
Windows Installer
 Technology
for System Administrators

Darwin Sanoy and Jeremy Moskowitz

tm

rea l t imepubl i shers .com

The Definitive Guide Totm

Introduction

Introduction

By Sean Daily, Series Editor

Welcome to The Definitive Guide to Windows Installer Technology for System Administrators!

The book you are about to read represents an entirely new modality of book publishing and a
major first in the publishing industry. The founding concept behind Realtimepublishers.com is
the idea of providing readers with high-quality books about today’s most critical IT topics—at no
cost to the reader. Although this may sound like a somewhat impossible feat to achieve, it is
made possible through the vision and generosity of corporate sponsors such as Wise Solutions,
who agree to bear the book’s production expenses and host the book on its Web site for the
benefit of its Web site visitors.

It should be pointed out that the free nature of these books does not in any way diminish their
quality. Without reservation, I can tell you that this book is the equivalent of any similar printed
book you might find at your local bookstore (with the notable exception that it won’t cost you
$30 to $80). In addition to the free nature of the books, this publishing model provides other
significant benefits. For example, the electronic nature of this eBook makes events such as
chapter updates and additions, or the release of a new edition of the book possible to achieve in a
far shorter timeframe than is possible with printed books. Because we publish our titles in “real-
time”—that is, as chapters are written or revised by the author—you benefit from receiving the
information immediately rather than having to wait months or years to receive a complete
product.

Finally, I’d like to note that although it is true that the sponsor’s Web site is the exclusive online
location of the book, this book is by no means a paid advertisement. Realtimepublishers is an
independent publishing company and maintains, by written agreement with the sponsor, 100%
editorial control over the content of our titles. However, by hosting this information, Wise has set
itself apart from its competitors by providing real value to its customers and transforming its site
into a true technical resource library—not just a place to learn about its company and products. It
is my opinion that this system of content delivery is not only of immeasurable value to readers,
but represents the future of book publishing.

As series editor, it is my raison d’être to locate and work only with the industry’s leading authors
and editors, and publish books that help IT personnel, IT managers, and users to do their
everyday jobs. To that end, I encourage and welcome your feedback on this or any other book in
the Realtimepublishers.com series. If you would like to submit a comment, question, or
suggestion, please do so by sending an email to feedback@realtimepublishers.com, leaving
feedback on our Web site at www.realtimepublishers.com, or calling us at (707) 539-5280.

Thanks for reading, and enjoy!

Sean Daily

Series Editor

i

http://www.realtimepublishers.com/
http://www.realtimepublishers.com/

Chapter 1

Chapter 1: Meet Windows Installer: Introduction, Features, and Benefits......................................1

by Jeremy Moskowitz ..1

Defining the Need for Windows Installer..1

Saved Time and Effort Through Automated Installs...1

Application and Operating System Stability..2

The Benefits of Windows Installer and MSI ...4

Your First Windows Installer Encounter ...6

Windows Installer Version Numbers...9

What Is Your Windows Installer Version Number?..9

The Internals of Version Numbers...10

Windows Installer Version 2.0 ..10

Windows’ Relationship to Windows Installer ...12

Windows Installer on Downlevel Clients ..13

MSI File Foundations ..13

Setup or MSI? ..13

Base Installations, Transforms, and Patches..14

Base Installations ...14

Transforms ...15

Vendor-Supplied Transform-Generation Tools...16

Third-Party Transform-Generation Tools..17

Executing MSIs with Transforms ..19

Patches ...19

Roadmap for the Rest of the Text ..20

ii

Chapter 1

Copyright Statement
© 2002 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

iii

mailto:info@realtimepublishers.com

Chapter 1

Chapter 1: Meet Windows Installer: Introduction, Features,
and Benefits

by Jeremy Moskowitz

You’re an administrator. You’re the person who comes in early to reboot the servers on Sunday.
You’re the person who stays late to ensure that the backup job has really kicked off successfully.
You’re setting up servers and hauling around the occasional desktop, and you’re the lucky one
who all-too-frequently has the honor of losing weekends due to a poorly planned “move, add,
change.” We created this book for you.

