
The Essentials Series: Modern Malware
Threats and Countermeasures

Uncovering Modern Malware’s
Technologies, Behaviors, and
Practices

by Greg Shields

sponsored by

i

Uncovering Modern Malware’s Technologies, Behaviors, and Practices.......................................1

Early Attempts ...1

Modern Trickery ..2

System File Patching and Process Infection ..2

Code Resuscitation...3

Code Randomization..4

Rootkit and Cloaking Behavior ...5

Malware Is Getting “Badder” ..6

ii

Copyright Statement
© 2008 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

1

Uncovering Modern Malware’s Technologies, Behaviors, and
Practices

It is one thing to understanding what malware is. Understanding how it infiltrates into your
computer systems during an infection is quite another. The discussion on types of malware in the
first article of this series is intended to help enlighten your understanding that malware arrives in
multiple forms, each with its own mechanism of infection, ways of replicating, and payloads for
accomplishing its mission. The list in the first article of this series provides insight into the types
of malware you’ve likely found on systems or heard of through the media.

The intent of this second article is to expand beyond mere classifications of malware and focus
specifically on the technologies, behaviors, and practices used by each to infect computers, hide
themselves, and remain resident on computers as long as possible. As with the evolution of the
malware industry, new versions of its software have grown to become significantly more
intelligent in recent years. Understanding how malware behaviors have changed over time will
help you realize the scope of today’s modern malware landscape.

Early Attempts
In the beginning, Windows-based malware attempts could be considered relatively easy to spot
with the naked eye. In comparison with the malware of today, early infectors often utilized their
own individualized processes for running the activities desired by the malware creator. Having
their own individual process made early malware attempts easy to detect through casually
browsing the contents of the Windows Task Manager. A skilled IT professional could search
through Task Manager’s list of running processes on an infected computer and often find
processes that seemed out of place:

• Perhaps the process was not on the organization’s list of those associated with approved
applications

• Processes were sometimes masked with filenames similar to those already on the system,
leaving duplicate entries in the list

• Occasionally, processes were given similar though not exact names, also making them
stand out to the trained eye

In any of these cases, the process of determining that a computer was actually infected was an
easier process than it is today. Although the removal of the malware components could be
complex, its identification could be done through traditional IT troubleshooting techniques.
Applications that assisted with the identification process could be run on an as-needed basis once
the infection was confirmed to remove the offending software.

2

Modern Trickery
Today’s malware, however, has reached a level of sophistication at which its identification can
no longer be completed with the naked eye. In most cases, neither can it be identified using the
common troubleshooting applications traditionally kept in the IT technician’s toolkit. Though the
different categories of malware utilize different mechanisms of trickery to evade detection, some
current common behaviors make specialized applications necessary to find and get rid of the bad
software. The following sections take a look at a set of these behaviors.

 This list includes only a subset of known behaviors. With malware development in a constantly
evolving state, used mechanisms are always being modified to evade detection. Effective anti-
malware tools incorporate always-on and real-time or near-real time updates to ensure that clients
are always scanning using up-to-date methods.

System File Patching and Process Infection
When the typical IT professional thinks of the term “patching,” this usually describes the
monthly process done to update operating systems (OSs) and applications with newly released
vendor code. But the concept of patching is much more general than this definition. Any file—
whether it be an OS file, one for an application, or a data file itself—can be “patched” or updated
with new code.

In the malware environment, this patching process involves reverse engineering known-good
system files and injecting customized code into the result that is specific to the malware
software. This activity commonly occurs with system files such as executables or library files
used for processing of certain activities. In any of these cases, consider the result. Executables
and library files within the Windows OS are collections of functions that enable an activity to be
processed on the system. By extending these functions to include desired malware behaviors, the
“patched” system file can now operate both for its original use plus the functions needed by the
malware software (see Figure 1).

3

Figure 1: Once patched, the original system file can now perform malware functions.

The problem with identification in this case is that effectively nothing “new” has been added to
the file system. The infected computer’s list of running processes shows only expected
processes, effectively hiding the malware’s presence from the naked eye and common
troubleshooting tools. The only way to eliminate the malware is to specifically target and remove
the offending code snippets out of the file.

Code Resuscitation
Making this problem even more insidious is when multiple malware software packages are
installed during a single infection event. When integrated during their code development, these
packages can be augmented with the ability to monitor for the presence of each other. The
resulting malware package can then monitor for the elimination of other malware packages
resident on-system, similar to what Figure 2 shows. Should any of those packages be removed—
typically as part of a removal activity—any remaining malware components still resident can
restart or even reinstall the missing software from pieces left on-disk or downloaded from the
Internet.

