
Windows
Software Deployment

Chris Long

Keep sponsor logos below here

The Definitive Guide To

tm

rea l t imepubl i shers .com

tm

Chapter 7

Chapter 7: Installation Tool Alternatives...168
Windows Installer ..168

Overview..169
Windows Installer Transforms...174
Windows Installer Patches...182
Fixing Damaged Applications ...182
Windows Installer Elevated Privileges ..183
Creating a Windows Installer File ...183

Running an Installer File..186
Resource Kits ...186

Summary ..194

Chapter 7

Chapter 7: Installation Tool Alternatives

Being the expert software deployment technician that you obviously are, you keep abreast of all
the new technology. You have a list of favorite Web sites to review, you keep up on Microsoft
changes, and you know your workstations. Making new changes are not that big of a deal. So if a
new process comes along that is not compatible with your existing environment, you have a bag
of tricks available that will help you solve the problem, right?
No matter what type of deployment method you have in your environment, there will come a
time when you will need to adjust or modify the standards. To that end, you need to stay up on
the various methods and tools available to you. The biggest tools out in the Windows world right
now are Windows Installer and the resource kit utilities.

Windows Installer
If you have a Win2K or later OS on your system, you already have access to some pretty good
tools. You’ve heard of Microsoft Installer (MSI—it also goes by the name of Windows Installer
and MSIEXEC, which is the name of the executable). In this chapter, I’ll use the names
Windows Installer and MSI interchangeably to reference the same technology.

	 For more information about MSI, you can do a search on the Microsoft Web site. Doing so gives you
lots of hits with several key pages to check for further details. Do the same for Windows Installer on
http://www.zdnet.com and you will get a large number of hits.

Microsoft has placed a major emphasis on the technology—most of their applications are written
to support MSI. Other companies are following suit when they create their installer programs.

	 Check out http://www.appdeploy.com, which has several pages devoted to the MSI world, including a
good cross reference that shows which packaging technologies are compliant (or use) MSI.

So what the heck is this thing everyone is using? In short, it is a tool that works to ensure the
consistency and viability of an application. Application installation is controlled with a standard
set of procedures. Elevating user privileges can be done within the process (if you are on the
proper OS). DLL Hell becomes a quaint term from past nightmares. (Well, not 100 percent, but
pretty close). By monitoring files, registry entries, and source locations, MSI strives to keep
applications functional.
Windows Installer 2.0 will run on Win95, Win98, Windows ME, NT 4.0, Win2K, and Windows
XP. Though native with Win2K and Windows XP, a version of the installer service is available
for the earlier OSs. Functionality is a little different for the older OSs and not all options (such as
advertising) are available for all versions; you may need to do some minor upgrading to get all
the goodies.
Using a combination of an internal database, files, and comparisons, Windows Installer can
ensure that an application has all the components needed to run the application as you packaged
it. Applications can be repaired, updated, and upgraded using internal logic to the technology
without having to go through massive design hurdles to design the logic flow.

168

http://www.zdnet.com/
http://www.appdeploy.com/

Chapter 7

Like all technology, Windows Installer is not 100 percent foolproof. If an application is not
designed for MSI use, even Microsoft states that the repackaged application will only be
installed via Windows Installer and not truly managed by installer rules. I’ll explain this caveat
in more detail later.

Overview
Before I get too far into a discussion of Windows Installer, an overview of this technology is
needed. Windows Installer 2.0 is the current release version and runs as a 32-bit or 64-bit
service, depending on the OS and the hardware platform you are using. For 64-bit use, the Intel
IA64 hardware platform is required along with either Windows XP Pro or Windows .NET
Server. 64-bit applications are not available for installation on a 32-bit OS. Because Windows
Installer 1.1 is 32-bit based, most of the install packages available today are 32-bit. Any
application that is engineered for 64-bit use will be clearly marked as such.
Windows Installer uses a series of files and databases to perform its functions. The primary
package is contained in a file with an .MSI extension. This file contains the database and the
instructions and data needed by the Installer service to properly manipulate the application. An
.MSI file contains details about how to install, upgrade, or remove the application plus how to
change features in the application. If you look at an MSI-compliant application suite (such as
Office XP), you will see several *.MSI files listed in the setup directory. If you right-click one of
the files, you will see additional options in the pop-up menu: install, repair, and uninstall, as
Figure 7.1 illustrates. This pop-up menu gives fast access to the canned functionality of the
package. Notice that I said canned functionality.
From the users’ point of view, an MSI file gives greater flexibility for installs than past mass
technologies. But only to the limit the install developer is willing to offer the user. The true
power of Windows Installer lies in its nuts and bolts. All those setup files make adjustments to
the way the application is installed. The various parts of the application are called elements in the
world of MSI.

169

Chapter 7

Figure 7.1: The pop-up menu options for the MSI install file are different from the standard pop-up menu
options.

To understand the technology, I need to dig a little deeper into the terminology and logic of
Windows Installer. Within an MSI file, details about how to deal with the various elements are
included. An element is one of three general containers: components, features, or products.

• Component—A collection of the files, registry keys, shortcuts, or databases that are to be
worked on, components are considered required for install or removal and are acted on
together, not separately. Components are the smallest of the elements and are the base
level. Picture them as small modules with only a couple of files, registry entries, or OLE
registrations (or other actions) inside.

• Features—Working up the size ladder, a group of components is called features. During
the install (or uninstall) process, a user chooses a feature to act on. The feature would call
the proper components to perform the action. Opting to install Word Perfect Help when
you install MS Word is an example of selecting a feature.

• Product—This element is just as you expect—a collection of features create a product.
MS Word is a product comprised of features.

170

Chapter 7

A suite is a collection of products. The Microsoft Office suite is a collection of products. One
variance to the logic; if a native Windows Installer package is used to control the setup of the
products, the entire setup is considered a product, not a suite. So if you install just Word via
Windows Installer, it is a product. If you install Office and include the applications Word, Excel,
PowerPoint, Access (and everything else), then the entire Office install is considered a product
and the individual applications are the features. If you install each application separately, the
grouping is a suite. The key is the Installer package; any major grouping within the Installer
package becomes a feature of the Installer package. As Figure 7.2 shows, each element builds on
the previous piece.

