Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Introduction

Introduction to Realtime Publishers

by Don Jones, Series Editor

For several years now, Realtime has produced dozens and dozens of high-quality books
that just happen to be delivered in electronic format—at no cost to you, the reader. We've
made this unique publishing model work through the generous support and cooperation of
our sponsors, who agree to bear each book’s production expenses for the benefit of our
readers.

Although we’ve always offered our publications to you for free, don’t think for a moment
that quality is anything less than our top priority. My job is to make sure that our books are
as good as—and in most cases better than—any printed book that would cost you $40 or
more. Our electronic publishing model offers several advantages over printed books: You
receive chapters literally as fast as our authors produce them (hence the “realtime” aspect
of our model), and we can update chapters to reflect the latest changes in technology.

[want to point out that our books are by no means paid advertisements or white papers.
We're an independent publishing company, and an important aspect of my job is to make
sure that our authors are free to voice their expertise and opinions without reservation or
restriction. We maintain complete editorial control of our publications, and I'm proud that
we’ve produced so many quality books over the past years.

[want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially
if you've received this publication from a friend or colleague. We have a wide variety of

additional books on a range of topics, and you're sure to find something that’s of interest to
you—and it won'’t cost you a thing. We hope you’ll continue to come to Realtime for your
educational needs far into the future.

Until then, enjoy.

Don Jones

. i MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

Table of Contents
'

Introduction to Realtime PUDIIShErs...... s i

Chapter 1: Quality Coding for Visual Studio and the .NET Framework.......ccooneneenneeseceneenn. 1

NET Framework and Visual Studio OVEIVIEW.......c.crenreereereeeeseesesseessesssessssssesssssssssesssssssssssssnns 1

The CLR and Related LangUAaESc.ouruiemeeesesssesssssas 2

The .NET Framework Class LIDTaryesssess 4

VISUAL STUAIO w.cerveeeeeeeeeesseeeeeseesseseessessesse s s s sess s s s s bbbt 5

Issues With .NET DeVelOPMENT.......cimerenirersessesssesssssssesssas 6

The Microsoft Visual Studio ENVIFONMENT......c.veeeereeseesseesssssesssesssessssssssssssssssessssssssssssesssessssssns 7

A Brief History of ViSual STUAIOcveiinieresesessssssississessssssssssssssssssssssssssesssssssssssssssssssssssssssesnes 8

Visual Studio Development Methods and TeChNIQUEScocnereenreeneesreeneeseeneeeseeseeseesseeseseens 9

Visual Studio Solutions, Projects and Procedures.......nenennenssseseessessessesseens 10

Issues with Visual Studio Development and Native ToOlSets......ccmmemenenensenesnessessesnnes 10

Understanding and Assessing Code QUAlItYcoceeneenneeneenneeseesesssesseeseessesssssesssessessssssesssessssaees 11

Yardsticks: Errors, Completeness, Security, and Performancecoomeneneenseeneeseennenn. 11

CommONnly USEd COAE MELTICS ..uvvueereurerreeriessississsssesessessessessssssssssssssesssssssssssssssssssssssessssssssssssssssnes 12
Automating Code Quality Assessment and Using Code Quality Assessments to Drive

D=y 7 T (0] 0] 40 =) oL OO OO 15

Ultimate Quality: Does [t Meet the ReqUirements?.......nsssssssees 15

TOp Code QUALILY SNATUS. .ot eessees st ses s s s s s s 16

What to Expect in this Definitive GUIAEcveeenieniesssrsessessessssssessesssssssssssesssessssssseens 18

. ii MICRO
Realtime CIFGEDS

Copyright Statement
-

Copyright Statement

© 2009 Realtime Publishers, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtime Publishers, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers, Inc or its web site
sponsors. In no event shall Realtime Publishers, Inc. or its web site sponsors be held
liable for technical or editorial errors or omissions contained in the Materials, including
without limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T iii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 1

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 1: Quality Coding for Visual Studio
and the .NET Framework

There are many things that contribute to the quality of an application. From the initial
requirements through the functional specifications, data modeling, security considerations,
and choice of interfaces and support services all contribute to how well the application
performs, how easy it is to maintain, and how well people will adopt it. But for all these
factors, nothing is as directly telling as the quality of the code itself. A set of crystal clear
requirements, a brilliant architecture, the most friendly of user interfaces (UIs)s is nothing
if the code does not perform reliably, errors are not well handled, and the code does not
perform the expected tasks quickly.

In this guide, I intend to walk you through the process of building a quality coding practice.
I'm assuming that you're either a professional developer yourself, or that you manage
developers as a major part of your job. 'm assuming that you've worked with recent
versions of Visual Studio quite a bit, too. From getting the most from the development
environment to writing clear and efficient code to analyzing and eliminating errors before
they become issues to making the applications run at peak efficiency, this guide will help
you refine your code practice and churn out better code faster.

This guide isn’t just about indenting your code and how to capitalize variable names; we’ll
also tackle more complicated topics such as the right way to conduct a peer code review,
how to address security and performance problems, and more—everything that
contributes to quality code. We'll begin by making sure we’re on the same page with toolset
and technologies.

.NET Framework and Visual Studio Overview

Microsoft introduced the .NET Framework in early 2002. It represented a significant
change in Microsoft’s software development strategy, moving away from native code that
was compiled for a specific hardware and operating system (0S) toward a more Java-like
model that offered the possibility for broader platform support.

