
The Definitive Guide To
tm

The Definitive Guide To
tm

Scaling Out
SQL Server 2005

 Don Jones

Chapter 5

i

Chapter 5: Distributed and Partitioned Databases ...95

Pros and Cons ..95

Distributed Databases ..95

Partitioned Databases...99

Design and Implementation ...103

Designing the Solution...103

Distributed Databases ..103

Partitioned Databases...107

Implementing the Solution...108

Distributed Databases ..108

Partitioned Databases...113

Best Practices ...116

Benchmarks..117

Summary ..119

Chapter 5

ii

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 5

95

[Editor’s Note: This eBook was downloaded from Content Central. To download other eBooks
on this topic, please visit http://www.realtimepublishers.com/contentcentral/.]

Chapter 5: Distributed and Partitioned Databases

The phrases distributed and partitioned mean different things to different people when it comes
to databases. Strictly speaking, distributed refers to any database that exists in more than one
place (on more than one server), and a partitioned database is divided into multiple sections,
with each section existing on a different server. In this chapter, I’ll discuss the pros and cons of
these scale-out techniques and walk you through the steps necessary to implement each.

Pros and Cons
There are a number of good and bad points about partitioned and distributed databases. In most
applications, the biggest drawback to partitioned and distributed databases for database
administrators and developers is the level of complexity. Involving more database servers in your
environment obviously increases maintenance and administrative effort; changing the way in
which data is distributed across servers can create obvious difficulties for client applications that
are hard-coded to look for data in specific locations or, at least, on one server.

Distributed Databases
Distributed databases are an easy way to bring more processing power to a database application.
There are two reasons to distribute:

• To place data in closer physical proximity to more users. For example, you might
distribute a database so that a copy exists in each of your major field offices, providing a
local database for each office’s users.

• To absorb a greater amount of traffic than a single database server can handle. For
example, a Web site might use multiple read-only copies of a database for a sales catalog,
helping to eliminate the database back end as a bottleneck in the number of hits the Web
site can handle.

Replication is used to keep the databases in sync. For example, Figure 5.1 shows an example
distributed database.

http://www.realtimepublishers.com/contentcentral/

Chapter 5

Figure 5.1: A distributed database example.

In this example, the database exists on two servers, ServerA and ServerB. Each server contains
an identical copy of the database, including the database schema and the actual data contained
within the database.

Suppose that a user adds a new database row to ServerB, which then replicates the changes to
ServerA. Both servers again have an identical copy of the data. The downside to this
arrangement is that the two database servers will always be slightly out of sync with one another,
particularly in a busy environment in which data is added and changed frequently. SQL Server
offers multiple types of replication (and SQL Server 2005 specifically adds database mirroring,
which is conceptually similar to replication), which I’ll cover later in this chapter, that each uses
a different method to strike a balance between overhead and synchronization latency.

96

Chapter 5

The design of your distributed database will affect its latency as well. For example, consider the
four-server distributed database in Figure 5.2. In this example, the administrator has created a
fully enmeshed replication topology, which means that each server replicates directly with every
other server. Changes made on any one server are pushed out to the other three servers. This
technique reduces latency because only one “hop” exists between any two servers. However, this
technique also increases overhead, because each server must replicate each change three times.

Figure 5.2: A replication topology example.

Another technique is to have ServerA replicate changes only to ServerB; ServerB to ServerC;
ServerC to ServerD; and ServerD to ServerA. This circular topology ensures that every server
replicates each change only once, which reduces overhead. However, latency is increased
because as many as three “hops” exist between any two servers. For example, a change made on
ServerA must replicate to ServerB, then to ServerC, and then to ServerD—creating a much
longer lag time before ServerD comes into sync with the rest of the servers. The amount of
overhead and latency you are willing to tolerate will depend on how complex you are willing to
make your environment, and how much overhead and latency your business applications and
users can handle.