This assurance that malware remains resident on-system even during removal activities
complicates the removal process. Standard removal tools such as manual file or registry
deletions, process removal, or many of the other traditional troubleshooting tools available to IT
technicians are insufficient to completely remove every piece simultaneously. Thus, missing
even one component or not removing them all within a short enough time span results in the
machine being re-infected within a short period of time.

4

Svchost.exe

function openDatabase
function openFile

function displayDialog

Svchost.exe

function openDatabase
function openFile

function displayDialog

function invokeMalware
function verifyAAlive

Malware A Malware B

function invokeMalware
function verifyBAlive

Figure 2: Malware instance A includes code that checks for the presence of Malware instance B. If not
present on-system, instance A attempts to install or restart instance B.

Code Randomization
One mechanism for finding malware is to use code “signatures.” These tools heuristically look
for the signs of malware code resident on an infected system. When the signature of a piece of
code either in its own file or attached to a system file is found, the anti-malware tool can
recognize its presence and attempt a removal. Signature-based detection is a common tool used
with many anti-malware toolkits. However, the exclusive use of this method of detection is not
without its intrinsic limitations.

Complicating the use of signature-based identification are randomization elements built-in to the
self-compiling of the malware code as it installs itself. These features enable the malware to
install itself onto a candidate computer using more than one possible configuration. Due to these
features, the way the malware software “looks” to the detector actually changes over time. Figure
3 shows a simplistic example of how a function name can be slightly different in malware
instance A than in its original form.

This level of randomization obviously requires enough similarity between instances so that its
intended mission is accomplished. Yet, the randomization effects mean that multiple signatures
must be created for a single malware instance as it replicates itself across the Internet. These
code randomization features now seen in some of the most sophisticated of malware packages
are a source for the dramatic increase in the number of perceived malware instances in today’s
landscape. Only through equally sophisticated reverse engineering and behavior modeling on the
part of anti-malware software and software companies can many of these malware “isomers” be
identified.

5

Svchost.exe

function openDatabase
function openFile

function displayDialog

Svchost.exe

function openDatabase
function openFile

function displayDialog

function invokeBadware
function checkAAlive

Malware A Malware A'

function invokeMalware
function verifyBAlive

Figure 3: Subtle and randomized changes in the “look” of malware help keep it hidden from detection.

Rootkit and Cloaking Behavior
The last classification of modern behavior that is particularly dangerous due to its abilities to
hide from even the native OS are rootkits. Although substantially different than the UNIX-based
rootkits of yesteryear, this class of Windows malware focuses specifically on cloaking activities.

Rookits leverage some of the same file patching functionality described earlier but for a different
purpose. Software patching in “regular” malware typically installs the types of functions desired
for the processing of the malware’s payload; rootkits are instead used to redirect system function
calls through a process called “system call hooking.”

Simply put, each system file is equipped with a set of addresses where it can expect to find other
functions in system RAM. When it requires the use of another function, it seeks out that function
at its listed address (see the top portion of Figure 4). In the case of a computer that has been
infected by a rootkit, the rootkit modifies the target location for the other function to its own
location in memory. This allows the rootkit to shim itself between layers of the system (see the
bottom portion of Figure 4). There, it can identify what requests are being made by the system,
and then alter the results of those requests as they are returned back to the function that initiated
the request. Typically, the alteration is done to prevent the system from displaying the presence
of files related to the rootkit itself or other malware on-system.

The end result of a rootkit infection is that the rootkit is effectively “invisible” to the system as
well as to its user. Attempting to view the contents of a folder through either the GUI or
command line is intercepted by the rootkit, and any trace of malware file presence is removed
before the result is displayed to the user.

6

Windows API Windows Kernel

Give me
The directorydir c:\temp

Here it isReturn the
result

Windows API

Redirect!dir c:\temp

Here it is
with stuff
cloaked

Return the
altered result

Rootkit API

function cloakStuff
Windows Kernel

Redirected Service Table

Give me
The directory

Here it is

Before the Rootkit

After the Rootkit

Figure 4: Upon installation, the rootkit shims itself between layers of the OS. There, it can view requests and
alter associated responses without system recognition. The typical behavior is to cloak the presence of itself
and other malware from the system.

Malware Is Getting “Badder”
When considering the economics associated with malware infections and the potential transfer of
money as part of its development, it is easy to see why the level of sophistication is increasing
over time. As the companies that write anti-malware software change their tactics, malware
authors update their infection and replication mechanisms to suit. Only through effective
software and diligent work in identifying these behaviors will IT organizations be able to
maintain the health of their critical business systems.

	Uncovering Modern Malware’s Technologies, Behaviors, and Practices
	Early Attempts
	Modern Trickery
	System File Patching and Process Infection
	Code Resuscitation
	Code Randomization
	Rootkit and Cloaking Behavior

	Malware Is Getting “Badder”