Note

Native code is a binary that is loaded directly into the memory of the
processor and executed. Microsoft Win32, COM, and DCOM applications are
compiled in this manner. Native code is still used for the OS and device
drivers. It can run fast but is difficult to write efficiently and without errors.

p ! MICRO
Ht"(llumt‘ ClFochs

http://nexus.realtimepublishers.com/

Chapter 1
|

To simplify and secure the process of writing code, .NET uses a type of virtual machine,
called the Common Language Runtime (CLR), as a buffer between the processor and the
application. This layer can make things run more securely. Some of the coding problems
that would cause a computer to crash are mitigated by this approach.

NET is purely object-oriented, supporting full encapsulation, inheritance, and
polymorphism. It forces the declaration of variables and a strict object life cycle (a problem
that frequently plagued COM and created memory leaks). None of the Microsoft languages
prior to this, with the exception of J#, was purely object-oriented. Object-oriented
languages are not inherently of higher quality but they offer many features—and force a
certain programming style—that make it easier to write high-quality code.

NET introduced structured error handling for all languages—not just a bolt on as it was in
earlier languages such as C++. Structured error handling is a key capability for writing
higher-quality code; without it, your code cannot respond as consistently to error
conditions.

In addition to the Framework itself, Microsoft created new versions of its software
development tools, including Visual Studio integrated development environment (IDE).
The Framework and Framework-based development aren’t entirely without its critics, and
Microsoft itself has run into significant hurdles in using the Framework to create OS
components.

One problem with the Framework is semantics: The term “NET Framework” is used
generically to refer to several distinct elements, each of which is important to code quality
in a different way. In order to enable our discussion on code quality, and to make it clearer,
we need to first break down the Framework into its constituent elements.

The CLR and Related Languages

When developers speak of programming for the Framework, they’re usually writing code in
either the C# or Visual Basic (formerly “VB.NET”) languages—although other languages are
available (Microsoft provides C++ and J#; other manufacturers provide other languages).
The beauty of this approach is that the programmer can write in the language that he or
she is most comfortable with. If you need to port code from a COBOL, APL, Fortran, or other
system, that code can be used within the .NET Framework, providing that you have support
for that language.

The language in which the program is written is NOT the language that the Framework
uses. When a developer builds (or compiles, although that term is technically inaccurate) a
C# project, what’s produced is not an executable capable of running independently on a
computer’s OS. Instead, Visual Studio’s main job is to translate your Visual Basic, C#, J#, or
whatever code into the Common Intermediate Language (CIL).

Note

You'll still see the term MSIL pretty often, although since the language
specification was formalized and standardized as ECMA-335, the term CIL is
more correct.

2 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 1
-

Here’s an example of CIL code:

.method static void main()B

{

Bl .entrypoint

Bl .maxstack 1
ldstr "Hello world!"

R call void [mscorlib]System.Console: :WritelLine(string)
ret

}

It's actually a pretty unintuitive, hard-to-read language, which is why few developers work
in it directly (for the old school audience, this is a lot like Assembly language). Once your
code has been converted to CIL, it’s further assembled into bytecode (which is essentially a
binary compact form of shorthand for CIL), creating a.NET assembly—typically an EXE or
DLL file, depending on how it will be executed. Figure 1.1 illustrates this process.

C# VB.NET J#
code code code
Compiler Compiler Compiler

NET compatible languages compile to a

E Cammon second platform-neutral language called

! Intermediate Commaon Intermediate Language (CIL).

H Language

E The platform-specific Common Language

: Eaﬂgma%l Runtime (CLR) compiles CIL to machine-

: Runtime readable code that can be executed on the
E current platform,

: 01001100101011

; 11010101100110

5, [
e NN NN RN RN RN NN NN NAEEEEENEEEEFFIRRRR R

Figure 1.1: Compiling .NET Framework code.

. 3 &
Realtime ClFochs

publishers

Chapter 1
|

When a user runs an assembly containing CIL, the Framework’s CLR springs into action.
The CLR receives the bytecode from the assembly and executes a Just-In-Time (JIT)
compiler that generates code capable of executing on the platform within the CLR. This
model allows code to be written once and to be executed on any platform for which a CLR
is available. There is a performance hit while the JIT converts the bytecode to executable
binary, but it caches the resulting native image for future use (it automatically recompiles
when the source assembly is seen to have changed). A Framework utility called NGEN can
be used to generate native images in advance; this process eliminates the initial
performance penalty but ties the native image to a single platform. That is one reason, for
example, Windows PowerShell (which is written in the Framework) is distributed in
different versions for different Windows OSs.

The CLR acts as a type of virtual machine. The CLR is responsible for executing Framework
applications, handling their memory usage, managing garbage collection, handling
exceptions, managing security, and so forth. Unlike Java, which typically permits very
limited access to the underlying host OS, the CLR is designed to provide access to the native
Windows OS features—although it does so only through a strict set of security controls.

The .NET Framework Class Library

An integral part of .NET development is the .NET Framework class library—what we can
properly refer to as “the Framework.” This is an extensive collection of preprogrammed
classes that give developers much of the functionality they need to write applications.
Framework classes exist to connect to databases, create graphical user interfaces (GUIs),
and so forth; developers just—to oversimplify a bit—connect the various classes to one
another to create applications. Thus, developers are less concerned about low-level details
such as how to open and read a file, and more concerned about high-level functionality,
such as implementing business logic.

The Framework is extensible. Additional classes can be added to cover functionality that
the Framework itself doesn’t address and that a developer doesn’t want to create manually.
Classes for remote connectivity, creation of charts and graphs, alternative Ul elements, and
so forth are all popular.