97

Chapter 5

98

� Latency is the most important consideration, from a business perspective, in designing replication. At
the very least, users need to be educated so that they understand that the database exists in multiple
copies, and that the copies won’t always be in sync. Make users aware of average replication times
so that they have reasonable expectations of, for example, the time necessary for their changes to be
replicated.

 Your business needs will determine how much latency is acceptable. For example, latency of a
couple of minutes might not matter to most applications. However, applications that depend on real-
time data might not tolerate even a few seconds of latency; in such cases, an alternative, third-party
solution for synchronizing data will be required.

The previous examples are geared toward a database that is distributed across multiple physical
locations; another technique, which Figure 5.3 shows, is to create multiple database servers to
support multiple Web servers.

Figure 5.3: Distributed databases for a Web site.

In this example, one database server holds a writable copy of the database. Internal users make
changes to this copy, and the changes are then replicated to the read-only databases accessed by
the Web servers. This model is infinitely scalable; if you determine that each database server can
support , for example, 50 Web servers, then you simply deploy a new database server for every
50 Web servers you add to your environment. The technique works well primarily for read-only
data, such as an online product catalog. Typically, the Web servers would access a second
database server with data changes, such as new orders.

Chapter 5

99

� Any data that doesn’t change very frequently or isn’t changed by a large number of users is an
excellent candidate for this type of replication. A single, writable copy eliminates any possibility of
conflicts, which can happen if data is changed in multiple locations. Multiple read-only copies provide
an easy scale-out method for large applications, particularly Web sites that must support tens of
thousands of users.

Partitioned Databases
The previous Web site example makes a nice segue into the pros and cons of partitioned
databases. Figure 5.4 shows an evolution of the Web site example that includes a fourth database
server used to store customer orders. This server is written to by the Web servers.

Figure 5.4: A distributed and partitioned database.

Chapter 5

100

This example illustrates a form of partitioned database. Part of the database—the catalog
information—is stored on one set of database servers; another part—customer orders—is stored
on another server. The databases are interrelated, as customers place orders for products that are
in the catalog. In this example, the purpose of the partitioning is to distribute the overall
workload of the application across multiple servers; because the server storing orders doesn’t
need to serve up product information, its power is conserved for processing new orders. In a
particularly large Web site, multiple servers might be required to handle orders, and they might
replicate data between one another so that each server contains a complete copy of all orders,
making it easier for customers to track order status and so forth.

Partitioning a database in this fashion presents challenges to the database administrator and the
application developer. In this Web site example, the developer must know that multiple servers
will be involved for various operations so that the Web servers send queries and order
information to the appropriate server. Each Web server will maintain connections to multiple
back-end database servers.

This complexity can be dispersed—although not eliminated—by creating multi-tier applications.
As Figure 5.5 shows, the Web servers deal exclusively with a set of middle-tier servers. The
middle-tier servers maintain connections to the appropriate back-end database servers,
simplifying the design of the Web application. This design introduces an entirely new application
tier—the middle tier—which has to be developed and maintained, so the complexity hasn’t been
eliminated; it has merely been shifted around a bit.

Chapter 5

Figure 5.5: Using an n-tier design to manage application complexity.

The point is that partitioned databases always increase complexity. Data has multiple paths
across which it can flow, and different servers are designated with specific tasks, such as serving
up catalog data or storing order data. These database designs can allow you to create staggeringly
large database applications, but you will pay for the power in more complex maintenance and
software development. This Web site scenario is an example of a vertically partitioned database,
in which different tables of the database are handled by different servers.

Figure 5.6 is a simpler model of vertical partitioning in which different tables are split between
two servers. Again, the problem with this technique is that it places a burden on the software
developer to know where specific bits of data are being stored.

101

Chapter 5

SQL Server offers components that help to reduce this complexity. For example, you can create
views that pull from multiple tables on different servers. Views work similarly to distributed
partitioned views, which I covered in the previous chapter. Distributed partitioned views are
designed to work with horizontally partitioned databases; you can also create regular views that
help to consolidate vertically partitioned data.

Figure 5.6: Typical vertical partitioning.