Figure 7.2: Windows Installer element hierarchy.

The component level is the basic building block. One of the functions for which MSI uses the
component is verification of package consistency. In other words, when a Windows Installer–
based application starts up, Windows Installer can do a verification to ensure that nothing has
been removed or overwritten. For the verification function, Windows Installer does the check at
the component level. In the component, one of the files or registry entries is designated as the

171

Chapter 7

keypath. When the application does a call to the component, the keypath is the part that is
actually called rather than each file. For this reason, the components are usually small.
If a file that is defined within a component is deleted, the call to the component identifies that the
file is missing; the component also defines where to go for the proper source to restore the
component pieces to operational level. That proper source location is called the installation
point. This is the location from where the application was originally installed.
Can you have a single file as a member of multiple components? Sure, if the file reference is
created within the component properly. And that is the catch—the component must be defined
properly during the creation process.
From your point of view as the administrator, knowing that a file is referenced by multiple
components is good troubleshooting basics. When a package is removed, knowing why a file is
removed (or not) can help determine why another application is suddenly breaking.
If a file is part of both Component A and Component B, and you removed Component B, the
system would know that the references to Component A still exist. For files that are shared
between products, the applications include the same component. Microsoft says that the
components are small pieces and only include resources that are directly related to the function
of the component. The MSI internal database records that two applications are using the file.
When one of the applications is removed or changed, the database tracks the change and strives
to keep the modification from impacting the other application. In other words, a series of
building blocks are tied together by the Windows Installer service, and the Installer service acts
as the traffic cop to keep everyone moving properly.
As a software deployment expert, you are familiar with the term GUID. Windows uses these
identifiers extensively to keep track of the numerous aspects of the operation of the computer. To
keep track of which application is using which component, a GUID is assigned to each
component and product. The technical terms are component code and product code, respectively.
I won’t get too deep into a discussion about the use of GUIDs; just remember that a Windows
Installer database tracks which component code (such as a file) is assigned to which product
code (such as an application).
Windows Installer removes files from a system only with the other elements of the component
and when the magic reference counter (refcount) shows 0 for that file. Thus, removing an
application that is controlled by Windows Installer does not accidentally remove a file from
another Windows Installer application. In Chapter 3, I discussed the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs
registry key? That key does a reference count on how many applications are registered to use a
DLL. The Windows Installer database does much the same, only instead of just listing the
number of associations, it can actually tell you which application is using the file. This tracking
extends past the DLL tracking and includes any component installed via the Windows Installer
process.
Features group the components together into a logical collection. Within the installer file, the
user chooses which features to work with. Instead of the user (or you) having to figure out which
file and registry element is needed to work with those features, Windows Installer does the work
for the user (or you) by referencing the components. So selecting the WordPerfect Help feature
in Microsoft Word will install the proper components, which means that the proper files, registry
entries, and hooks into Word are installed. The grouping makes life easier for everyone.
When an application is installed, Windows Installer will provide four main choices for each
configurable feature:

• Installed on local hard disk
• Installed to run from source

172

Chapter 7

• Advertised
• Not installed

The first two options are pretty clear. You can install the application to the local hard drive to run
it locally or choose to install (or execute) the application from the defined source. The source
location could be a server or a CD-ROM depending on how you have the application set up. If
you need to save space on a workstation and don’t have issues with network bandwidth, opting
to install and run from the source might be the best option for you. Within a product, you could
mix the install options depending on how you see the need. For example, you could install all the
basic features locally to provide faster processing for the commonly used items. Additional fonts,
wizards, templates, and other lesser-used features could be left to install to run from source (or
install on first use). This setup provides a good mix for the end user—faster response for most
items and access to additional features as the user needs.
Advertising applications is a heavy concept in the software distribution world. When you
advertise an application in AD deployments, you essentially are telling the user that an
application exists but the application is not yet installed. When the user clicks the file icon, an
install program is activated to drop the program onto the machine or userid. Basically, consider
MSI as repairing the entire application because none of the components are present on the
system.
In Windows Installer, the same concept is available at the feature level. In Figure 7.3, which
shows a custom install for Microsoft Access 2002, notice the disk icon with the number 1 in it.
This graphic represents that the feature is to be installed on first use. Thus, the components are
not yet installed on the system, but the keypath in the feature’s component defines where the
files are located for install. Shortcuts may be installed and OLE registration may be done,
depending on the configuration needs.

173

Chapter 7

Figure 7.3: Feature installation options.

In the highlighted graphic of the snapshot, the Additional Wizards feature is only a ghost entry
on the computer; the added wizards don’t exist yet. In the course of using Access, a call to a
wizard that is not installed may be encountered. At this time, the Windows Installer kicks off,
presents a pop-up window indicating that the system is going out to get the added files
(components), and the feature is installed.
You can see how this functionality saves space on a system. Why load a bunch of features if you
don’t use them? Having the space taken up on the drive by unused features only wastes the
space. If you think a feature might be used, loading it might be worth the tradeoff. Older
technology and some other systems give you the option to install a feature set or not. Because
you might have a need for a feature at some point, not loading a feature meant going through the
setup process again if you discovered that you need the option. This process is time consuming—
it’s a hassle to find the data source and a major interruption to work. By having the advertise
ability within Windows Installer, the application loads in the feature with only a few minutes
delay. This discussion assumes, of course, that the source is located someplace convenient and
the new feature is not a major tweak that requires reboots.

Windows Installer Transforms
All this data and more are included in the .MSI file. The .MSI package is the base file system for
a Windows Installer application and will install an application in a manner and method that the
installation creator chooses. If you want to adjust those install options, a transform file is needed
to effect those adjustments without having to modify the vendor’s MSI. The file extension of
.MST identifies transform files.
A transform lets you make changes to the base .MSI files at install time. Instead of letting users
adjust the installation features to their whims, you can create separate transforms for various
features, depending on the need. Creating a transform for different departments is a common
example. The Accounting Department does not need the same features of Word that the
Warehouse Department needs. By applying your group distribution methods, each department
could call a Windows Installer application that loads specific transforms to Word the first time
that Word is loaded.