If you’re familiar with the technology and history behind Windows Installer, you know that
historically, discussions about this technology have had a bit of a developer slant. However,
there is another side to these discussions, and the administrator’s side to the Windows Installer
story is an exciting one that might get you a weekend or two back.

We’re going to try hard in this book to show you why Windows Installer is useful for you—the
administrator. Throughout the book, we will be getting into some of the meaty internals of
Windows Installer. If you have a little bit of a developer background, that’s great; but those who
do not will be just as comfortable and find much useful information. With that in mind, let’s start
our journey.

Defining the Need for Windows Installer
Before we dive into an introduction to Windows Installer and an exploration of how it works,
let’s define the need for this technology. Why was it developed and what does it offer that will
benefit you?

Saved Time and Effort Through Automated Installs
How are you installing your software today? If you’re like many administrators, you’re still
tracking down the installation CD-ROM media (or you’ve made the installation available on a
network source), running from machine to machine, and shooing the user aside for 30 to 60
minutes to install and test the application. This method works just fine for about 10 machines but
quickly falls apart once the number of users and applications starts to increase. In the past,
additional manpower has been brought in to shoulder the load—more people are hired to slog
from computer to computer and load applications. Although hiring more people can ease the
load, you and the other administrators must still answer, for each installation, the same 10
questions—such as the location of the program files, the default location of the data files, and
which portions of the application should be loaded.

In addition to being a “poor administrative experience,” this tack is expensive. Imagine the figure
you would come up with if you had to calculate all the time that you and your staff spent
ensuring that each desktop had exactly the same hand-crafted software installation settings.
Think of all the other stuff you could be doing if you and your team weren’t trotting to each
desktop.

1

Chapter 1

Enter Windows Installer technology. After we’ve covered all the pieces of this technology—
from the Windows Installer basics to the MSI repackaging process to the actual deployment—
you’ll have gained the knowledge, skills, and tools necessary to save yourself and your staff tons
of time that can then be devoted to more productive endeavors.

 Many IT departments try some form of automated software distribution. Oftentimes, the software
distribution job is seen as “secondary work” and isn’t given a dedicated person. When the new
implementation starts destabilizing as a result of a lack of dedicated personnel, IT managers become
frustrated and determine that it’s best to just throw in the towel rather than continue throwing money
at a new project that already appears doomed. The result is that the project is completely scrapped
and bad feelings are felt toward those who wanted to give it a shot in the first place. We’ll be talking
about how to prevent this chain of events through an exploration of distribution methods and helpful
tips in Chapter 6.

Application and Operating System Stability
How often have you loaded a desktop or server system, then returned months later to load yet
another application only to discover the bitter taste of application incompatibility? As Figure 1.1
shows, applications can be destabilized by other applications that load on top of required
components.

Figure 1.1: Evidence of application incompatibility.

This incompatibility can occur because the technology used to package (or re-package) the
application or manipulate its components for installation was simply not aware of other
components already loaded on the system. Likewise, the operating system (OS) components can
find themselves in harm’s way.

2

Chapter 1

 Figures 1.1 appears here with permission from David Joffe and his Microsoft Crash Gallery Web site
at http://www.scorpioncity.com/mscrash.shtml.

In Windows ME, Windows 2000 (Win2K), and Windows XP and later, new strides have been
taken to ensure that, at least, the OS has an increased layer of protection. Read about it in the
following sidebar “Windows File Protection.”

Windows File Protection

The Windows OS has had a reputation for crashing, but a new feature in Windows 98, Win2K, and
Windows XP tries to put an end to this problem. The new feature is called Windows File Protection
(WFP.) The goal of WFP is to ensure that if a critical system file, such as a .DLL or .EXE, is
compromised, a secret copy can be brought back from a hidden “cache” on the disk. This copy ensures
that misbehaving applications cannot take over the OS. Take a look into Windows’ secret directory called
dllcache under the %systemroot%\system32 directory, usually C:\windows or C:\winnt (see Figure 1.2).

Figure 1.2: A list of some of the files in dllcache.

With WFP, no applications (except hotfixes or service packs) can overwrite these files—either here or in
the files’ actual locations (normally Windows or system32). Go ahead and try to delete a file listed in
dllcache, such as calc.exe, from its actual location. It will come right back from the cache!

