back
to those items and clean them up later.

\» 'ToDO: Query customer hatne from databa

Frnd Snuhk
<

[ask List - 1task

Comments -

! |Descriptin:|n —

TODO: Query custorner narne from database

Figure 2.5: Visual Studio’s task list feature.

Note

These may seem like kind of minor features, but the fact is that they help
developers maintain code quality by allowing them to continue working the
way they want to. Developers need the ability to add debug code, to come
back to code later and finish it, and so forth; tools like the Task List enable
them to do these things while helping prevent any negative impact to the
code quality by documenting these “hacks” and making them easier to clean
up later.

Background Compilation and Continuous Code Feedback

One of Visual Studio’s best features for helping to maintain code quality is its ability to
continuously compile code in the background and provide visual feedback to the developer.
This feature doesn’t attempt to execute the code, but it does warn of numerous conditions
that could cause run-time or compile-time errors. These can be anything from simple
coding problems such as not assigning an initial value to a variable (see Figure 2.6)...

- .Replacei" rr‘_ rrrr]

m e e ey |

|‘u"ariable ‘CustomerMame’ is used before it has been assigned a value, & null reference exception could result at runtime.l

Figure 2.6: IntelliSense code feedback for non-critical issues.

. 34 MICRO
Ht"(llumt‘ CIFochs

Chapter 2

...to more serious problems (see Figure 2.7). This visual feedback—similar to the automatic
spell checking in Microsoft Word—helps developers spot and correct these problems
before they even begin unit testing, helping save time and improve code quality.

:‘m rr rr FFeF
Mame 'CustomerD' is not declared,

HE(CUSRD erID &)

Figure 2.7: IntelliSense code feedback for more critical issues.

Code Complexity Assessments

Some premium editions of Visual Studio 2008 include code metrics, a static analysis tool
that helps analyze the complexity of code using some of the algorithms I discussed in the
previous chapter. Figure 2.8 shows an example of the Code Metrics analysis. As you can see,
the tool identifies major code units and their interfaces, calculates their complexity, and
displays a “maintainability index.” Anything with a yellow or red icon in that column is
something that deserves special attention—high maintainability means a higher likelihood
of bugs, too.

You can read more about this tool at
http://blogs.msdn.com/fxcop/archive/2007/10/03 /new-for-visual-studio-
2008-code-metrics.aspx. A more mature and feature-rich product,
DevPartner, provides a greatly expanded set of features that are described at
http://www.microfocus.com/products/DevPartner/index.asp.

Code Metrics Results @
=] | Filter: None - I'.lin:| v|l‘.le:<:| v| | | = w1l
Hierarchy : Maintainability Index ~ Cyclomatic Complexity Depth of Inheritance Class Coupling Lines of Code
-2 BusinessLayer (Release) o 38 545 1 9 565
El-{} BusinessLayer m 38 545 1 9 585
E|VT$ Address =] 37 265 1 7 275
i 5% Address(int, string, string) =] 76 1 1] 4
257 Id.get() : int o 23 1 0 1
' LoadAddress(int) : Address i 18 102 7 108
W Save() : void @ 7 159 3 160
250 StreetAddressl.get() : string m 93 1 0 1
¢ I StreetAddress2.get() : string m 98 1 0 1
Eﬁ Customer 7] 38 280 1 7 290
----- 257 Address.get() : Address 7] 93 1 1 1
----- 5% Customer(int, string, string) [F] 76 1 0 4
----- 257 FirstMame.get() : string a a8 1 0 1
----- 25 Id.get() : int m 93 1 0 1
----- 25 LastMame.get() : string =] 98 1 0 1
----- ¥ LoadCustomer(int) : Customer @ 8 146 i} 152
----- W Save() : void iy 13 129 2 130
#-{f DataAccesslayer (Release) =] 95 6 1 2 6
I:I'"_E MainApplication (Release) =] a4 10 7 5 16

Figure 2.8: Visual Studio 2008’s Code Metrics tool.

™ 35 @
Realtime CIFochs
PUDISNETS [eadin olution

http://blogs.msdn.com/fxcop/archive/2007/10/03/new-for-visual-studio-2008-code-metrics.aspx
http://blogs.msdn.com/fxcop/archive/2007/10/03/new-for-visual-studio-2008-code-metrics.aspx
http://www.microfocus.com/products/DevPartner/index.asp

Chapter 2
|

Microsoft also offers FxCop, a free Visual Studio add-in (http://msdn.microsoft.com/en-
us/library/bb429476(VS.80).aspx) that scans native code assemblies and reports possible
improvements to the code design, performance, and security. The tool helps enforce
Microsoft’s own Design Guidelines for Class Library Developers, a set of best practices
designed to help improve code quality and maintainability.