Each version of the Framework class library is unique, and developers must target a
specific version when creating their applications. Framework versions are not necessarily
cumulative nor are they necessarily cross-compatible. For example, if you create an
application that uses features from only v2 of the Framework but your project targets v3.5,
your application will run only if v3.5 of the Framework is installed even though v2
technically contains all the needed functionality.

Each version of the Framework tends to add new classes to what came before; each version
may also contain changes to functionality introduced in previous versions. Figure 1.2
shows the major portions of the Framework as of v3.5, along with initial plans for future
versions. As you can see, the Framework is truly enormous—much larger and more all-
inclusive than similar class libraries for languages such as C++.

4 MICRO
Realtime |:||=|:||:us

Chapter 1

&
PLINQ TPL TE
g3
ADO.NET w
BEL Entity Framework o
o
o
: =
Winforms ASP.NET ADO.NET m
_|
T
=
Q
Base Class Library g
=
O
i,
~
Common Language Runtime N
=

Figure 1.2: The .NET Framework class library.

Visual Studio

Although you could technically create .NET applications using nothing more than Windows
Notepad and the freely available language compilers, you probably wouldn’t enjoy it. An
IDE provides numerous features to make development easier and faster, and Visual Studio
is the de facto IDE for most .NET developers. Available in various editions that offer
different features and functionality, Visual Studio is designed for .NET development (as
well as for developing unmanaged C++ applications). It includes a core code editor and
project management tools, and in some editions, offers features such as source control
connectivity, testing tools, and so forth. Visual Studio is extensible; while Microsoft directly
supports Visual Basic, J#, C++, and C#, third parties have extended support for languages
such as Java, COBOL, Fortran, APL, Chrome, F#, Python, and Ruby. Free “express” editions
support only a single language—either Visual Basic or C#, in most cases, although “express’
editions for J# and C++ are also available.

)

Figure 1.3 shows Visual Studio, and illustrates one of its major IDE features: IntelliSense,
Microsoft’s brand name for its code-hinting and code-completion features.

. 5
Realtime ClFochs

publishers

Chapter 1

Edit Vew Refactor Project Build Debug Data Tools Window Community Help

BAra-cEdd a9 & b Release ~ Any CPU - | [# logger AR e ol I N R
: & & B
%¢| . serislizationtiandier.cs ' Accounts.cs®| Plan.cs | Program.cs = StartPage |] - %[5
; “T§ My.NetUsage. Worker. Accounts "j @NewPlan(Plan Current) lv} ::
g 321] if (! Ready) |f s
= |

i 22 I =
o 23 Plans = new List<Plan>(); g
2 24 _Ready = trus; =
& 25 } i
Z 26! _Current = Current; | :
a | 27 Plans.Add ({Current) ; d
= i o
il = L =2
3 29:1 } 6 IConvertble) d
H = ~& ICustomFormatter 1
=z 31 £ =0 IDictionary<:> o
g 32 {5 IDisposable 5
= 33H S [Enumerable <> | |[nterface System. Collections. Generic, IEnumerable < T <
= 34 =& [Enumerator <> ~ ||Exposes the enumerator, which supports a simple iteration over a collection of a spedified type. 2
35 =0 TEqualityComparer <> IL

36i | ~o [Equatable<:> =]

a7 | & i g

3g =0 IFormatProvider e H

[w]|5

-] B

1 Description

._‘&EH'C‘: List | (i Task List |7 Code Definition Window | (=] Output | £ Find Symbol Resuits | 7] Command Window |3 Bookmarks
Ready Ln 28 Col 15 ch 15 INS

Figure 1.3: Visual Studio.
We’ll be discussing Visual Studio in more detail in just a bit.

Issues with .NET Development

The Framework isn’t entirely without issues and critics, and if we’re going to use it to build
quality applications, we need to consider some of the major criticisms and understand how
they may impose limitations on our own ability to deliver quality code.

Applications that run in a managed environment—which is what the CLR is—tend to run a
bit slower or require more system resources in order to run as quickly as applications that
run natively on the OS. This performance issue, in fact, was a contributor to Microsoft’s
difficulties delivering on technology promises such as WinFS and Avalon (a file system and
graphics subsystem based on managed code) for Windows Vista. This is an important
consideration because you, as a developer, have little control over the performance hit
introduced by the CLR; if a certain set of performance metrics are mandated in your
software’s requirements, you could run into situations in which you can’t optimize the
performance further because the CLR is acting as a bottleneck of sorts. You're unlikely to
find situations where you can’t produce acceptable performance, but depending on the
aggressiveness (and realism) of your required performance metrics, meeting those metrics
may be challenging.

. 6 &
Realtime ClFochs

publishers

Chapter 1
|

Framework assemblies contain a bytecode version of CIL, meaning you are essentially
distributing your source code. Numerous utilities exist that can “de-compile” a .NET
assembly into C#. In fact, most of the actual Framework classes can be decompiled, as
Microsoft relies on intellectual property (IP) law to protect its source code. Smaller
developers with fewer lawyers often turn to obfuscation tools, which perform various
semantic tricks to render decompiled code less readable. Modern versions of Visual Studio,
in fact, come with a “community edition” of a popular commercial obfuscator, giving
developers a baseline obfuscation capability and tacitly acknowledging the downside of
bytecode assemblies.