Figure 1.3 shows a famous picture taken at London Heathrow Airport by Alan Cox. As this
picture shows, application incompatibilities can lead to an unstable system with disastrous
results. Although this picture illustrates a humorous example of the result of an application
incompatibility, your goal should be to provide as stable of a system as possible.

3

http://www.scorpioncity.com/mscrash.shtml

Chapter 1

 The picture in Figure 1.3 was reproduced with permission, courtesy of Alan Cox.

Figure 1.3: London Heathrow Airport’s system has a problem.

But how does Windows Installer relate to system stability? Before Windows Installer, packaged
applications haven’t had the ability to sense what was going on around them, which resulted in
application and OS stability problems when a new application was installed on the system. Thus,
Microsoft needed to step in and release a technology that was vendor-neutral and helped increase
OS and application stability. That technology is called Windows Installer. In the following
sections, we’ll explore how Windows Installer improves stability as well as other benefits this
technology provides.

The Benefits of Windows Installer and MSI
Windows Installer works as a result of the marriage between Windows Installer and a new
package type called the Microsoft Installer (MSI) file type, which I’ll discuss later in this
chapter, and because of the behind-the-scenes action that takes place when Windows Installer
encounters the new package type. Before we get too far along and talk about the technology
behind Windows Installer and MSI and the stuff you can do with that technology, let me
introduce its basic benefits. Table 1.1 provides just a few of the myriad benefits that Windows
Installer and the corresponding MSI technology bring to the table.

4

Chapter 1

 Some documentation refers to MSI packages as Medium Scale Integration files rather than Microsoft
Installer files.

Windows Installer and MSI Benefit Description

Application is installed via OS service On Win2K and Windows XP and later, the
application is installed in an administrative context.
I’ll explore this technology later in this chapter.

MSI provides a standard package format A new format, the MSI package and its .MSI
extension, is the new standard to interface with the
Windows Installer technology.

Transactional install and rollback Windows Installer packages can be made to either
fully install the way the author intended, or if there
is a failure during the install (for example, because
you run out of disk space part-way through), the
failed install can simply undo all the changes it has
made up to that point in the installation to bring the
system back to its previous state.

Self-healing (or self-repair) of corrupt or deleted
critical files

As we’ll explore in detail later, certain files can be
keyed for detection of failure. If a critical file (a .DLL
or .EXE file, for example) that is part of the
distribution is corrupt or is deleted, the user can be
prompted to repair the installation by presenting the
original .MSI distribution. Additionally, if the
installation media is available (for example, on a
network share), the repair simply happens
automatically.

Served installs Because MSI files can be housed in a share point
and delivered via a server, you can keep your
installation files all in one place or move them
around—closer to your users if necessary.

Install on demand Windows Installer–deployed applications can be
offered to clients at any time. Once offered, their
installation can be triggered when a user clicks a
corresponding registered extension. For instance,
clicking a .DOC file prompts the installation of Word
for Windows. Once chosen, the application is
downloaded in a Just in Time (JIT—see the
following entry) fashion.

JIT installation After an application is offered to a user, it isn’t
actually installed. Instead, the application’s icon
appear, and when the user decides to run the
application, it is installed from the media (or
downloaded from the server) in a JIT fashion, and
presents itself as ready to the user in a matter of
moments.

Packages can utilize transform files An application’s package can be developed such
that a base or administrative install is prepared for
general distribution. A transform file can overlay the
base, letting you customize specific installations. I’ll
discuss this benefit later in this chapter.

Packages can utilize patch files After a package is on the machine, you might need
to fix the source files if a bug is found or an update

5

Chapter 1

is needed. Windows Installer defines a clear path to
rectify these problems. I’ll discuss this benefit later
in this chapter.

State management In the past, it’s been difficult to know whether an
application is installed on a machine. You would
have to query for a .DLL with a specific version
number or determine whether an .EXE file with a
specific name was present. Windows Installer
provides an application programming interface
(API) that lets programmers and administrators see
whether a specific application is installed on a
machine.

Administrative privileges are not required for
installations

Previously, you might have found that applications
needed to be loaded through the local administrator
account. Windows Installer eliminates this
requirement.

