
The Essentials Series

SOA and
Mainframe
Applications

by Dan Sullivan
sponsored by

i

Managing Multiple Skill Sets to Support Mainframe/SOA Development and Maintenance1

Skills Sets for Integrating Mainframe Services into SOA ...1

Similar Terms, Different Meanings ...1

Different Tool Sets ...2

Different Design Skills Working Together ..3

Two Approaches: Monolithic and Fine-Grained ...3

Choosing Between Monolithic and Fine-Grained Services ...4

Best Practices for Managing Mainframe Services in an SOA Environment5

ii

Copyright Statement
© 2008 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

1

Managing Multiple Skill Sets to Support Mainframe/SOA
Development and Maintenance

Merging the complementary technologies of mainframe applications and Service-Oriented
Architecture (SOA) presents organizational as well as technical challenges. In this, the second in
the series, we examine the organizational issues related to managing multiple skill sets needed to
support the use of mainframe applications in SOA development efforts, including:

• The specific types of skills needed in a mainframe/SOA project

• Adapting different development models and styles to the hybrid initiative

• Best practices for realizing the benefits of both mainframe and SOA models

Developers and designers from mainframe and SOA backgrounds will need their domain-
specific skills, but they will also need an understanding of their colleagues’ different principles
and practices. Project managers will similarly need to understand how to coordinate and combine
the efforts of the technical staff.

Skills Sets for Integrating Mainframe Services into SOA
Presumably the goal of integrating mainframe services and SOA applications is to bring the
functionality and scalability of mainframe applications to a diverse service-oriented development
environment. It would be easy to make the mistaken assumption that the differences between
mainframe and SOA development are analogous to difference in coding in COBOL and PL/I—
there are different ways to define what the program should do but a developer would do roughly
the same thing using either language. This is not the case. Mainframe and SOA development are
specialized domains within information technology (IT) with their own models, terminology, and
tools. The first article in this series examined, in detail, differences in the models; here, we will
briefly discuss the different terminology and tools found in mainframe and SOA development
efforts and examine the implications of those differences on project management and systems
maintenance.

Similar Terms, Different Meanings
In spite of the fact that fundamental programming and design principles are the same across the
IT spectrum, there are significant difference in how these are applied within the different
objectives of and constraints on mainframe and SOA development. Consider two examples.

Although developers may share similar terminology, such as services and transaction, there are
subtle but important distinctions between these terms in mainframe and SOA environments. A
service to an SOA developer may be a relatively small application that provides a simple unit of
work, such as calculating the state tax for an online order. To a mainframe developer, a service
might be the entire order processing sequence of events that includes a rich set of application
logic to check inventory levels, determine shipping method, update stocking information, and
other operations required to maintain the integrity of business operations.

2

Also, mainframe developers are accustomed to working in high-volume, transaction-processing
environments that take advantage of specialized services, such as Customer Information Control
System (CICS), which has been widely adopted since its introduction decades ago. CICS is used
in screen-oriented applications and typically depends on batch programs that run in the
background. Unlike mainframes, where there may be a relatively limited number of distinct
types of CICS transactions, SOA developers may think of a transaction as any sequence of
service calls that are treated as single logical unit. The exact steps may vary depending on the
particulars of the data being processed. The steps are treated as a transaction by virtue of being
part of a single unit of work as defined by a programming framework, such as Enterprise Java
Beans 3.0.

IT is fundamentally based on the principles of computer science and information management,
but these broadly applicable disciplines leave a great deal of room for specialization. Both
mainframe and SOA models are examples of specialized instances of IT. As the previous
examples show, similar terminology can mean different things to different kinds of developers.
In addition, developers have different tool sets.