Integrated Debugger

If someone told you that an integrated debugger was a “quality tool,” you might laugh and
say, “of course it is!” Any debugger can, of course, help improve code quality by making it
easier for developers to catch and correct bugs. But an integrated debugger goes a bit
further, by helping developers seamlessly move between the debugger and the coding
environment and by encouraging more granular unit testing and more debugging activity.

Visual Design Tools

Visual Studio’s various visual designers are, again, more than just a convenience item; they
help improve code quality. Designing a user interface strictly in code, for example, is a
tedious task, prone to minor mistakes, misalignment of user interface elements, and so
forth. By using a visual designer, developers can produce a better-looking product, and by
having Visual Studio auto-generate the necessary underlying code, developers get better-
quality code with less effort.

L TT NI YYD | U Iy

=/ Com mon Controls

& Pointer = R =0l x|

Button

CheckBox

8. CheckedListBox

=4 CornboBox —
T DateTimePicker

A Label

A LinkLabel

=. ListBox

Figure 2.9: Visual Studio’s visual forms designer.

Visual Studio includes several visual designers that produce underlying code, including
designers for data mapping, Web classes, both Windows Forms and Windows Presentation
Framework user interfaces, workflow, and more.

P 36 MICRO
Ht"(llumt‘ ClFochs

http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

Chapter 2
|

Software Development Methodologies

The purpose of a “development methodology” is to lay out a standardized process for
developing software. Why bother? A methodology provides consistency, offers more
repeatable results, and best of all, incorporates the lessons learned by thousands of
software developers over dozens of years.

Any industry engaged in complex, multi-discipline operations relies on methodologies; few
industries document so many different methodologies as the software development
industry. In this section, we’ll look at a few of the more common methodologies—some of
which are actually kind of sub-methodologies that can be combined. The goal here isn’t to
convince you to use one or another but rather to convince you to use one at all. A good
methodology, properly followed, produces higher-quality code simply because it helps you
avoid skipping steps and practices that lead to higher-quality code.

Waterfall

The Waterfall model is a sequential development process with distinct phases that follow
each other: requirements, design, implementation, testing, and maintenance. The first
formal description of the model dates back to a 1970 article by Winston Royce, although he
did not use the term “waterfall.” Ironically, Royce was presenting this model as an example
of a flawed, non-working model.

The distinct phases of a common Waterfall model—requirements, design, and so forth—
are not themselves seen as flaws; in fact, most subsequent methodologies use similar
phases. What'’s often seen as Waterfall’s biggest flaw is the strictly sequential nature: Once
you are finished with the design, you never revisit it. This creates a rigid structure that does
not adapt well to the ever-changing realities of business software development. In fact, the
inflexibility of the model is what led to the naming of the Agile methodologies, which were
intended to offer exactly the opposite experience.

Waterfall is widely used by larger development teams in organizations that typically have a
rigid culture, such as the US Department of Defense, NASA, and others. The US Department

of Defense moved away from a strict Waterfall model in 1994 with MIL-STD-498, and then

moved further still with IEEE 12207, two alternate development methodologies.

P 37 MICRO
H{:’dlumt‘ ClFochs

Chapter 2
|

Waterfall’s supporters feel that the model—often characterized as “Big Design Up Front,”
or “BDUF”—emphasizes time spent in planning, thus saving time later. Ample evidence
supports this claim, although many businesses have emotional difficulty committing a great
deal of time creating what seems to amount to nothing more than paperwork. A trick with
Waterfall is that it only works if you commit to it—you can’t pretend to do a big,
comprehensive design and then start developing, because under Waterfall, you’ll never
revisit that design; if it isn’t truly complete, your project will suffer. Waterfall is also
simpler, especially for inexperienced development teams and managers, than many
methodologies that are more iterative and flexible. Waterfall also places an emphasis on
documentation and source code, which supporters feel help improve long-term
maintainability. Primarily, supporters feel that Waterfall is well-suited to stable software
projects, such as shrink-wrap software, with a fairly known and fixed set of requirements.
Because of its simplicity, Waterfall is often used in generic illustrations of software
development where the precise methodology isn’t particularly important, as in my book,
Definitive Guide to Quality Application Delivery.