� Transforms are applied when an application is first installed. Transforms created from .MST files are
not used for making modifications to existing applications; those changes are done via .MSP (that is,
patch) files.

 When doing GPO distributions in a Win2K Server or .NET Server environment, transforms are the
supported method for customizing the base application during the MSI-based installation process

Transforms give you access to feature sets as if you were doing the install. After the transform
modification is saved, you can create a different transform from the same base .MSI application
that could have an entirely different feature set. Saving the transforms with a reference in the
name to the reason for the modifications will help you manage the variances. This way, the Word
.MSI application can have a unique install for both the Accounting Department and the
Warehouse Department without having to create entirely separate packages for each department.
If you are deploying a commercially available application via Windows Installer, a method of
creating transforms is sometimes included. Now you will understand why I’ve been using
Microsoft Office products as the examples for this chapter. The transform tools are readily
available for you to use while you get a good understanding of Windows Installer.

174

Chapter 7

� The Office XP resource kit and toolbox Web site
(http://www.microsoft.com/office/ork/xp/appndx/appc00.htm) has the utilities to do customizations.

 The Office resource kit tools are located about halfway down the page. The executable is called
OrkTools.exe. (And yes, the executable is a Windows Installer setup.)

After the resource kit is installed, you can begin the customization by opening the Microsoft
Office Custom Installation Wizard. The welcome splash screen, which Figure 7.4 shows, gives
you the overview.

Figure 7.4: This screen gives you an overview of the functions that the utility will perform.

The next series of screens guides you through the process of selecting the base .MSI file, naming
the MST file and location, and selecting various options. You don’t need to save the .MST file to
the same location as the .MSI file. In fact, if you are going to do many transforms for the base
application, you might want to create a separate directory in which you can save the transforms.
I’ve selected the word.MSI file stored on my server for customizing and have instructed the
program to save the transform file called WordTest.MST to the C:\RTP directory. For this
example, I’ve changed the feature installation state for the Help for WordPerfect Users to Not
Available, as Figure 7.5 shows. All other features remain as they are currently configured.

175

http://www.microsoft.com/office/ork/xp/appndx/appc00.htm

Chapter 7

Figure 7.5: Disabling the feature Help for WordPerfect Users.

One type of Microsoft Office–specific file needs a quick mention at this point; the OPS file. This
file contains default custom user settings for applications that are applied to a computer. These
settings are mostly the configuration options in the Tools, Options menu and include such
common items as toolbar use, menu options, and positioning of toolbars. You can create the file
with the Profile Wizard from the resource kit, and import the settings into the transform. If
you’re not familiar with or don’t want to use the Profile Wizard (an administrator-level
function), you can get the same results from the Save My Settings Wizard (which is for the user
level). What is configured is dependent on the INI file settings. (See the Help file in the Profile
Wizard for more details.) In this case, I’ve opted to use the Microsoft default settings, as Figure
7.6 illustrates.

176

Chapter 7

Figure 7.6: Default settings page.

The next major screen, which Figure 7.7 shows, gives you the option to customize several user
settings for the products that the transform supports. The screen indicates that These settings are
applied to all users on the computer and overwrite existing settings. After the transform is
applied, the settings become active.

0 Be careful when you are in this screen. If you change a setting and decide that the setting isn’t
correct, simply backing out or canceling the action does not really mean the change has not been
written to the transform.

Be sure that what you have changed is what you really need to use. Click Help and review the
information in the screen for more details.

177

Chapter 7

Figure 7.7: In this screen, most of the configuration options are changed in the Office XP transform editor.

Subsequent screens step you through adding or removing files, adding or removing registry
settings, modifying security settings, specifying any server locations, including additional
programs, and choosing any setup properties. You then reach the end, and by clicking Finish,
save the .MST file. At the end of this transform-creation process, a sample command line is
given to you about how to include the transform, as Figure 7.8 shows.

Figure 7.8: The summary screen provides a sample of the MSI command line needed to include the .MST file.

178

Chapter 7

� For a complete discussion about properties within Windows Installer, download the Windows Installer
software development kit (SDK) from http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/wiport_6gf9.asp (or http://www.microsoft.com/windows/reskits/webresources and select
Windows Installer SDK).

If you needed to create other transforms that are similar but have minor adjustments, open the
same .MST file, make your adjustments, and save the transform with a different name. You can
use this method to easily create multiple transforms that have different default save locations.
Transform creation GUIs are different between applications and vendors. The previous example
was used to help show the process. Different vendors will create different transform utilities (if at
all), and even within the same vendor, the various products could have their own GUIs that differ
greatly from each other. Which features you are able to modify depends on what the developer is
willing to create for you. Normally, if the option is part of the install process, the transform GUI
will have the same option defined.
Can the MST file be viewed without the transform utility? Only if you enjoy looking at garbled
data. The Office XP resource kit has a Windows Installer Transform Viewer that lets you view
the data in a Notepad format. You need to specify the base package (.MSI file) and the
associated transform (.MST file). The WordTest transform that I created (which had only a
single change within it) produced Listing 7.1 from the Transform Viewer. All the settings listed
in the file will be applied during installation of the Office.MSI file if the transform is specified in
the setup command line. You can also specify the MSI file in the GPO customization tab when
you define the package properties in the GPO.
Take some time to review the listing. You can see the GUIDs of the product codes clearly listed
along with the setup properties. The section in which the Help for WordPerfect Users change is
listed is boldfaced in this listing. You can use listings such as this for troubleshooting problems.
Enforce Validation Flags: False
Base package: S:\Office10\WORD.MSI
 ProductCode: {901B0409-6000-11D3-8CFE-0050048383C9};
ProductVersion: 10.0.2627.01; UpgradeCode: {001B0000-6000-11D3-8CFE-
0050048383C9}