Scriptable API With a little elbow grease, you could whip together
a VBScript to help you with your MSI file
manipulations. The API to manipulate MSI files is
so powerful that it can create packages, validate
packages, update packages, trigger installs and
uninstalls, examine the MSI repository data on
computers, and perform some custom actions. If
you have to repeat the same function, scripting is
the way to go.

Packages can be managed using the MSIEXEC
command-line tool

The command-line tool MSIEXEC is a very
powerful tool that lets you manage your MSI
applications. We’ll be exploring some features of
the MSIEXEC command-line tool a bit later in this
chapter.

Table 1.1: Benefits of Windows Installer and MSI technology.

 In the rest of the chapter and in the upcoming chapters, we’ll explore these benefits in detail. A
roadmap of the remaining chapters can be found at the end of this chapter.

Your First Windows Installer Encounter
The Windows Installer technology has been around for a while, so it’s likely that you’ve already
had some experience with the technology, perhaps without even being aware of it. For instance,
you might have casually encountered it when installing the first Windows Installer–ready
application, Office 2000, as Figure 1.4 shows.

6

Chapter 1

Figure 1.4: Office 2000 was the first application to ship as a Windows Installer–ready application.

Take a close look at the icons within the graphic. First, you’ll notice that a product’s installation
is viewed in a hierarchical fashion. At the top of the hierarchy, we can see Windows Installer
telling us which product we are installing. In this case, the product is Microsoft Office. Below
the product, is a subset called features, as Figure 1.5 details.

Figure 1.5: Highlighting a product’s features.

7

Chapter 1

The features make up the product, and there can be one or more features per product. Each
feature in the hierarchy can have sub-features, as Figure 1.6 shows. In Office 2000, most of the
components are located in the sub-features.

Figure 1.6: Features can have sub-features.

 Occasionally sub-features are also called features, so these terms can be misleading. Common use
defines features as the first level below product, and sub-features as the second level below product
(as well as all additional levels below the feature level).

As you can see in the previous graphics, four possible installation states exist for any specific
subsection of Office 2000:

• Solid gray means that the feature or sub-feature will be installed and available for use as
soon as the install is complete.

• White with a yellow “1” icon means that the feature or sub-feature will be installed at
first use. When the feature is installed, this sub-feature isn’t really installed. When the
user tries to use this sub-feature for the first time, it is pulled from the installation media
and installed in a JIT fashion. A benefit of this installation state is that it saves space—
this feature will only be installed (and consume disk space) if users are going to use it.

• The CD-ROM icon means that the feature or sub-feature will not be installed directly on
the hard drive. The feature or sub-feature will be accessible and able to run when the
source CD-ROM is present in the drive or through the network if a network connection is
available. This installation state is handy, for example, for features that consume a lot of
space, such as multimedia files and reference files, that will be used occasionally, if ever.
In the previous figures, for example, Microsoft Access has been set to run solely from the
installation media—either a CD-ROM drive, network share, or other source.

8

Chapter 1

• The red X icon means that the feature or sub-feature will not be installed and won’t be
accessible during normal use of the product. If this feature is desired, the installation
setup program needs to be re-run and this feature’s state needs to be changed to one of
the other three states.

Windows Installer Version Numbers
Like most software products, Windows Installer has versions associated with it. There are major
revisions (such as 1.0) and minor revisions (such as 1.1). Windows Installer is unique in that it is
versioned for each platform. That is, Windows NT, Windows 9x, and so on each has its own
Windows Installer version number. However, automatic updates can occur without a user’s
knowledge, so users in your environment could possibly have different Windows Installer
versions.

What Is Your Windows Installer Version Number?
To find out which version of Windows Installer is on your machine, you can simply use
Windows Explorer to navigate to the %systemroot% directory (usually \Windows or \Winnt),
enter the system32 directory, right-click MSI.DLL, and select Properties. Doing so reveals the
window that Figure 1.7 shows.

 You can also run the command-line tool MSIEXEC from the Start menu Run text box to discover the
version number.

Figure 1.7: Inspecting your Windows Installer version number.