Managed environments such as the CLR must periodically clean up after the applications
they run. This process, called garbage collection, involves freeing up and helping to de-
fragment memory that is no longer in use by the application—such as memory that had
been allocated for variables that are no longer in scope. Garbage collection halts execution
of the application for a bit, and although this time period is usually imperceptible, it can in
some instances be perceived as poor application quality. Developers must take some care
to deal with memory according to best practices so that garbage collection doesn’t become
an impediment to the application.

The exact version of the Framework you develop for is important. Older versions, such as
v2, are fairly ubiquitous, having been around for some time and having been preinstalled
on most modern versions of Windows. Newer versions may not be available on all client
computers, meaning that running your application first requires users to install the proper
version of the Framework. Visual Studio has traditionally been poor at allowing developers
to target a specific version of the Framework; Visual Studio 2005, for example, was
introduced with v2 of the Framework and doesn’t really “like” to compile assemblies that
are compatible with v1.1 of the Framework—even though it could create such assemblies.

The Framework itself adds a great deal of overhead to your application’s footprint: up to
197MB for v3.5 of the Framework. Although this is mitigated by the fact that multiple
applications can share the same Framework installation, users who need to have v1.1, v2,
v3, and v3.5 installed to support various applications are taking a pretty big hit in terms of
drive space.

The Microsoft Visual Studio Environment

It might seem like overkill to talk about an IDE in a book about code quality, but the IDE is
where you're writing your code, so the IDE is where quality begins. And in fact your IDE
can do a lot to help or harm your code quality, depending on how you use that IDE.

.__.
P
F

.’ 7 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 1
|

A Brief History of Visual Studio

Visual Studio was first released in 1997, bundling many of Microsoft’s programming tools
for the first time. Prior to that release, products such as Visual C++ and Visual Basic were
independent tools with their own, unique IDEs. Visual Studio 97 included Visual Basic 5.0
and Visual C++ 5.0—this was before the .NET Framework was even a glimmer in anyone’s
eye. Visual Studio 97 also included Visual J++, Visual FoxPro 5.0, and Visual InterDev for
Web development as well as Microsoft’s MSDN Library documentation.

In 1998, Visual Studio 6.0 was introduced and was the last version created to run under
Windows 95, Windows 98, or Windows Me. This was still pre-.NET Framework, with a
focus on Component Object Model (COM) development, but it offered a more consistent
and unified IDE—although the unified IDE was used only by Visual J++ and Visual InterDev;
Visual Basic, C++, and FoxPro continued to use their own distinct IDEs. It originally
included Visual J++, but that was discontinued after Microsoft’s legal settlement with Sun
Microsystems.

In 2002, Visual Studio .NET was released to correspond with the first release of the
Framework itself. This introduced the complete transition to CLR-managed code, a
common IDE for the included Visual Basic .NET, C#, and J# programming languages as well
as Managed C++, a set of extensions to C++ that allowed for .NET development in that
language. Visual FoxPro was removed from Visual Studio and placed on its own
development track; it is not a .NET Framework language.

Visual Studio .NET 2003 included .NET Framework v1.1 as well as the .NET Compact
Framework for mobile devices. This was a fairly minor upgrade in many respects.

A more major upgrade came in Visual Studio 2005, when the “NET” moniker was dropped
from the name (Microsoft had by this time dropped “NET” from the many things it had
been applied to, except the Framework itself). V2 of the Framework accompanied Visual
Studio 2005, and project types for ASP.NET Web services were added to the IDE. 64-bit
support was introduced, although the Visual Studio application itself was only 32-bit.
Subsequent add-ons to Visual Studio 2005 enabled support for .NET Framework v3
features, including Windows Workflow Foundation, Windows Communication Foundation,
and Windows Presentation Foundation. This version of Visual Studio also introduced
numerous “team” editions with task-specific functionality for application architects,
developers, testers, and so forth.

Visual Studio 2008 is the latest version as of this writing and contains numerous upgrades.
A new Windows Presentation Framework designer is included, along with a new
HTML/CSS editor for Web applications. J# has been dropped from the bundle, and the
default Framework target version is v3.5. This is the first version to truly support targeting
earlier Framework versions, including 2.0, 3.0, 3.5, the Silverlight CoreCLR, or the Compare
Framework. New code analysis tools, including the new Code Metrics tool, are included in
some premium editions, and the integrated debugger introduced support for easier
debugging of multi-threaded applications.

8 MICRO
Realtime |:||=|:||:us

Chapter 1
|

Note
As of this writing, Visual Studio 2010 is under development.

Visual Studio Development Methods and Techniques

For an experienced developer, Visual Studio is a straightforward IDE. An entire software
application can be developed in Visual Studio, whether it's a Windows GUI application, a
Web application, a Web service, or whatever; the IDE contains all the necessary visual
designer surfaces, code editor support, integrated help, and other features needed to
produce a complete application.

The IDE also offers setup and deployment wizards to help build Windows application
installers, deploy Web sites to a Web server, and so forth. An embedded Web server allows
developers to perform immediate testing of Web applications without needing to deploy a
separate Web server, which makes unit testing that much easier and that much more
accessible.

Perhaps it should go without saying, but be aware that Visual Studio supports only .NET
Framework development. It does not explicitly support older Microsoft development
languages such as pre-Framework Visual Basic nor does it explicitly support languages
such as PHP. Visual Studio is extensible, so it’'s not unthinkable for it to be extended to
support these languages, but generally speaking, Visual Studio users are interested in
developing Framework-based applications.

Note

Actually, Visual Studio does support development in one unmanaged
language: Visual C++. That language continues to enjoy widespread support
and use.