Transform: C:\RTP\WordTest.MST
Expected values - ProductCode: {901B0409-6000-11D3-8CFE-0050048383C9};
ProductVersion: 10.0.2627.01; UpgradeCode: {001B0000-6000-11D3-8CFE-
0050048383C9}
 Validate Major Version
 Validate Version is Equal
 Validate UpgradeCode
 Ignore Error of AddExistingRow
 Ignore Error of DeleteNonExistingRow
 Ignore Error of AddExistingTable
 Ignore Error of UpdateNonExistingRow

CREATED - OCW_Opt_Props DisplayName (s128*) Value (S0) ActualName
(s128) Type (I2)
 + ALLUSERS 2 ALLUSERS 8
 + ARPCOMMENTS ARPCOMMENTS 12
 + ARPCONTACT ARPCONTACT 12
 + ARPHELPLINK http://www.microsoft.com/support ARPHELPLINK 12
 + ARPHELPTELEPHONE ARPHELPTELEPHONE 12
 + ARPNOMODIFY ARPNOMODIFY 14

179

 + ARPNOREMOVE ARPNOREMOVE 15

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/wiport_6gf9.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/wiport_6gf9.asp
http://www.microsoft.com/windows/reskits/webresources

Chapter 7

 + ARPNOREPAIR ARPNOREPAIR 16
 + COMPLETEINSTALLDESCRIPTION <Default>
 COMPLETEINSTALLDESCRIPTION 11
 + CUSTOMINSTALLDESCRIPTION <Default>
 CUSTOMINSTALLDESCRIPTION 11
 + DEFAULTREMOVECHOICEDESCRIPTION <Default>
 DEFAULTREMOVECHOICEDESCRIPTION 11
 + DISABLESCMIGRATION DISABLESCMIGRATION 17
 + NOFEATURESTATEMIGRATION NOFEATURESTATEMIGRATION 18
 + RUNFROMSOURCEINSTALLDESCRIPTION <Default>
 RUNFROMSOURCEINSTALLDESCRIPTION 11
 + RUNFROMSOURCETEXT <Default> RUNFROMSOURCETEXT 11
 + StrContactInfo StrContactInfo 12
 + TRANSFORMSSECURE TRANSFORMSSECURE 19
 + TYPICALINSTALLDESCRIPTION <Default>
 TYPICALINSTALLDESCRIPTION 11
 + TYPICALINSTALLTEXT <Default> TYPICALINSTALLTEXT 11
 + TYPICALUPGRADEDESCRIPTION <Default>
 TYPICALUPGRADEDESCRIPTION 11
 + TYPICALUPGRADETEXT <Default> TYPICALUPGRADETEXT 11

CREATED - OCW_Strings Name (s64*) Value (s128)
 + Msi_ProductVersion 10.0.2627.01
 + Msi_UpgradeCode {001B0000-6000-11D3-8CFE-0050048383C9}

ALTERED - Feature Feature Feature_Parent Title Description
 Display Level Directory_ Attributes Lock (I2)
 OCW_DisableRFS (I2) OCW_DisableJIT (I2)
 <> WORDHelpForWPFiles 100{1}
 4{20}

DATA CHANGE - _Validation Table Column Nullable MinValue
 MaxValue KeyTable KeyColumn Category Set Description
 + Feature Lock Y 0 1 Lock
 + Feature OCW_DisableJIT Y 0 1
 OCW_DisableJIT
 + Feature OCW_DisableRFS Y 0 1
 OCW_DisableRFS
 + OCW_Opt_Props ActualName N
 Identifier Actual Name of OCW_Opt_Props property-like
record
 + OCW_Opt_Props DisplayName N
 Identifier Display Name of OCW_Opt_Props property-like
record
 + OCW_Opt_Props Type N Integer
 Type of OCW_Opt_Props property-like record
 + OCW_Opt_Props Value Y Text
 Value of OCW_Opt_Props property-like record
 + OCW_Strings Name N Identifier
 Name of OCW_Strings property-like record
 + OCW_Strings Value N Text Value
of OCW_Strings property-like record

DATA CHANGE - ActionText Action Description Template
 + OCW_Create_AppDataFolder Removing temporary working files

DATA CHANGE - Binary Name Data
 + OCW_CPYF.DLL Binary.OCW_CPYF.DLL

180

Chapter 7

DATA CHANGE - CustomAction Action Type Source Target
 + OCW_Create_AppDataFolder 1 OCW_CPYF.DLL
 _OCW_Create_AppDataFolder@4
 + OCW_INST_LOC_NEW 51 INSTALLLOCATION
 [ProgramFilesFolder]\Microsoft Office
 + OCW_INSTALL_MP_ADDED_CONTENT 51 OCW_INSTALL_MP_ADDED_CONTENT
 yes
 + OCW_INSTALL_MR_ADDED_CONTENT 51 OCW_INSTALL_MR_ADDED_CONTENT
 yes
 + OCW_INSTALL_UP_ADDED_CONTENT 51 OCW_INSTALL_UP_ADDED_CONTENT
 yes
 + OCW_INSTALL_UR_ADDED_CONTENT 51 OCW_INSTALL_UR_ADDED_CONTENT
 yes
 + OCW_SET_COMPANY_NAME 51 COMPANYNAME RealTimePublishers

TA CHANGE - Feature Feature Feature_Parent Title DescriptDA ion

 Display Level Directory_ Attributes
 <> WORDHelpForWPFiles 100{1}
 4{20}

TA CHANGE -DA InstallExecuteSequence Action Condition

 Sequence
 + OCW_Create_AppDataFolder (NOT AppDataFolder) AND
(OCW_DestDirUsesAppData OR OCW_UserSettingsUsesAppData OR
OCW_AddFileUsesAppData OR OCW_ShortcutUsesAppData) 799
 + OCW_INSTALL_MP_ADDED_CONTENT $OCW_Added_Content_MP=3 AND (NOT
OCW_AC_REGKEYPATH_FOUND_MP) 1399
 + OCW_INSTALL_MR_ADDED_CONTENT $OCW_Added_Content_MR=3 AND (NOT
OCW_AC_REGKEYPATH_FOUND_MR) 1399
 + OCW_INSTALL_UP_ADDED_CONTENT $OCW_Added_Content_UP=3 AND (NOT
OCW_AC_REGKEYPATH_FOUND_UP) 1399
 + OCW_INSTALL_UR_ADDED_CONTENT $OCW_Added_Content_UR=3 AND (NOT
OCW_AC_REGKEYPATH_FOUND_UR) 1399
 + OCW_SET_COMPANY_NAME NOT DONTUSEOCIWORGNAME 799