9

Chapter 1

The file version provided on the Version tab of the properties window should match the product
version (in Figure 1.7, they both have a value of 1.11.2405.0). The 2405.0 entry is simply the
specific build number. The Windows Installer filer version is 1.11. So why would your machine
have a different file version?

The Internals of Version Numbers
As one might expect, Windows Installer started with version 1.0. As I previously mentioned,
Office 2000 was the first Windows Installer–ready application. Being the first presented a
problem: How would the system perform the Office 2000 installation if Windows didn’t yet have
the Windows Installer bits (the executables necessary for Windows Installer to install the
program)?

The Office 2000 development team came up with a brilliant little plan: Before actually loading
Office, load a little piece of code that loads the bits required to perform a Windows Installer–
type install, then perform the rest of the Office 2000 install as a Windows Installer install.
(Current applications will attempt to install the latest version of the Windows Installer using a
similar method.) So, the bits for Windows Installer 1.0 are included on the Office 2000 CD-
ROM and are automatically installed when the setup routine is run.

Let’s take a look at the Windows Installer versions from then until now:

• Version 1.10 was the first version included in Win2K directly (build 1.10.1029.0). For
other platforms, there was a version made available for download from the Microsoft
Web site (build 1.10.1029.1).

• Version 1.11 appeared in Service Pack 1 (SP1) for Win2K (build 1.11.1314.0). Another,
later build of Version 1.11 appeared in SP2 (build 1.11.2405.0).

• Version 1.20 appeared in Windows ME (build 1.20.1410.0) and was available for
download from the Microsoft Web site (build 1.20.1827.1).

• Version 2.0 and later will be discussed in the next section.

 Note the pattern of version numbers. Specifically, versions that end in .0 ship with and are built into
the OS. Those that end in .1 are downloads.

Windows Installer Version 2.0
Windows Installer 2.0 is the latest major release for Windows Installer. You might casually
encounter the upgrade in a manner similar to the original Office 2000 installation. That is, you
might simply double-click to install your latest application acquisition, and you’ll be presented
with the pronouncement that Figure 1.8 shows.

10

Chapter 1

Figure 1.8: The installation of Windows Installer 2.0.

 You must have Windows NT SP6 installed before you are able to install Windows Installer 2.0.

Windows Installer 2.0 provides some new features, which the following list describes. These
features make Windows Installer a much more efficient engine.

• Hash-based calculations—Windows Installer 2.0 is a lot smarter than previous versions
about recognizing when files need to be replaced—for either a repair, patch, or upgrade
to an existing package. Should an application need a repair, upgrade, or patch, Windows
Installer 2.0 performs a much faster hash-based calculation (rather than comparing each
installed file to the original source installation, which is a really slow process) to
determine whether a file needs to be replaced. The added bonus is that you might not
need the original source media available unless there is a problem with a file that
specifically needs to be replaced. Thus, you can more quickly perform a repair, patch, or
an upgrade.

• Delayed reboot—When a new version of the Windows Installer bits becomes available,
you’re prompted to install the new version (as Figure 1.8 shows). Previous versions of
Windows Installer required that you install the new bits and reboot the system before you
could progress with the installation of your application. Windows Installer 2.0 lets you
delay the reboot (which completes the Windows Installer upgrade) until all your MSI
packages are fully installed.

 An upgrade from Windows Installer 1.x to 2.0 requires a reboot, but you can delay the reboot until
you’re ready. In addition, you must be logged on as a local Administrator to perform the upgrade.

• Improved logging—Windows Installer 2.0 provides better logging in the event log and
when files are installed. Each error receives an ID (the error codes for previous versions
of Windows Installer all fell within two or three non-unique event IDs), which greatly
improves how you can search for and filter Windows Installer events.

• Increased security and multiple user isolation—Previously, an MSI application was
installed for one user; however, another user might be able to use that application.
Windows Installer 2.0 makes a great effort to ensure that each install is a personal and
customized experience so that when Joe sits at Sally’s machine, Joe cannot run an
application that Sally installed just for Sally.

• Digital signature support—Files can now be digitally signed within an MSI file (as well
as .MSP and .MST files) to ensure that the file came from a trusted source.