Views become a key to helping make the multiple servers appear to be one large server, a
technique I’ll discuss later in this chapter when I show you how to implement partitioned
databases. However, views don’t always work well if the servers are physically separated;
partitioning a database usually precludes physically distributing the servers across WAN links
for simple performance reasons.

102

Chapter 5

103

Design and Implementation
Designing and implementing distributed or partitioned databases involves fairly straightforward
decisions. Many applications, such as the Web site example I discussed in the previous section,
might involve both partitioned and distributed databases. In cases of a mixed-approach scale-out
method, handle the design of the distributed and partitioned portions individually. The fact that
you are using both techniques as part of an overall solution doesn’t appreciably affect the design
decisions you will make.

Designing the Solution
Designing a distributed database involves decisions that affect data latency and replication
overhead; partitioning a database requires you to address concerns about application complexity
and database maintenance. Three distinct designs are possible:

• A distributed database in which each copy is a complete copy of the entire database and
one copy does not “own” any particular rows.

• A distributed database in which each copy is a complete copy of the entire database and
each copy of the database has been assigned, through horizontal partitioning, as the
“owner” of particular rows.

• A vertically partitioned database in which each server contains only a portion of the
database’s schema and data.

Distributed Databases
A basic design rule is that a distributed database is useful when you need to make multiple
copies of data available. Perhaps you want the copies to be physically distributed so that the
copies are close to individual user populations, or perhaps you need multiple copies to support
the back-end requirements for a large application. In either case, multiple copies of a database
create specific problems:

• Changes to the copies must somehow be reconciled.

• Reconciliation has processing overhead associated with it.

• Reconciliation has a time factor, referred to as latency, associated with it.

SQL Server’s replication features are designed to handle data reconciliation with varying degrees
of overhead, latency, and ability to handle conflicting changes.

� One way to neatly avoid most of the problems raised by distributed databases is to allow the copies
of the database to be read-only. If changes are made only on one copy, then those changes are
distributed to read-only copies, and you only need to be concerned about the latency in pushing out
changes to the read-only copies. Some applications lend themselves to this approach; many do not.

To begin, let’s cover some basic SQL Server replication terminology. First, an article is the
smallest unit of data that SQL Server can replicate. You can define an article to be a table, a
vertical or horizontal partition of data, or an entire database. Articles can also represent specific
stored procedures, views, and other database objects.

Chapter 5

104

Articles are made available from a publisher, which contains a writable copy of the data. A
subscriber receives replication changes to the article. A distributor is a special middleman role
that receives replication data from a publisher and distributes copies to subscribers, helping to
reduce the load of replication on the publisher. A subscription is a collection of articles and a
definition of how the articles will be replicated. Push subscriptions are generated by the
publisher and sent to subscribers; pull subscriptions are made available to subscribers, which
must connect to receive the subscription’s data.

In a case in which multiple servers will contain writable copies of the data, each server will act
both as publisher and subscriber. In other words, ServerA might publish any changes made to its
copy of the data while simultaneously subscribing to changes that occur on ServerB, ServerC,
and ServerD. SQL Server has no problem with a single server both sending and receiving
changes to a database. SQL Server supports different types of replication:

• Snapshot replication is designed to copy an entire article of data at once. SQL Server
must be able to obtain an exclusive lock on all the data contained in the article, and can
compress the replicated data to conserve network bandwidth. Because of the requirement
for an exclusive lock, snapshot replication isn’t suitable for high-volume transactional
databases; this replication type is used primarily for data that is mostly static. Snapshots
can be high-overhead when the snapshot is taken, meaning you’ll schedule snapshots to
occur infrequently. Subscribers to the snapshot replace their copy of the data with the
snapshot, meaning there is no capability to merge copies of the database and handle
conflicts. Snapshots are often a required first step in establishing other types of
replication so that multiple copies of the database are known to be in the same condition
at the start of replication.

) Snapshot replication is most useful for distributing read-only copies of data on an infrequent basis.