TA CHANGE - InstallUISeque e Action Condition DA nc Sequence

 + OCW_Create_AppDataFolder (NOT App Folder) ANDData
(OCW_DestDirUsesAppData OR OCW_UserSettingsUsesAppData OR
OCW_AddFileUsesAppData OR OCW_ShortcutUsesAppData) 999
 + OCW_SET_COMPANY_NAME NOT DONTUSEOCIWORGNAME 999

TA CHANGE - LaunchConditio Condition Description DA n

 + ReleaseType <> 1 [CANNOTRUNCIWTRANSFORMS]

TA CHANGE - Property Property Value DA

 + CIWVersion 10.0.3228
 blishe + COMPANYNAME RealTimePu rs

 + DISABLEFEATURECONDITIONS Ye
mFile

s
 + OCW_INST_LOC_NEW [Progra sFolder]\Microsoft Office
 + REMOVELPK 0

Customization + TransformType
 <> SKIPREMOVEPREVIOUSDIALOG 1{0}

181

Listing 7.1: Transform viewer output.

Could you manually make modifications to the .MST file and execute it that way? You could.
However, unless you are sharp on the Windows Installer variables and values for the application
as well as the interrelationships of the entries, I suggest sticking with the GUI method.

Chapter 7

Windows Installer Patches
Remember that the .MST file is used for initial setup tweaking. After you have an application out
to your clients and you want to make adjustments, Microsoft says that you need to creat

e an

.MSP file. The patch file (.MSP) modifies the .MSI information. The advantage of the .MSP file
install of the application. The

oting
 duties

iles accidentally or other applications overwrite files
needed for another application, how do you deal with the resulting damage? If you write your

on can reduce the number of hairs on your head very

n pre-
led

ller keeps
n

e

a
ation

SI
. If

), the repair option will check for existence of the keypath and apply a repair

 removed and replaced with the data from the .MSI and

sses.

is the ability to modify the .MSI file without requiring a fresh
patch can be a simple data change or a complete upgrade. Whereas the .MSI file contains all the
databases and data stream of the application, the .MSP contains a database transform that
modifies the .MSI database. Patches are generally created by the initial developer of the
application and deployed using your usual deployment methods.
Although you, as the deployment administrator, might never create a patch file, understanding
how it works when you get one from your application vendor is needed for your troublesho
skills. In shops in which multiple job functions are combined, the packaging side of your
might require you to create a patch file.

Fixing Damaged Applications
In the past couple of chapters, one of the many minor points that was raised is how to repair an
application remotely. If a user removes f

own distribution method, this situati
quickly. Commercially available delivery systems (CADSs) have numerous methods for
handling repairs. Some work, some don’t. Windows Installer addresses this issue.
Two main functions are available in Windows Installer files when working on damaged
applications: Rollback and Repair (or Verify). Rollback is putting a system back to a know
install state. During application installations, if the install fails, Windows Installer control
setup will attempt to remove all the changes back to a known state. Windows Insta
track of the changes as they occur and will create a rollback file for replaced files. After a
install is complete, the rollback files are removed from the system. Rollbacks are generally
performed automatically by the setup logic.
A rollback is not always possible. If changes to a schema are performed, the changes are in th
system for good or bad. If an application is running with custom programs, the logic of the
custom program needs to account for the rollback possibilities. You are at the mercy of the
developer in those cases.
Repair is a part of the verify process. When a product is launched, it automatically does a
component verification based on the keypath data of the component. If the keypath is not in
known state, Windows Installer attempts to replace the keypath data based on the source loc
in the component.
A little clarification on this point is needed. As always, the level of performance that the M
process does is dependent on the level of intelligence that the developer applies to the package
the developer of the MSI package does not specify full repair abilities (such as version and
corruption checking
process only if the keypath is not there.
You can also trigger a repair function from the command line. By specifying the repair property
within the parameters of your command, you can force the application to do a full repair.
However, if the user has customized the application and you have not taken this fact into
consideration, the user’s tweaks could be
.MST files. Of course, that may be the goal of the repair. Using this feature works great in
training situations in which you want to return an application to a known state between cla

182

Chapter 7

Be sure to test the repair function and fully understand what is being done before you trigg
globally.

er it

	 Check out http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/wiport_6gf9.asp for
details about repair functions. There are several considerations for using this feature properly,
including the ability to prevent rollbacks.

Win
A m ackages is the ability to elevate the security context of
the install process. If your users are locked down, running installations at their security level
could prevent the successful installation. With Windows Installer, you can adjust the security

tion. Because users of Win95, Win98, and ME

on

dows Installer Elevated Privileges
ajor advantage of Windows Installer p

context for the duration of the package installa
already have administrative rights on their systems, elevating privileges is not available to those
folks. For the rest of the Windows users, this ability solves many problems for distributions.
Right now, to fully use the elevation principle, you need to be using Group Policy distributions
within Win2K Server or .NET. Other deployment methods are beginning to support the elevati
concept but implement it differently. Check the documentation on your CADS for the details.

) To turn on the elevated rights option, adjust the local registry (the same key applies to the
HKEY_LOCAL_MACHINE hive):

 HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer

 AlwaysInstall Elevated = REG_DWORD:00000001

Creating a Windows Installer File
If you have a package that is not a native Windows Installer–based application and would like to
take advantage of the functionality of the Installer functions, there are many methods available to
do the conversions. Several third-party applications are available and more are coming along all
the time.

� You can get a list of third-party applications that support .MSI files on the Web. Authoring tools are
also included in the lists. To get you started, check out http://www.appdeploy.com,
http://www.microsoft.com, and http://www.zdnet.com.