11

Chapter 1

• 64-bit service with 64-bit Windows—Windows .NET server and Windows XP will each
have 64-bit versions that will run on the Itanium II processor. These OSs will be able to
take advantage of the new 64-bit Windows Installer services.

 To download Windows Installer 2.0, go to
www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.htm.

Windows’ Relationship to Windows Installer
Let’s take a closer look at how Windows Installer and Windows are related. Recall that the
Windows Installer bits are built into Win2K and Windows XP; moreover, they run as a service.
To see the service, simply right-click My Computer, select Manage, and click the Services entry
under Services and Applications. The Windows Installer service is highlighted in Figure 1.9.

Figure 1.9: Locating the Windows Installer service.

Windows Installer is installed as a service, so it’s capable of intercepting shortcuts and file
extensions that link to applications and prompt their install from the source media. For instance,
you might have Office 2000 loaded, but set to load PowerPoint upon first use (that’s the icon
with the little ‘1’ we saw in Figure 1.4).

The version that runs on Win2K and Windows XP and later is also capable of receiving and
executing instructions when running in an Active Directory (AD) environment. Specifically,
Win2K and Windows XP and later can take instructions to load MSI applications via Group
Policy. This functionality allows for applications deployed via AD to run in an administrative
context—allowing applications to be loaded when administrators want systems protected, and
preventing regular users from installing applications they shouldn’t. We’ll be discussing this
method of installation in Chapter 6.

12

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.htm

Chapter 1

Windows Installer on Downlevel Clients
Services are incapable of running on Windows 9x machines, so you won’t be able to perform the
aforementioned procedure. You could see the Windows Installer service on NT clients; however,
downlevel clients can’t receive Group Policy, so they are incapable of receiving instructions
from AD telling them to install or upgrade an MSI file.

Although downlevel clients can’t receive Group Policy, and hence, are incapable of receiving
MSI installation instructions, the clients are still capable of using nearly all the remaining
Windows Installer features. For example, recall that files can be keyed for proper operation, and
if a required file should get damaged, the application can simply prompt for the original
installation source. This capability is present with downlevel clients and is a major win for
system stability on older clients.

 Microsoft has recently provided a very good FAQ about Windows Installer at
http://www.microsoft.com/windows2000/community/centers/management/msi_faq.asp.

MSI File Foundations
In this section, we’ll explore how an administrator might typically encounter MSI files. Not
every MSI application will be interfaced in the same way, but this section will provide you with
general exposure to the process.

Setup or MSI?
As we’ve discussed, you might already be familiar with MSI files because a vendor has delivered
some of your applications in the MSI format. Interestingly, though, some vendors, including
Microsoft, still include a legacy setup.exe program. This setup.exe program is often simply
checking the system for the presence of MSI bits, then calling the corresponding .MSI file to
launch. Oftentimes setup.exe is provided as a backward-compatibility measure; that is, those
who don’t know to click the .MSI file will simply use the setup.exe program, which then calls
the .MSI file.

For example, as Figure 1.10 illustrates, the Win2K Support Tools installation comes with both a
setup.exe program and a file named 2000RKST.MSI. Clicking either SETUP or 2000RKST will
ultimately launch the MSI file, and start the installation.

13

http://www.microsoft.com/windows2000/community/centers/management/msi_faq.asp

Chapter 1

Figure 1.10: The Win2K Support Tools can be launched in either fashion.

Base Installations, Transforms, and Patches
We can build on this foundation of knowledge about MSI and Windows Installer so that you
understand how to manage applications using all the new MSI functions. When you receive an
application package from a vendor, what is the actual process you’re supposed to follow—after
you get the software, what do you do?

Base Installations
First, you’ll need to understand that the application will come from a vendor and ship as a set of
base installs. The base installs are the bits that are downloaded from the Web or the bits on the
CD-ROM that constitute the original distribution of the software. (In just a moment we’ll
compare base installations to transforms and patches.)

To make use of the base installation, you might need to prepare the installation, creating an
administrative installation. In an administrative installation, the base installation’s files are
basically yanked from the packed source (in this case, the MSI file) and placed in the format that
the application needs in another, alternative directory structure that is suitable for file sharing.
(This technique is similar to the way that Windows 95 and Office 97 rollouts were prepared.)
Not all .MSI packages must be prepared as an administrative installation; check your vendor’s
documentation to be sure.