• Transactional replication begins with an initial snapshot of the data. From there,
publishers replicate individual transactions to subscribers. The subscribers replay the
transactions on their copies of the data, which results in the copies of the database being
brought into synchronization. No facility for handling conflicts is provided; if two
publishers make changes to the same data, their published transactions will be played on
all subscribers, and the last one to occur will represent the final state of the replicated
data. Transactional replication is fairly low-bandwidth, low-overhead, and low-latency,
making it ideal for most replication situations. It is often paired with a form of horizontal
partitioning, which might assign specific database rows to specific copies of the database.
Doing so helps to reduce data conflicts; you might, for example, assign different blocks
of customer IDs to different field offices so that the different offices avoid making
changes to each others’ data.

) Transactional replication offers the easiest setup and ongoing maintenance. It deals poorly with
conflicting changes, so it is best if the database is horizontally partitioned so that each publisher tends
to change a unique group of rows within each table. Transactional replication is also well-suited to
data that doesn’t change frequently or that is changed by a small number users connecting to a
particular publisher.

Chapter 5

105

• Merge replication is perhaps the most complex SQL Server replication technique. Also
starting with a snapshot, merge replication works similarly to transactional replication
except that interfaces are provided for dealing with conflicting changes to data. In fact,
you can develop customized resolvers—or use one of SQL Server’s built-in resolvers—to
automatically handle changes based on rules. Merge replication offers low-latency and
creates an environment in which changes can be made to data in multiple places and
resolved across the copies into a synchronized distributed database.

) Merge replication offers the most flexibility for having multiple writable copies of data. However, this
replication type can have higher administrative and software development overhead if SQL Server’s
built-in default resolver isn’t adequate for your needs.

For merge replication, SQL Server includes a default resolver; its behavior can be a bit complex.
Subscriptions can be identified as either global or local, with local being the default. For local
subscriptions, changes made to the publisher of an article will always win over changes made by
a subscriber. You might use this method if, for example, a central office’s copy of the database is
considered to be more authoritative than field office copies. However, care must be taken in
client applications to re-query data for changes, and users must be educated to understand that
their changes to data can be overridden by changes made by other users.

Subscriptions identified as global carry a priority—from 0.01 to 99.99. In this kind of
subscription, subscribers are synchronized in descending order of priority, and changes are
accepted in that order. Thus, you can define levels of authority for your data and allow certain
copies of your data to have a higher priority than other copies.

) Merge replication was designed to understand the idea of changes occurring at both the subscriber
and publisher, so you don’t need to create a fully enmeshed replication topology in which each copy
of the data is both a publisher and subscriber. Instead, select a central copy to be the publisher and
make all other copies subscribers; merge resolvers then handle the replication of changes from all
copies.

SQL Server also includes an interactive resolver, which simply displays conflicting changes to
data and allows you to select which change will be applied. It is unusual to use this resolver in an
enterprise application, however; it is far more common to write a custom resolver if the default
resolver doesn’t meet your needs. Custom resolvers can be written in any language capable of
producing COM components, including Microsoft Visual C++. Of course, SQL Server 2005
integrates the Microsoft .NET Common Language Runtime, making .NET a possibility for
writing merge resolvers.

� While SQL Server 2000 only supported COM-based resolvers, SQL Server 2005 supports both COM-
based custom resolvers and business logic handlers written in managed (.NET) code.

Chapter 5

As I mentioned earlier, transactional replication is by far the most popular form of replication in
SQL Server, in no small part because it is so easy to set up and an excellent choice when creating
distributed databases. To help avoid the problem of conflicting changes, transactional replication
is often paired with horizontal partitioning of data. For example, Figure 5.7 shows how a table
has been divided so that one server contains all even-numbered primary keys, and a second
server contains odd-numbered keys. This partitioning represents how the data is used—perhaps
one office only works with odd-numbered clients and another focuses on the evens—reducing
the number of data conflicts.

Figure 5.7: Horizontal partitioning and replication.