183

Chapter 7

Many of the major software companies provide support for creating Windows Installer files in
some form or another. If you decide to start creating your own Windows Installer setup
applications, make sure you fully understand your needs and review the products available
before you settle on a packages. A few of the companies that have Windows Installer creation
capabilities include Lanovation, Wise Solutions, InstallShield, Microsoft (of course), and
Veritas.
Lanovation Prism Deploy provides the ability to create Installer packages. After you create a
Prism Deploy package and save it as a Portable Windows Change (PWC) file, you can create the
Installer file. This method gives you some advantages over a standard Windows Installer
package. You can use the snapshot abilities of Prism Deploy to get an accurate package. Using
the Adobe Acrobat 5.0 package created in Prism Deploy from a previous chapter, I converted the
PWC package into an .MSI package.
To do so, open the Prism Deploy Editor, and select the PWC file of the package, in this case, the
AdobeFive0_1 package was selected. From the Package menu, select Create Windows Installer
File, as Figure 7.9 shows.

Figure 7.9: Starting the Windows Installer creation process within Prism Deploy.

The process will then ask for basic author data such as package name and the name of the
manufacturer (company name). After entering this data and clicking Next, the editor begins the
process of converting the PWC formatted file into the Installer format. Status messages similar to
those that Figure 7.10 shows give you a progress report.

184

Chapter 7

Figure 7.10: Status messages presented during the Prism Deploy Windows Installer conversion process.

After a few minutes, the Windows Installer Conversion Results window appears with a status of
the package process. Any errors listed should be investigated and resolved before you use the
resultant .MSI file. In this case, the messages listed in Figure 7.11 are warning messages that are
indicating differences between the Prism Deploy setup and the Windows Installer process.

Figure 7.11: The results screen from the Prism Deploy Windows Installer conversion process.

Clicking Close closes the conversion window. When you complete the conversion process, you
end up with an .MSI file in the chosen directory, as Figure 7.12 illustrates.

185

Chapter 7

Figure 7.12: Snapshot showing the Prism PWC and Installer packages.

Running an Installer File
After you have the package created, you need to be able to run the application on the target
system. The command-line format to do so is rather simple

 msiexec /i \\server\share\filename options

To install the Adobe package I just created, the target machine would run
 msiexec /i \\server\sharename\AdobeFive0_1.msi /qb

where the /qb option sets the user interface to the basic level. You can include logging options,
an .MST file, and parameters for the properties in the command line or included files. For a
complete list of the options and the requirements for each, review the Installer Web site for
details (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/wiport_6gf9.asp).
There is a large amount of data available about Windows Installer. The preceding information
will hopefully give you enough of an understanding to start delving into the data pile.

Resource Kits
Whether you need to create a simple distribution package or just run a simple script to your
workstations, you might need some utilities to create the package for you. Using the proper
resource kit for the OS you are targeting is a time-saving method as many functions are already
created for you. As the software distribution guru of your company, you should be aware of the
various utilities in the resource kits.
Many of the utilities found in older resource kits work within new OSs. Some utilities written for
NT 3.51 still work with Windows XP. Additionally, some of the older utilities that worked so
well in the older technologies have been updated for each succeeding OS as needed. As with any
utility you work with, test it to your satisfaction before you release it into the production world.
If you haven’t played with the resource kits for your OS, you should take a few hours away from
the demands of the day and play. Excuse me, I meant you should enhance your contribution to
the departmental goals by proactively fine-tuning your skills and enhancing your knowledge of
OS functionalities to meet your quarterly objectives in a timely manner. Everyone knows you’re
playing productively, it just looks better on the status reports using larger phrasings.

186

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/wiport_6gf9.asp

Chapter 7

	 Two good Microsoft sites to visit for resource kit information include
http://www.microsoft.com/windows/reskits/default.asp and
http://www.microsoft.com/windows/reskits/webresources/default.asp.

0 Resource kits are a collection of utilities that have been written to perform various functions. Not all
the tools are from Microsoft programmers, and support for the tools is not always available. Microsoft
states throughout the resource kit documentation that support is not provided and the products are
used as is. Microsoft is mainly doing distribution of the tools that have proven effective from the
company’s viewpoint. Although most are safe and don’t cause problems, you need to prove that to
yourself first. With that word of caution, we can proceed.

After you start using the tools, several will become staples in your growing arsenal of utilities.
Some help with distributions, some with customizations, some with data gathering, and others
with data manipulation. In just the Win2K Server resource kit, more than 300 tools are included.
Many of the resource kits (and many of the individual tools) are available on the Microsoft Web
site for free.
Some of the tools available in a resource kit are not functional tools but references to
documentation or information for your use. Much of the information files can be found in other
areas of the Web. Keep searching for those pearls of wisdom. Overall, the kits are essentially a
requirement for anyone doing serious support work for a Windows environment. Because the
tools in the resource kits are not fully supported, their structure and user interfaces can be unique.
It was quite common when the resource kits first came out to notice typographical errors in the
Help files and instructions. But the tools work well and are worth using. Many of the tools are
command-line driven, some are GUI-based. Most can be used remotely to distant machines or
combined with other resource kit tools to create custom utilities for your needs. As an example
of the mix that you can do with resource kit tool versions, I’ve included a simple report-
gathering script for fun.

� One point before we get into the script example: The process used as an example can be done via
numerous other methods. There are other ways to obtain the same data. The point here is to highlight
the ease of use the resource kit tools can provide to solve a problem. With a skeleton script in place,
adding resource kit tools into the method can give you fast data to solve problems. When creating
application packages to solve problems when your CADS does not provide the functionality you need
for the task, a resource kit utility may be just what you need.

Here is the scenario for out example: You need to identify whether a certain hotfix has been
applied to the NT workstations that are currently online. Additionally, you’ll need to gather the
information from the hotfix registry key. (An assumption is made that the userid being used to
run the script has administrative authority on the target machines in the queried domain.)
As a modular quick-run script, the script is actually two scripts: Listing 2 shows SPRAY.BAT
and Listing 3 shows HTFX.BAT.
REM ** SPRAY.BAT **
@echo off
REM ** Generic dynamic spray script.
REM ** Input variables.
REM ** %1 is the name of the domain to check.
REM ** %2 is the name of the batch file to spawn.