Visual Studio includes built-in support for Visual SourceSafe and Microsoft’'s Team
Foundation Server source control capabilities but does not natively support other version
repositories such as SubVersion, ClearCase, or CVS.

Note

Many of these versioning systems have their own clients that act as plug-ins
to the Visual Studio IDE.

The IDE provides basic refactoring and “code beautifier” capabilities and provides basic
support for comparing different versions of a file. These features all help developers create
code that conforms to internal standards as well as industry best practices—both of which
are important, as we shall see later, to building quality code.

.__.
P
F

.’ 9 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 1
|

Visual Studio Solutions, Projects and Procedures

Visual Studio’s basic unit of work is a project, which more or less represents a single
application. However, Visual Studio recognizes that many large-scale software solutions
actually involve multiple discrete projects. Therefore, a developer may have an entire
Visual Studio solution open in the IDE at once; this solution can consist of projects for back-
end code, Web services, Windows GUI apps, middle-tier components, and so forth, allowing
an entire application to be tested within the confines of the IDE.

This capability can offer a great deal of power and flexibility for developers but also
requires coordination in order for it to work well. For example, a developer may be
working on a particular middle-tier component and may check out the associated files from
version control in order to work on them. Another developer may be working on a client
application and might have a read-only copy of the first developer’s middle-tier component
code. This setup allows both developers to work independently, but the second developer
will always be working on an out-of-date copy of the middle-tier code. That may be fine for
basic unit testing, but at some point, all the latest code needs to come together in a single
place, such as a full test environment where daily builds or other agreed-upon units of
work are deployed for more formal integration testing. Visual Studio itself doesn’t provide
tools specifically for managing the inherent disconnect between developers working as a
team, although frankly, no IDE really does or could. This challenge is a management issue
and provides a good example of why effective management skills and processes are needed
in complex development projects.

Issues with Visual Studio Development and Native Toolsets

If Visual Studio has a weakness, or weaknesses, it relates to code testing. Although the
Visual Studio Team Test edition offers test-specific functionality, no edition of Visual Studio
can be considered a full-fledged tool for application testing. It lacks strong support for test
asset management, lacks the security and auditing controls necessary for strong test asset
management, and lacks much of the higher-end automation and test management
capabilities found in third-party tools.

Note

Test assets refers to a variety of resources, including sample data, which is
used to test an application’s behavior not only to proper input but also its
handling of improper input. A major root cause of poor application quality is
poor test data: test data that is not real-world does not lead to real-world
quality testing. That said, real-world test data may come with significant
baggage in terms of sensitivity, security, and privacy, so a test asset
management tool must be able to properly secure and audit access to test
data. If test data will, for example, include real-world customer data, that
data must be treated with sensitivity for its privacy—and in some
jurisdictions, all use of that test data must be audited. Visual Studio does not
provide this level of management capability for test assets.

. 10 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 1
|

Another concern with Visual Studio development, with regards to code quality, involves
management reporting. Even when all developers are using the “Team” editions of Visual
Studio, there are relatively immature built-in means for a manager to report on developer
productivity, review developer unit testing results, review formal results from QA testers,
and so forth. Given the role management must play in properly coordinating development
and testing and in ensuring the delivery of a quality application, Visual Studio’s lack of
management tools can be considered significant.

That said, we should recognize that Microsoft wants Visual Studio to be an IDE, not a be-all,
end-all software development system. Microsoft never set out to make Visual Studio a tool
for managers nor did it set out to build enterprise-class test asset management. Microsoft
relies on a rich ecosystem of third-party Independent Software Vendors (ISVs) to provide
these more business-specific capabilities, and many ISVs do so by integrating their toolsets
directly into Visual Studio itself. Any lacking in Visual Studio shouldn’t be construed as a
failure on Microsoft’s part but rather as recognition that software development is
complicated and often requires tools that are more specific to a given line of business or
development model.

Understanding and Assessing Code Quality

[s it possible to look at code and assess its quality without even running the application?
Certainly we can assess an aspect of the code’s quality statically, just as we can assess other
aspects by running the application. It's important to understand that, ultimately, code
quality is the combination of these things.

Yardsticks: Errors, Completeness, Security, and Performance

How do you, and your organization, measure code quality? Businesspeople tend to focus on
whether an application does what they need in the way they need it done. Call that
completeness. Businesspeople also focus—often above all else—on their perception of the
application’s performance. Are they telling customers, “Sorry, the computers are slow
today?” If so, they likely perceive the application as one of poor quality. Too often, in fact,
developers aren’t armed with a simple tool that would allow them to meet those quality
expectations: a list of actual expectations! In other words, if you don’t know what features
and performance are expected, you probably won'’t deliver them. That’s where well-written
requirements can help drive better quality, simply by letting you know what’s expected of
the application.

Note

Remember: Many things can contribute to a poor-quality application. Most
people will, however, always attribute poor application quality to poor code
quality. Ensuring that the code is of high quality allows you, as a developer, to
defend your work more easily.

P 11 MICRO
H{:’dlumt‘ ClFochs

Chapter 1
|

Most anyone will agree that errors are a sign of poor quality. Obviously, some errors—such
as a missing file or an unavailable network connection—are outside your immediate
control, but handling those error situations gracefully can at least provide an improved
perception of quality. Graceful failure can also help troubleshooters such as systems
administrators or help desk staff solve problems faster. If your application can be clear on
what the external problem is, troubleshooters can focus on that problem and not on your
application. Of course, you need to make sure that the code paths leading to graceful failure
are deterministic: displaying a “network error” when in fact the network is fine is a sure
way to have your application thought of as “low quality.” And no one likes seeing an
“Unexpected error” message pop up on their screen.