Different Tool Sets
Mainframe developers work with tools for application development, data management, and
security that are distinct to their IT environments:

• Transaction processing servers such as CICS that run on the z/OS and z/VSE operating
systems (OSs) for managing high-volume transactions, such as updating customer
account data

• Mainframe databases, such as VSAM, IMS and DB2—VSAM is a flat file DB most
commonly associated with CICS applications, IMS is a hierarchical database useful in
manufacturing or other application where data assemblies are common, DB2 is a
completely modern (SQL) relational database; though flat file and hierarchical databases
predate relational databases, they are still used for some of their specific attributes like
performance and scaleability, while DB2 is the popular choice for modern MF
applications and is growing in its data share, so more mainframe developers can be
expected to have relational database experience

• Mainframe access controls, such as system authorization facility (SAF) and remote
access control facility (RACF), are used to control access to resources on mainframe
systems; SAF provides a centralized point of control to mainframe resources; such
centralized controls are not usually found in SOA environments

• Broad sets of application logic implemented to protect the integrity of business processes:

• Complex business rules may be embedded within COBOL or other programs that
are executed at pre-established points in a job

• Mainframe applications are designed in such a way that necessary business logic
always runs

• Services are not provided that would allow a program to execute one part of a
business process without executing required business logic as well

3

SOA developers use different kinds of tools and data management systems that, although there
are fundamental similarities, are distinct enough that they are used and managed differently:

• Transaction management across multiple services using Java Transaction Services and
higher-level constructs, such as Seam conversations.

• Extensive use of relational and XML data sources. Relational databases, such as Oracle,
Sybase, SQL Server, and MySQL and are more commonly used in SOA systems. XML
data stores are also growing in importance, especially with the increasing need to manage
semi-structured data.

• Distributed access controls and other security controls based on the WS-Security family
of protocols and standards.

• Data transformation and integration methods to restructure and reformat data from
diverse sources into a single format suitable for processing in an SOA application.

Neither skill set is inherently more important or better than the other; projects that encompass
mainframe and SOA models will need skills from both areas.

Different Design Skills Working Together
If it were just a matter of separating mainframe from SOA components so that they each did their
respective operations without interfering with the other, then mainframe/SOA projects would be
much easier to design and manage. Unfortunately, there is no hard and fast boundary that allows
the two approaches to coexist without the need to adapt to some elements of the other. To realize
the benefits of mainframe services in an SOA environment, we must understand differences in
the way services are provided and consumed in each application type.

Two Approaches: Monolithic and Fine-Grained
Mainframe applications provide and consume their own services. The term “monolithic” is often
used to aptly describe these systems. They do not usually make calls to services provided by
other applications but perform the operations themselves. For example, if an interactive COBOL
program running on a z/OS operating system needs to update a customer’s address in a database,
it will use code within itself to perform the operation. That is not the case in a typical SOA
application.

A customer self service Web application may have an “update address” feature that is composed
of several components including: code to generate the interface using HTML and XML, server-
side code to verify the structural integrity of the data sent from the client device to prevent SQL
injection and related attacks, and finally, a call to a Java or .NET service that executes a SQL
statement to update the relational database. In addition, not only are the components written in
different languages and use different protocols but also they may all run on different client
devices and servers. These separate services function together, though, because providers and
consumers use implicit contracts about what each service expects as input and what it provides
as output. This separation of functions impacts the way applications are written.

4

In the case of mainframe applications in which all relevant events occur within the same logical
piece of code, procedural side effects are acceptable. A loan payment processing application on a
mainframe might deduct a principal payment from an amount-due field in an IMS database and
then increment another field that stores the number of payments made to date. A more finely
grained set of services, like those found in SOA applications, typically perform smaller units of
work, such as deducting the principal payment from an amount due. They do not make
assumptions about sequences of events or try to maintain information about the global state of an
application. For example, rather than look to a database field for the number of payments made,
an SOA application may find querying the database for the number of payment records to be a
more consistently reliable method of retrieving the information. The underlying assumption is
that the information in the database may be entered and updated in several ways under a variety
of circumstances. The contrary mainframe assumption is that changes to the database are made
through the same program that does the querying and therefore all possible ways of making
changes are available to developers. These differing assumptions are neither categorically correct
nor categorically wrong; they both have uses.