187

REM ** Housekeeping. Create a report directory.

http://www.microsoft.com/windows/reskits/default.asp
http://www.microsoft.com/windows/reskits/webresources/default.asp

Chapter 7

REM ** If a report dir exists, clean it out.
if not exist .\report md .\report
if exist .\report*.txt del .\report*.txt

M ** Create the source to use. RE

REM ** Assumes the common name of workstations start
REM ** With \\NT??????? for a max of 10 characters.
net view /domain:%1 | findstr \\NT > %1.txt

M ** The loop generator. RE

for /f "tokens=1" %%i in (%1.txt) do call %2.bat %%i

M ** Report time. RE

echo . > .\report\Report.txt
echo Total machines searched >> .\report\Report.txt
find /c /i "\\NT" %1.txt >> .\report\Report.txt

ho . >> .\report\Report.txt ec

echo Total entries found >> .\report\Report.txt
find /c /i "Report" .\report\good.txt >> .\report\Report.txt

ho . >> .\report\Report.txt ec

echo Total Bad connections >> .\report\Report.txt
find /c /i "failed" .\report\BadC.txt >> .\report\report.txt

M ** Pop up the final report summary RE

start notepad .\report\report.txt

nd :E

Listing 7.2: The SPRAY.BAT file.

188

Chapter 7

REM ** HTFX.BAT **
@echo off
REM ** Check for connection to the target machine
If NOT exist %1\c$\boot.ini goto :BadC

REM ** Remove the slashes from the NETVIEW generated name.
set MCHN=%1
echo %MCHN%
set MCHN=%MCHN:~2,10%

REM ** Do the work. Save the output to a file for each machine.
REM ** This allows research per machine if needed.
dumpel -l system -e 4359 -m NTServicePack -f .\report\%MCHN%.txt -s %1

REM ** Find the trigger keyword for the report
find "Q300845" .\report\%MCHN%.txt >> .\report\Good.txt

REM ** The searched for string is checked, grab the entire HOTfix list
for reference.
regdmp -m %1 "\Registry\Machine\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Hotfix"
goto :end

:BadC
REM ** Report that a NETVIEW found machine could not be connected.
echo %MCHN% connection failed >> .\report\BadC.txt

:end

Listing 7.3: The HTFX.BAT file.

The process is started by calling SPRAY.BAT with two operands—the domain to review and the
work script to feed the machine names into. SPRAY.BAT is used as a shell for other small
scripts so that you have the same front end and only need to adjust the core work script.
The NET VIEW command is used by the script to gather the list of machines available in the
domain browser list for the target domain. The browser list is not 100 percent complete, it shows
only machines that have contacted the browser and announced their presence. As there can be
different browser masters depending on the network, using NET VIEW will show only the
machines that are online and talking to the same browser master that you are. In practice, the list
shows between 95 percent and 99 percent of the online machines when you do a NET VIEW
statement. It depends on your network and segmentation factors.
The NET VIEW statement pipes the results to a FIND command that searches only for machine
names beginning with \\NT, assuming all the NT workstations are named NTsomething. The
results of the FIND command are fed into a domain.txt file for later use. SPRAY.BAT then
parses the domain.txt file one entry at a time, and feeds the machine name to the core work batch
file called HTFX.BAT.
HTFX.BAT uses a simple test to see whether it can talk to the target machine. It checks for the
existence of the C:\boot.ini file on the target machine. There are only four results possible from
the check:

1. The target machine is online and reachable
2. The target machine is not online

189

3. The script does not have authority on the target machine

Chapter 7

4. The target machine does not have a boot.ini file
The script only needs the first condition (online and reachable). Any other condition is not a
concern of the script. Failed connections are recorded in a bad connection log file. After
HTFX.BAT confirms that the target can be reached, the resource kit utility DUMPEL is run.
This utility is useful and has been around since the NT 3.5 resource kit. The Win2K Server
version (dated 12/99) is the one used for this example. This utility can obtain data from event
logs and parse the information into different formats. This ability lets you place the event log
information into spread sheets or other databases for massaging as you need. DUMPEL has
options for changing the separator character, changing the output results, filtering, and selecting
which log to use.
This script grabs any system events related to hotfix installs and sends the results to a text file
that starts with the machine name. This information all goes into a directory called REPORT for
ease of data collection. As the script is tailored to search for a particular hotfix number
(Q300845), a quick search to the saved off file is done. After the FIND /C command completes
the filtering, another resource kit utility is called to dump the registry for all hotfixes. The
REGDMP utility (from Supplement 4 of the NT resource kit) is called in case the event logs
happened to wrap and the installed hotfixes have rolled off. REGDMP is one of several REG*
utilities that provide a simple means of gathering registry data or manipulating the registry
contents.
After the data is gathered for the target machine, HTFX.BAT ends and returns control back to
SPRAY.BAT. After the entire domain.txt file has been individually processed, SPRAY.BAT
does a fast count of the results and presents them in the form of a notepad report. If you have a
CADS, the hotfix data may already be available in any inventory report the CADS generates.
Additionally, most CADS will provide methods to gather the same data dynamically from inside
their processing methods.
REGDMP and DUMPEL are both resource kit utilities that were originally designed for older
NT-based OSs. For this example, I ran the script from a Windows XP Pro workstation to an NT
4.0 SP6 workstation, a Win2K Server, a Win2K workstation, and to another Windows XP
system. All four systems returned the proper data as expected without problems. Thus, don’t
limit yourself to only the resource kit for your particular OS.

� You can remotely install services by using other resource kit tools: the command-line INSTSRV tool,
which is great for scripting needs, or the GUI-based SRVINSTW tool, which guides you through the
process.

190

Chapter 7

If you need to remotely install a service, the SRVINSTW.EXE tool can do the trick. The steps
are pretty easy:

1. Copy the source files for the service to the remote machine. Place them in the proper
directories depending on the needs of the server.