14

Chapter 1

When an administrative installation is required to manipulate a vendor-supplied package, you’ll
usually use the built-in Win2K MSIEXEC command to create the administrative installation
point. Oftentimes, an administrative installation is performed by running the MSIEXEC utility
with the /a switch, as follows:

msiexec /a {packagename}.MSI

When you do, the familiar Windows Installer window will pop up, showing you that the
command is working, as Figure 1.11 shows.

Figure 1.11: Run MSIEXEC to prepare the installation.

After this command has executed, you’ll typically get a wizard that asks where you want to place
the administrative installation. Simply place the files into a shared folder, and you’re most of the
way done. Your users could then connect to the administrative point by mapping a drive or via
logon script or one of the many alternative methods, and run the installation.

The problem with running the installation in this fashion is that it’s simply not customized or
tailored for the many users who might want to install and use the software. Indeed, all users who
connect back to either the base bits or the administrative installation are usually presented with
the default settings as the MSI package is coded. If an end user isn’t savvy, he or she could be
faced with many potential installation choices, as we saw in Figures 1.5, 1.6, and 1.7. That is
where transforms come in.

Transforms
So, although both the base and administrative installations are useful, the installations that they
create can simply be too broad. If a client were to double-click the setup’s .MSI in the base
installation, the client would be prompted to install every default option described in the
package, which might not be the ideal installation for the client. You might want to specify that
certain users get some options in a package and ensure that others do not, as well as specify the
default installation directory, the default Save as location, and so on.

To do so, the MSI format allows you to create transforms. A transform filters and shapes what
your MSI file will look like for a specific user base. A transform file has an .MST extension.

15

Chapter 1

Transforms can be handy in a variety of situations. For instance, you might choose to have a base
MSI installation package that loads the DogFoodMaker 5.0 application. However, you might
want a customized installation for the sales group that places the default installation point on the
D drive, a customized installation for the marketing group that places the default installation
point on the E drive, and a customized installation for the nurses that has only one feature.

Vendor-Supplied Transform-Generation Tools
Transforms can be created for a specific MSI file in multiple ways. One way is that a vendor
supplies a standalone tool that examines their product’s setup .MSI file, allows for user input,
then spits out a customized .MST file. Figure 1.12 shows an example of a custom–installation–
creation wizard.

Figure 1.12: A vendor’s custom–installation–creation wizard for creating transforms.

Such a tool uses the vendor’s MSI file as an initial starting point, then walks you through which
settings you can change to customize an installation. After you’ve chosen your customizations,
the tool spits out both an MST file and instructions for its use (as Figure 1.13 shows).

16

Chapter 1

Figure 1.13: The final window of a custom–installation–creation wizard.

Don’t run the package just yet. In the following sections, I’ll explore third-party transform-
generation tools, then discuss what to do with the customized installation file.

 Figure 1.13 shows output that uses a specific drive letter—the G drive. For you to use the command
that Figure 1.13 shows, G would actually need to be mapped to the administrative installation. If you
don’t want to worry about drive mappings, consider substituting using universal naming convention
(UNC) pathnames.

Third-Party Transform-Generation Tools
Although many vendors are starting to produce their software as MSI files, a lot of them don’t
yet offer a standalone tool to generate MST files. If you have applications that fall into this
category, you’ll need to find a third-party tool that can crack open an existing MSI file and help
you generate an associated MST file, such as the InstallTailor tool included in Wise Solutions’
Wise Package Studio. As Figure 1.14 shows, you simply point InstallTailor to an existing MSI
file (either one that you create or a vendor-supplied MSI file).

17

Chapter 1

Figure 1.14: Opening an existing MSI file to create an MST file.

You’ll then be asked to “simulate” the MSI file’s installation. Make your installation choices as
if you were actually installing the MSI package. When you’re finished, the tool will create the
MST file, as Figure 1.15 shows.

18

Figure 1.15: Creating an MST file for your applications.