However, critics of Waterfall say that it is impossible, for any non-trivial project, to get one
phase—such as the requirements or design—of a project completely worked out before
moving to the next. They argue that today’s rapid software development requirements
force you to continually revisit earlier phases, and that attempting to stick with a strict
Waterfall model impedes flexibility and encourages the poor practices that lead to poor
quality. Modified versions of Waterfall, such as Peter DeGrace’s Sashimi, offer
improvements such as overlapping phases or “phases with feedback” to help address the
otherwise-sequential nature of Waterfall.

Agile

Agile is a group of software development methodologies that are based on similar
principles and was develop largely in backlash to the Waterfall method that was common
at the time (and which is in fact still quite common). Agile methodologies generally
promote project management processes that encourage inspection and adaptation—both
excellent points that help produce a higher-quality product. Agile recognizes that most
organizations are interested in rapid software development (generally, only large
commercial software manufacturers aren’t interested in developing as rapidly as possible,
and even they keep a close eye on the clock), and is specifically designed to help align
development with business needs.

Agile typically does things in small increments rather than trying to formulate long-
reaching grand plans. Iterations are short time frames known as timeboxes, typically lasting
less than a month. Each timebox includes a team working through an entire development
process, including planning, requirements analysis, design, coding, unit testing, and
acceptance testing. Short timeboxes produce less risk, because they are inherently simpler
projects—you can only aim for so much in a week or two. Each iteration in and of itself
might not represent a useful end product, but subsequent iterations repeat the process
until a workable release is ready. You can think of each timebox as ending in a distinct
functional milestone. The Agile Manifesto (http://agilemanifesto.org/) succinctly outlines
the guiding principles behind these methodologies.

38 |:|M||:R|:|‘“"
nNCalulllc FOCUS

http://agilemanifesto.org/

Chapter 2
|

Some of the original Agile methodologies included Scrum, Crystal Clear,
Extreme Programming, Adaptive Software Development, Feature Driven
Development, and Dynamic Systems Development Method.

Each Agile timebox is essentially a mini-Waterfall, with the theory that it’s easier for mere
mortals to sit down and plan out a couple weeks’ worth of work, see how it goes, and then
sit down and tackle the next iteration. Agile methodologies do require more experienced
and involved managers, since the focus on continual review and feedback, plus the need to
coordinate successive timeboxes, places a great deal of responsibility on management. The
cost of Agile is re-work. As you go along, you learn that the way you solved the problem
yesterday, with yesterday’s requirements, may not work today. The re-work means that
you will also need to test to determine the side effects of the work. The code is being
revised on an ongoing and fluid basis, so the need for consistent coding practices becomes
more critical. Developers will need to understand what existing modules do in order to
revise them.

Incremental/Iterative (Extreme Programming)

While Agile can be seen as a set of mini-Waterfall timeboxes, Extreme Programming is an
Agile development methodology that almost entirely eschews the sequential Waterfall
approach. It encompasses and embraces almost continual changes to the requirements as a
natural part of development, and believes that adapting to change is more realistic and
beneficial than attempting to define all requirements at the outset of a project.

Extreme Programming defines several “activities,” including Coding, Testing, Listening, and
Designing, which take place more or less simultaneously during a project’s life cycle. It
emphasizes coding standards, collective code ownership, simplified design, and continual
testing—all of which can lead to higher-quality code. It is especially well-suited to new or
prototype projects, where requirements are not understood at the outset and which evolve
rapidly as the project continues. Small projects also work well with Extreme Programming.
Other types of projects may also work well but require high levels of discipline and a very
functional, communicative team that have few motives beyond the project itself—in other
words, office politics can kill an Extreme project extremely quickly.

One of Extreme Programming’s drawbacks is the equally extreme amount of discipline that
must be maintained by the entire project team in order for the methodology to work
properly. Extreme projects may have unstable requirements, which can lead to scope creep
and—especially on outsourced projects—skyrocketing costs. Extreme also requires that
programmers adopt a user-centric viewpoint and assumes that programmers want to do
what'’s best for the user and that programmers understand what’s best for the user; this
may not always be the case. More rigid methodologies use a change control board to
resolve the conflicts between what users need and what programmers want to do. Extreme
is seen by many as a slightly organized form of “cowboy coding” (that is, coding without
any methodology at all), and poorly managed Extreme projects can quickly devolve into ad-
hoc programming that wastes resources.

39 MICRO
Realtime |:||=|:||:us

Chapter 2
|

Perhaps its biggest drawback is that little evidence exists to support the viability of large
Extreme programming teams; claims have been made for teams as large as 60, but the
pervasive feeling amongst experts is that a dozen or so team members is about the limit,
unless the project can be successfully partitioned into multiple standalone teams.