2. Start SRVINSTW and follow the prompts. (Figure 7.17 shows the startup screen.)

Figure 7.17: The startup screen for SRVINSTW.exe.

3. When the service asks for the source location, be sure to use the remote machine’s point
of view. Files placed on the remote machine’s disk should be referenced by C:\, not a
UNC or network connection, as Figure 7.18 shows.

Figure 7.18: Be sure to specify the proper source location from the remote machine’s point of view.

4. After the wizard completes, start the service via normal remote service install methods.

191

Chapter 7

Another resource kit tool that you may have already used is the Remote Command Service.
RCMD is a UNIX-like command-line tool that provides access to a client. It requires installation
of a service (RCMDSVC.EXE) on the client, and the service must be running on the target
machine before you can start the service.
RCMD needs the RCMDSVC.EXE file copied to the target machine first, then the RCMDSVC
service installed on the target machine. You can use either of the previously mentioned tools to
install the service on the client if it isn’t already installed. As RCMD logs you onto the machine
using the userid you are currently using, your userid must have the proper access level for the
target machine.
RCMD is a great scripting and troubleshooting tool. It is limited to command-line aspects only.
Any command you enter from the machine you’re on will run as if you were physically at the
target machine. A Windows XP machine can gain access to any other Windows machine via
RCMD.
For software distributions, you can use RCMD for triggering scripts for silent installs, activating
AT commands, or making modifications to directories. At times you might find that performing
functions on a target machine works better than attempting to do the function remotely. One
example is installing software remotely when the source is closer to the target than to you. Using
RCMD to gain access to the target machine, map a drive via the NET USE command to a source
server, then activating the silent install can speed the process. If your install package was not part
of your software deployment method and you had no other way to activate the install, RCMD is
a fast solution. The goal is to have different methods to perform the needed functions.

0 Be aware that RCMD is a little buggy and there are various versions out there. Commands entered
via RCMD must run without user interaction on the target machine or the machine hangs. If a
command calls up a GUI window, you will never see the window and the RCMD session is hung until
the window is closed. That same hang condition happens if a pop-up window, such as an error
message, happens. In scripting, you need to test the logic as RCMD might handle things a little
differently than you expect.

The big consideration to remember with RCMD is to execute the commands locally with the
local drive mapping logic. Because the RCMD session will not appear to the user, you can come
in under the covers and execute PSTAT or TLIST or KILL commands for troubleshooting
processes, but you can’t see what the user is seeing. It is not a remote-control service, just a
remote execution. The overhead for RCMD is lower than for remote-control services.
When scripting, you can copy a batch file to a known location on the target machine, then have
your script call the batch file as if you were on the system. The command

rcmd \\machine c:\temp\run.bat

will connect to machine, execute the c:\temp\run.bat command and return focus back to your
machine to continue on with your script. This process is a down-and-dirty method to make
simple changes or activate processes on remote machines.

192

Chapter 7

Resource Kit tools are not just focused on the distribution world. You can find utilities for
managing AD, monitoring the network, monitoring API calls, verifying your cluster,
manipulating the registry, manipulating services, and gathering hardware data. As I mentioned
earlier, there are more than 300 utilities in just the Win2K Server resource kit. Instead of trying
to cover all the utilities from all the resource kits, I’ve listed some of my favorites that have
proven useful at one point or another within my software-distribution experiences (see Table
7.1).
Utility Comments

APIMON Monitor API calls; great for troubleshooting

DELSRV Delete services installed on clients

DIRUSE Obtain data on a directory structure; great for checking for size limits when
space is an issue

DRIVERS Locate data on installed drivers; great for pre-checking systems when
preparing packages

DUREG Check the size of registries—not just the space, but the actual data size

EXTRACT Expand cab files

GETSID Obtain the SID of two different userids

GPRESULT Determine the impact that a GPO has on a userid

HEAPMON Troubleshoot unknown issues or occasional hangs in processes or systems

IFMEMBER Use in logon scripts for group membership branch logic

INUSE Replace system reserved files great if you create your own installers

NOW Determine what time is it NOW

OH Determine what handles are open; great for troubleshooting

OLEview Check out OLE and COM stuff

PSTAT Determine how many processes are running on a system; this utility helps
locate problems

RPCDUMP Check the RPC side of the network

RCMD Get console access to a remote machine; has some limitations but works well
for most command-line needs

Robocopy Mirror and filter very quickly; only copies what it needs to (if the file exists as
you directed, it skips copying it over); great copy utility

SCOPY Copy the security aspects of directories and files

SOON Run a process inside the next 24 hours (like the AT command)

TIMETHIS Determine how long it took to run a process

Whoami Check a userid prior to running a script

XCACLS Modify security parameters for directories; good for new machines or resetting
older machines to standards

Table 7.1: Some useful resource kit utilities.

193

Chapter 7

Summary
It is good to have a standard deployment method and to use it as much as possible. Being aware
of other options and possibilities expands your scope and abilities to perform those one-off jobs
that creep up once in awhile. Many of the tools needed to do simple distributions or data
gathering are available free on the Web.
Although every deployment method has its own interface and rules for use, Windows Installer
has an increasing presence in the deployment field. As a result, even if you don’t use it or plan
to, you should still be familiar with it and how it works. Commercially available applications
may only provide setups within the Installer framework, and understanding the technology will
assist you in creating the application package and deployment design that best fits your
environment.
Resource kits are a wealth of tools that are needed in every administrator’s bag of tricks. The
documentation may not be the best for all the tools and not every tool will fit into your
environment. However, the little gems that you find will quickly become a staple for your daily
administrative functions.

194

Chapter 7

195

Copyright Statement
© 2001 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.
THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.
The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.
The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.
If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com

	Windows Installer
	Overview

	Windows Installer Transforms
	Windows Installer Patches
	Fixing Damaged Applications
	Windows Installer Elevated Privileges
	Creating a Windows Installer File
	Running an Installer File

	Resource Kits
	Summary