Security is something many developers don’t think of as they’re writing code, and
unfortunately, it's something that often may not be a problem for some time after an
application has been released and is in use. But eventually, if security isn’t coded in from
the start, it will be a problem, and there are few symptoms of poor quality that cost more to
deal with. Security isn’t fun to code, and in most cases it winds up making applications
more complicated and complex than they would be otherwise, but in today’s world, a
securely coded application is simply a requirement.

All of these yardsticks are valuable indicators of quality because they focus on end user
perceptions, which are critically important in measuring an application’s overall success or
failure. However, all these yardsticks are very subjective and can be very difficult to
measure. For that reason, it is—in addition to these yardsticks—beneficial to have more
measureable metrics against which to judge the quality of your code.

Commonly Used Code Metrics

To say that there are numerous formal metrics for code quality is something of an
understatement. Massive quantities of literature have been published on the topic. One
common theme, however, is that measuring bugs is not a measure of quality—it’'s a
measure of “non-quality,” to coin a phrase. Measuring error density per thousand lines of
code over the course of a year doesn’t tell you whether your code is good; it only tells you if
your code is bad. Not that tracking errors isn’t essential; they’re just not the be-all, end-all
of measuring code quality.

In 1993, the Institute of Electrical and Electronics Engineers (IEEE) published a software
quality metrics methodology that was intended as a systematic approach for establishing
quality requirements, validating quality metrics, and so forth. There’s that word
requirements again. Figure 1.4 shows the IEEE’s basic methodology.

Software Quality Activity Development Cycle Phasing

Establish software quality requirements -

Identify software guality metrics

Implement software quality metrics

Analyze results of these metrics

Validate the metrics

Figure 1.4: IEEE software quality metrics methodology.

12 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 1
|

Without establishing your requirements, you have nothing against which to measure
quality! Although various software development methodologies provide means for
measuring quality, all begin with well-written requirements, which must define what
“quality” means for that application. Software Measurement: A Visualization Toolkit for
Project Control and Process Measurement, by Simmons, Ellis, Fujihara, and Kuo, was
published in 1997 and in many ways is the best treatment of current software metrics. It’s
a dense tome, but it’s worth a read, as it also explores historically verified formulas that do
things like predict the number of defects per thousand lines of code based on project size
(middle-sized projects tend to have the least bugs, for example). Simmons, et. Al, propose a
basic metric set that encompasses reliability, verification, and usability, with each acting as
the leg of a triangle:

e Usability is a product’s fitness for its intended purpose.
e Verification is the ability to determine whether a product is usable and reliable.

e Reliability is usually defined as bug potential, bug-fix efficiency, and bugs that still
exist in “finished” code.

More recently, the function point has been proposed as a quality metric because it doesn’t
rely on simple lines-of-code counts, which rarely provide satisfactory quality metrics.
Instead, a function point represents interfaces within the application because interfaces are
most often where errors occur. A typical function point developed by IBM looks like this:

e Multiply 4 times the number of external inputs

e Multiply 5 times the number of external outputs

e Multiply 10 times the number of logical internal files

e Multiply 7 times the number of external interface files

e Multiple 4 times the number of online inquiries supported

These are called average weighting factors, or Wj;. Xj; is the number of each component type
in the application. Feed all that info a function like the one shown in Figure 1.5.

Figure 1.5: Function point metric formula.

Then you use a scale of zero to 5 to rate the potential impact of 14 general system
characteristics, with 5 representing a very likely impact on the application overall, and 0
representing a lesser impact.

13 MICRO
Callllll€ DFDBUE

Chapter 1
|

The system characteristics are:

e Data communications
e Distributed functions
e Performance

e Heavily used configuration
e Transaction rate

¢ Online data entry

e End-user efficiency

e Online update

e Complex processing

e Reusability

¢ Installation ease

e Operational ease

e Multiple sites

e Facilitation of change

Add your scores and call the sum Ci, and use the formula in Figure 1.6 to find a value
adjustment factor (VAF).

Figure 1.6: Function point metric formula.

Then come up with your final function point value by using the formula FP = FC x VAF. Your
“function point value” is a score indicating the potential quality of the software (amongst
other things). It's not measuring bugs but rather (in part) the potential for really bad bugs.

Note

If you can’t get enough of the math, check out
http: //www.informit.com/articles/article.aspx?p=30306, which contains an
excellent discussion of current metrics theory.

No kidding. This is why kids in school are told that software development requires an
affinity for math. It’s also why automated tools exist to help assess software quality.

14 MICRO
s_l_]'r,_ DFDBUE

http://www.informit.com/articles/article.aspx?p=30306

Chapter 1
|

Automating Code Quality Assessment and Using Code Quality Assessments to Drive
Development

With code quality assessments involving so much math, counting, and other fairly tedious
tasks, it's not surprising that tools exist to help automate the process. Most commercially
available tools offer metrics based on many popular industry standards and methodologies.
Assessment tools often produce everything from simple numeric scores to complex
reports, including visualizations such as matrix plots, table lenses, and so forth.

Automated assessment tools can be quite complex. In addition to gathering basic
information such as the number of lines of code and interfaces between code modules, they
may analyze Ul code, database code, and so forth, which must actually parse your
programming language and make assessment decisions. A benefit of these assessments is
that you can do them frequently, as your code grows, and you can use them to identify
high-impact areas with a high defect potential. Identifying these areas of your code quickly
helps you put more focus on them to help prevent bugs during development and during all
phases of testing.