Note

I'm simplifying many of the arguments for and against Extreme, primarily
because the details have been the subject of countless books, articles, and so
forth. The matter is made more complex by the fact that organizations are
constantly developing hybrid methodologies; while a core principle in
Extreme is that you either have to do everything it says or nothing, JPMorgan
Chase has successfully combined principles of Extreme with methodologies
from Capability Maturity Model Integration (CMMI) and Six Sigma. The world
of development methodologies is rich and complex.

Others
Software development methodologies are rich in diversity and similarity. Some standouts
include:

e Capability Maturity Model Integration (CMMI)—Designed by the Software
Engineering Institute at Carnegie-Mellon University, CMMI defines several key
process areas, including Requirements Management, Validation, Product
Integration, and more (many more). You can read more about it at
http://www.sei.cmu.edu/cmmi/.

e Six Sigma—Technically a business management strategy, originally developed by
Motorola, Six Sigma has been adapted to numerous processes including software
development. It focuses on quality management methods and fosters the creation of
individuals (“black belts”) within the organization who are experts at this method.
Inspired by the Deming Total Quality Management (TQM) principles, Six Sigma
defines various roles and processes that are used to drive quality in a final product.
A good introduction to the use of Six Sigma in software development can be found at
http://www.sei.cmu.edu/news-at-sei/features/2004/1 /feature-3.htm.

Continuous Integrated Testing and Nightly Builds

An aspect of more agile methodologies (including Extreme Programming) is an emphasis
on continuous testing; not just the unit testing performed by individual developers on their
own code, but of continuous integration testing done by taking all the developers’ work for
the day, building a completed application, and running a series of tests against it (this can
actually be helpful in modified Waterfall-style projects, too). This technique can really only
be used when extending an existing application, or in the later life of a brand-new
application; obviously, you need to get to a point in the code where you have enough to
compile a usable application in the first place.

.__.
P
F

E 40 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

http://www.sei.cmu.edu/news-at-sei/features/2004/1/feature-3.htm
http://www.sei.cmu.edu/news-at-sei/features/2004/1/feature-3.htm

Chapter 2
|

Essentially, a nightly build takes all the code that was checked in that day and attempts to
compile it. The compiled result is then run through a series of standardized—and often
automated—tests. The results are then provided to developers the next day, and helps
drive what those developers will be working on that day.

Large development teams—think Microsoft's Windows Server team—rely heavily on
nightly builds and continuous integrated testing to test the literally thousands of distinct
components and capabilities of complex software applications, and to catch bugs as early as
possible. Continuous testing doesn’t fit within a strict Waterfall model, which waits until a
specific phase to start integrated testing. Further, nightly builds and integration testing are
difficult without tools to automate the extremely tedious and repetitive tasks involved.
With the right tools, however, and as part of the right development methodology, this
technique can help deliver a higher-quality product, even in extremely large and complex
projects.

Defining Your Coding Standards

So where should you begin?

e Start by selecting a development methodology. This will provide a standardized set
of processes, phases, and tasks to help guide your software development project.

e Select a set of coding standards—ideally, ones provided by a major manufacturer
such as Microsoft or some other major authority. These can serve as a starting point
for developing your own internal “style guide.”

e Setup a small committee of developers and managers to further establish your own
internal programming “style guide.”

e Begin training developers to use Visual Studio’s style and coding features.
Encourage developers to force themselves to use these new features until they’re
habitual, and provide them with the time needed to do so.

Of course, the only way to ensure that your coding standards are being observed
consistently is through code analysis and peer review—which shall be the subject of the
next chapter.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

P 41 MICRO
Ht"(llumt‘ ClFochs

http://nexus.realtimepublishers.com/

	Chapter 2: Coding Standards and Best Practices
	The Purpose of Coding Standards
	Modern Coding Standards
	Approaches to Naming, Comments, and Formats
	Naming Conventions
	Commenting Conventions
	Formatting Conventions
	Functional Conventions

	Established Standards for Visual Basic, C#, C++, and ASP.NET
	Defining Coding Standards in Visual Studio

	Resistance to Coding Standards
	Best Coding Practices, Processes, and Procedures
	IntelliSense and Code Refactoring Tools
	Task List and Code Snippets
	Background Compilation and Continuous Code Feedback
	Code Complexity Assessments
	Integrated Debugger
	Visual Design Tools

	Software Development Methodologies
	Waterfall
	Agile
	Incremental/Iterative (Extreme Programming)
	Others
	Continuous Integrated Testing and Nightly Builds

	Defining Your Coding Standards
	Download Additional eBooks from Realtime Nexus!