Choosing Between Monolithic and Fine-Grained Services
Business operations supported by mainframes often do not easily decompose into fine-grained
services. These applications carry out complex operations with multiple steps; as a result, they
contain a great deal of business logic. Should these business operations be re-implemented in a
more modular, SOA approach to ease their integration? Although this approach is appealing in
theory, the practical considerations of actually restructuring and redesigning make this option
cost prohibitive. Consider some of the challenges:

• The staff with the best understanding of the business logic embedded in mainframe
applications is mainframe developers, but it is SOA developers who would have to
implement finer-grained services.

• The original mainframe application will still be needed for the high-volume transaction
processing it was originally designed for, thus leaving two sets of business logic that
must be maintained and potentially doubling the maintenance costs of providing the
service.

• There is the potential for the two sets of business rules to change over time, ultimately
differing from each other. Inconsistencies can jeopardize the integrity of data and
necessitate detailed analysis of audit trails to understand discrepancies in the data.

• Who will ultimately have ownership and maintain the business services provided by both
sets of services?

The software maintenance life cycle is replete with management challenges in the best of
circumstances. Trying to force a mainframe service into a set of finer-grained SOA services is
like trying to force the proverbial square peg into the round hole—with enough force, it can be
done, but the results will probably not meet expectations.

Ultimately, the effectiveness of using both mainframe and SOA services is largely influenced by
management decisions about staff, development skills, and software maintenance. Fortunately,
the practice of combining mainframe and SOA services has matured to the point where several
management best practices have emerged.

5

Best Practices for Managing Mainframe Services in an SOA
Environment
Both mainframe services and conventional SOA-designed services can contribute to the success
of an SOA project if several principles are followed. First, clearly assign responsibility and
ownership for services based on skills. Project management should assign ownership of
controlling the business context of a service to those that have the skill sets appropriate to the
applications from which the services are derived.

As noted earlier, mainframe programmers and SOA developers have complementary skills sets.
They use different sets of tools and design applications in different ways. Both have created
practices that reflect the design goals and the constraints of the systems they develop. Mainframe
programmers may have detailed knowledge about business process as well as an in-depth
understanding of how mainframe code implements that business process. SOA developers
probably do not have the same level of experience with macro-level business processes. These
programmers are more likely to be familiar with protocols and design patterns used in distributed
systems. Services that require complex business logic and high-volume transaction processing
are best assigned to mainframe developers. Specialized, fine-grained services that require
familiarity with Web protocols, distributed security, and commonly used application stacks are
best assigned to SOA programmers.

Second, weigh the need for granularity of services with the need to leverage business logic
embedded in mainframe programs. If a mainframe application can provide a service that
encompasses two or more fine-grained services, one may be tempted to re-implement the
service. Before taking on the responsibility of maintaining additional software, consider how the
mainframe service can be used to provide multiple services. For example, rather than call the
three separate mainframe services, one after each of three fine-grained SOA services, call the
mainframe service once after all three fine-grained services have executed. The sequence of
events in an SOA process is not fixed. (In fact, the dance inspired term “choreography” is often
used to describe the art of sequencing events in SOA).

Third, manage mainframe and mid-tier development teams in ways that support coordinated
development. IT is not monolithic and IT professionals are not homogenous. Bringing
mainframe services into an SOA application is more like managing a relay race team made of
peers rather than a hierarchical organization in which some answer to the demands of others.
Some parts of the overall design will be dictated by the best practices in SOA and in other cases
it will be dominated by the practical constraints of existing mainframe applications.

Managing a mainframe/SOA development initiative is a challenge. There are multiple skill sets
and different ways of designing and maintaining software that must be brought together, but
when properly organized, they will complement, not compete with, each other.

	ESSMA_red
	ESSOAMA Article 2-PDFb
	Skills Sets for Integrating Mainframe Services into SOA
	Similar Terms, Different Meanings
	Different Tool Sets

	Different Design Skills Working Together
	Two Approaches: Monolithic and Fine-Grained
	Choosing Between Monolithic and Fine-Grained Services

	Best Practices for Managing Mainframe Services in an SOA Environment