Ultimate Quality: Does It Meet the Requirements?

There’s no better measurement of an application’s quality than the answer to one simple
question: Does the application meet its requirements? And the follow-up questions: Does it
perform as required? Offer the functionality required? Meet the required security
standards? Respond to errors as required? Without clearly articulated requirements, you
cannot judge an application’s quality.

[live in a nice enough house. It’s one-story, has insulated windows, has great insulation in
the roof, and isn’t too drafty in the wintertime. Is it a quality house? Based on my
requirements for energy efficiency, it definitely is. My parents, however, prefer two-story
houses, like windows that slide up rather than sideways to open (they’re easier to clean,
Mom says), and want a garage that’s a bit wider than mine. So by their requirements for
form and function, my house isn’t of very high quality. Without any of our requirements in
mind, it’s impossible to make a quality statement about the house. Even a home inspector
has requirements: Is it up to code? Is there any rot or decay? Is anything broken or out of
kilter? Everyone has different measurements for quality.

That’s why written requirements are so important for programmers. Without them, you’ll
never know whether what you're producing is quality. Maybe you’ve fine-tuned every code
to the minimum number of statements, optimized database access, and spent hours
agonizing over the GUI color scheme. After all that effort, it's a poor quality application if it
doesn’t produce the printed output users really need.

p 15 MICRO
Ht"(llumt‘ ClFochs

Chapter 1
|

The great part about well-documented requirements is that they are not subjective.
Instead, they serve as a measurable checklist. Either your application does everything on
the checklist or it does not. The more checks, the better the application quality. The best
part about a well-written set of requirements is that you, as a developer, need to worry a
lot less about the things not in the requirements! The requirements don’t address printed
output? Well, don’t spend too much time on printing, then, because it’s obviously not
important to anyone. Instead, you can focus on what is in the requirements, do a good job
implementing them, and have a final application that everyone can (or should) agree is of
high quality.

There are, of course, “under the hood” aspects of coding that don’t make it into
requirements documents. Good coding practices lead to easier long-term code
maintenance, better application stability, better application security, and other factors that
often aren’t written in a set of requirements—but that are still perceived as signs of poor
quality, and so are things you still need to focus on. That’s what much of this guide will
focus on, too.

Top Code Quality Snafus

The SANS Institute and a collection of computer experts recently published a list of their
top-25 code problems—all of which, ultimately, relate to code quality. Although many of
these problems relate to security, others also relate to general stability and other issues.
It's useful to review this list in this first chapter, as many of these issues are ones we’ll focus
on specifically as examples throughout later chapters.

e Improper input validation. Simply put, you're asking for trouble if you assume any
input—either from users, data stores, or other systems—conform to your
expectations (for example, you ask for their age, expecting a number, and the user
types “old enough to know better”).

e Improper encoding or escaping of output. This is at the root of most injection-
based software attacks and is of particular concern because—as OSs become more
hardened—applications are fast becoming a favorite target.

¢ SQL Injection. Hackers will use an input statement to execute their own code
against your database. It is your job to prevent them from doing so.

e Cross-site scripting. In the world of Web development, this is one of the most
popular ways to attack code. Quality code can stop it cold.

¢ OS command injection. Unsurprisingly, injecting commands into the OS is a
popular attack. Even Google’s first release of its Android mobile phone OS had this
problem.

¢ (lear-text transmission of sensitive information. When you ask a user for
credentials and the user trusts you, you need to protect that information. Passing it
through the network (or worse yet, the Internet) in plain sight where anyone with a
sniffer can read it is just irresponsible. Quality code builds security into every aspect
of an application and is always careful with how it handles data.

16 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 1
|

e Cross-site request forgery. This combination of social engineering and scripting
attack can leave unsuspecting Web applications vulnerable.

¢ Error message information leak. Clear error messages are obviously desirable but
too much information isn’t good—especially if sensitive information is displayed
(for example, error messages that provide the name or credentials of the service
account).

¢ Memory buffer overflows. One of the most common errors with native code
programs is when a memory variable is not controlled. A hacker enters an input that
overwrites the executable portion of the program. Thus, the hacker’s code executes.
Simply put, sloppy programming; and even today’s advanced programming
frameworks don’t automatically provide 100% protection.

e External control of state data. Storing state data in a database or elsewhere is fine
but don’t assume that store is tamperproof unless it truly is, and make sure your
application is validating that data when it’s read back in.

¢ External control of file names and paths. As with many injection attacks, using
user input to construct file names and paths leaves opportunities to attack and crash
an application.

¢ External control of search path. If your application depends on underlying OS
search paths, an attacker can gain control of that and misdirect application resource
requests. Never assume an application is running in a safe sandbox.

¢ Code injection. Dynamic code offers cool capabilities but also provides an
opportunity for serious vulnerabilities.

e Downloaded code. There is a lot of interesting code posted on the Internet. Don'’t
depend on anything generated outside your application’s own code. Unless proper
coding security measures are employed, downloaded code can be easily hijacked.

e Improper resource shutdown or release. Don’t leave it to the OS to release
resources automatically—explicitly clean up after yourself.

e Improper initialization. Don’t assume anything about your application’s starting
state; properly initialize everything you plan to use.