Chapter 1

Executing MSIs with Transforms
After you’ve created a transform by using either a vendor-supplied standalone application or
third-party transform-generation source, you’re ready to run. If you want a client to get the MSI
package with your MST customizations, simply execute MSIEXEC in the following fashion:

msiexec /I {packagename}.MSI TRANSFORMS={transform.mst}

This command line runs the MSI package and applies the changes that you included in the MST
file.

Patches
Getting the base bits online via the administrative installation is important. It’s also important to
make use of transform files, as they let you specify which bits that you want to make their way
onto the client desktop. But what if the original bits need to be fixed in some way? That’s where
the MSI file definition has room to be adjusted.

If an update or a fix is available for a current MSI installation, you can patch the original
installation with the latest bits to ensure that the most modern bits are being used. These files
come in the form of .MSP files, signifying that they are patch files.

After you download the MSP file, you’ll need to run the MSIEXEC command to update the MSI
with the latest patch file. To do so, use the following command syntax, as Figure 1.16 shows:

msiexec /a {packagename}.MSI /p {patchfile}.MSP

Figure 1.16: Execute the patch against the MSI file.

Depending on the application, you might be prompted for the path of the administrative
installation. After the file installs, all users who run the MSI will have the latest updates.

The good news about using MSP files for patching is that you’re actually modifying the source
MSI file. Thus, all new installations that spring forth from this MSI will be up to date with the
latest patches. The bad news about using MSP files for patching is that you’re stranding the
installations that used the previous (un-patched) version of the MSI. If a client that used this un-
patched MSI has a problem and must pull down a file or two from the source, it won’t be able to
because the MSI file is now different.

Therefore, you have to instruct all systems that used the previous version of the MSI that a new
MSI file is available and to reinstall from that source. A typical command line to do so might
look like the following example:

msiexec /fvomus package.msi REINSTALL=ALL

This command instructs the application to perform a full reinstallation. After running this
command, if a re-installation is required or even just one file is damaged, the target system
matches the administrative installation.

19

Chapter 1

20

 The /f option in MSIEXEC simply specifies that you want to do a repair. The v, o, m, u, and s options
essentially overwrite all previous files and registry entries if they are encountered.

Roadmap for the Rest of the Text
At this point, you should have a good handle on what the Windows Installer technology does and
why the MSI file type is necessary. With this knowledge, we can start committing to the idea of
consistently using the MSI file type so that every application we deploy is delivered as an MSI
package.

In future chapters, we’ll show you how to start creating your own packages and make use of all
that the MSI technology has to offer. We’ll do so via both free and third-party tools that help in
MSI file generation, as we’ll show you in Chapter 2.

In this chapter, we touched on the relationship between Windows Installer and MSI files. But to
really make the best use of the technology, we’ll need to dig deeper. In Chapter 3, we’ll tackle
the package structure in greater detail, talk about how to further manipulate packages using
transforms, and learn how to secure our packages. Then, we’ll move on in Chapter 4 to the secret
world of the MSI software development kit (SDK).

Many companies are moving toward Win2K and AD, but many are staying put with either
Novell or NT for the foreseeable future. If you’re not planning on going to AD anytime soon or
you simply don’t want to make use of the built-in Win2K software deployment features, Chapter
5 will be a must-read for you.

Finally, we’ll wrap things up in Chapter 6 by exploring various ways to distribute the packages
you’ve learned to make while repackaging and authoring. Have a small user base? Have a giant
user base? Have Win2K and AD? Chapter 6 will highlight various methods for you to get the
right package to the right people.

	Introduction
	Defining the Need for Windows Installer
	Saved Time and Effort Through Automated Installs
	Application and Operating System Stability
	The Benefits of Windows Installer and MSI
	Your First Windows Installer Encounter

	Windows Installer Version Numbers
	What Is Your Windows Installer Version Number?
	The Internals of Version Numbers
	Windows Installer Version 2.0

	Windows’ Relationship to Windows Installer
	Windows Installer on Downlevel Clients

	MSI File Foundations
	Setup or MSI?

	Base Installations, Transforms, and Patches
	Base Installations
	Transforms
	Vendor-Supplied Transform-Generation Tools
	Third-Party Transform-Generation Tools
	Executing MSIs with Transforms

	Patches

	Roadmap for the Rest of the Text