¢ Incorrect calculation. Using user input in calculations is an opportunity for
unexpected buffer overflows and other problems.

e Improper access control. You need to continually check to make sure users are
allowed to do what they’re trying to do; don’t put all your security into one ‘front
door’ and give attackers an opportunity to bypass that through unexpected code
paths.

e Using bad cryptography. 40-bit encryption is so 1980s. Using outdated or broken
algorithms is as bad (or worse) than using none at all. Don’t develop your own
encryption schemes, either; use strong, industry-standard libraries.

17 |:|M||:R|:|‘“"
nNCalulllc FOCUS

Chapter 1
|

e Hard-coded passwords. Bad idea. All software can be decompiled and your
password can be revealed. Yet this has been a common poor-coding practice for
more than four decades. And maybe it is not a good idea to keep password in an
unencrypted XML configuration file on you server?

¢ Insecure permission assignment for critical resources. Sensitive data should be
secured at many layers: within your application, in middle-tier components, at the
database, and so forth.

¢ Use of non-random random values. Security features often rely on randomness,
but computers aren’t always good at generating random numbers. Are you making
your software’s security isn’t too predictable?

e Execution with unnecessary privileges. In all probability, your application doesn’t
need to be run by a systems administrator, so make sure it will run without that
unnecessary privilege. If you think you must have that kind of permission, you might
be doing something wrong.

¢ C(lient-side enforcement of server-side security. If a server enforces security
measures, don’t try to duplicate that in your client application; instead, respond to
security errors as appropriate. Your client application can be decompiled and used
to thwart the security on the server itself.

Although security-heavy, the problems highlighted in this list also manifest as stability
problems, create long-term maintenance problems, and display other aspects of poor
quality. We'll return to some of these examples again as we look at ways to improve the
quality of the code we release.

What to Expect in this Definitive Guide

So what'’s coming next? In Chapter 2, we'll dive into coding standards and best practices.
You'd be shocked, and possibly horrified, at the number of developers out there who are
still following coding standards originally developed for Visual Basic v1. Thus, we’ll be
going back to basics and really getting into modern coding practices. We'll not only cover
what you should do but also what you shouldn’t—and most importantly, why. We'll look at
how some of Visual Studio’s timesaving tools can, if you're not careful, actually create a
negative impact on code quality, so we’ll also look at ways to use those features safely.
We’ll wrap up by looking at different development methodologies, comparing and
contrasting them so that you can select one, or a hybrid of them, that works best for you.

No developer works alone, so Chapter 3 will focus on code analysis and peer reviews, a
critical tool in improving application quality. We’ll examine the differences between
manual and automated code reviews, and look at a set of code review rules. Code analysis is
really a pretty complicated topic, so we’ll spend lots of time looking at considerations such
as maintainability indices, depth of inheritance concerns, and so forth.

18 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 1
|

In Chapter 4, we’ll begin looking at ways to address coding errors. Hey, they’re inevitable,
so we might as well learn to deal with them, right? We’ll create a sort of taxonomy for
different types of errors, and look at specific ways to prevent, mitigate, and address each
type. Obviously, getting rid of errors is a big step in improving code quality, so we’ll also
look at tools you can use to eliminate bugs more easily. I'll also present my Unified Theory
of Bugs, which will help any developer who struggles with debugging really understand
how to proceed. Even if you're an experienced developer, I think you’ll find some things
here that are useful—and most especially things that you can share with less-experienced
members of your team.

Chapter 5 is where we’ll address performance and security problems. They’re not bugs per
se, but they’re definitely things that lead to a lowered perception of quality in a finished
application. We'll look at different ways of detecting coding problems, explore where
security problems come from, and really look at the things you, as a developer, can do to
insist on better performance and security from you applications. You might be surprised at
where I eventually lay the blame for bad performance and security, but I think you’ll be
happy with the result.

We’ll dive into testing in Chapter 6, and start looking at both manual testing and automated
testing. We'll explore the importance of solid use cases and testing assets, and look at how
bad cases and assets can lead you to think you're producing a quality app—and lead to
unpleasant surprises when you find out differently later on down the line. We’ll look at
different types of testing, such as unit and system testing, and make sure we agree on the
value of each type.

Finally, Chapter 7 is where we’ll look at automated debugging, code analysis, and testing.
There’s really no point in using automated tools until you’ve mastered doing things
properly without automation; I'm a big believer that although automation can make things
less boring and more consistent, it can’t actually add much in the way of quality on its own.
Your quality will only be as good as what you automate, which is why we’re getting to
automation only after we've explored all those other ways to improve code quality.

So that’s our battle plan. [hope you’ll stick with me through each chapter, and I hope you'll
find plenty of information to help you produce higher-quality code.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

.__.
P
F

E 19 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

http://nexus.realtimepublishers.com/

	Introduction to Realtime Publishers
	Chapter 1: Quality Coding for Visual Studio and the .NET Framework
	.NET Framework and Visual Studio Overview
	The CLR and Related Languages
	The .NET Framework Class Library
	Visual Studio
	Issues with .NET Development

	The Microsoft Visual Studio Environment
	A Brief History of Visual Studio
	Visual Studio Development Methods and Techniques
	Visual Studio Solutions, Projects and Procedures
	Issues with Visual Studio Development and Native Toolsets

	Understanding and Assessing Code Quality
	Yardsticks: Errors, Completeness, Security, and Performance
	Commonly Used Code Metrics
	Automating Code Quality Assessment and Using Code Quality Assessments to Drive Development
	Ultimate Quality: Does It Meet the Requirements?

	Top Code Quality Snafus
	What to Expect in this Definitive Guide
	Download Additional eBooks from Realtime Nexus!