A more common technique is to create a portioning column. For example, customer records
might have a Region column that contains a value indicating which regional field office deals
with that customer the most. Conflicting changes to the customer’s data will be rare, as most
changes will be made to only that region’s data, with the change then replicated to other regions’
database servers.

106

Chapter 5

Partitioned Databases
Partitioning a database is usually performed to accomplish one of two goals:

• Distribute processing workload so that different database servers handle different
portions of the database. This setup is usually accomplished through vertical partitioning.

• Segregate portions of the database so that, although copies exist on multiple servers,
certain parts of the data are “owned” by only a single server. This setup is usually
accomplished through horizontal partitioning and is often used in conjunction with
replication, as I’ve already described.

Horizontal partitioning is a simpler matter, so I’ll cover it first. It is simply a matter of separating
the rows of your database so that particular rows can be “owned” by a specific server. To do so,
you follow the same process used to create distributed partitioned views (see Chapter 4 for more
information about this process). You might have a specific partitioning column, as I’ve already
described, which assigns rows based on criteria that is appropriated within your business (for
example, a regional code, a range of customer IDs, a state, and so on).

Vertical partitioning is more difficult because you’re splitting a database across multiple servers,
as Figure 5.6 shows. Usually, you will split the database along table lines so that entire tables
exist on one server or another. The best practice for this technique is to minimize the number of
foreign key relationships that must cross over to other servers. Figure 5.8 shows an example.

Figure 5.8: Separating tables across servers.

107

Chapter 5

108

In this example, three tables dealing with orders and customers are kept on one server, and a
table containing product information is stored on another server. This example shows only one
foreign key relationship cross between servers—between the Products and OrderLines table.

) Depending on your needs, full partitioning might not be the best answer. For example, suppose you
use the database design that Figure 5.8 shows. The reason for partitioning the database is so that the
servers containing the product and order information can each handle a higher workload than if all
that information was contained on a single server.

 An alternative technique is to keep a copy of the product information on the server that contains the
order information. Doing so would improve performance for that server because the server could
maintain its foreign key relationship locally. The second server could handle actual queries for
product information and replicate product changes to the order server’s read-only copy of the table.

Implementing the Solution
You’re ready to begin implementing your solution: What do you do first? If you’re planning a
blend of distributed and partitioned databases, attack the partitioning piece first because it is
usually the most complicated. Once that is finished, distribution becomes primarily a matter of
setting up SQL Server replication to keep your distributed copies in sync.

Distributed Databases
One of the first things you’ll want to set up is replication publishing and distribution. The
publisher of a subscription isn’t necessarily the same server that distributes the data to
subscribers; the role of distributor can be offloaded to another SQL Server computer. To
configure a server as a publisher or distributor, open SQL Server Management Studio (in SQL
Server 2005; for SQL Server 2000, you use SQL Enterprise Manager and the steps are slightly
different). From the Object Explorer, right-click Replication, then select Configure Distribution.
As Figure 5.9 shows, a wizard will walk you through the necessary steps. You can either have
the publisher be its own distributor (as shown), or select one or more other servers as
distributors.

Chapter 5

Figure 5.9: Configuring a server to be its distributor.

� When configuring replication, ensure that the SQL Server Agent is configured to start using a user
account that is valid on all computers that will participate in replication; generally, that will mean using
a domain user account. SQL Server Agent handles much of the work involved in replication and
cannot be running under the default LocalSystem account if replication is to work.

To create a publication, right-click Local Publications under Replication in Management Studio,
and select New Publication. In the dialog box that appears, follow these steps:

1. Select the database from which you want to publish data.

2. Select the type of replication—Snapshot, Transactional, or Merge—that you want to use.
Transactional is the most popular type, so I’ll use that for the remainder of these steps.

3. As Figure 5.10 shows, select the articles you want to publish. If you’re using replication
to distribute an entire database, you will select all of the tables shown.

109

Chapter 5

Figure 5.10: Select tables to include in the publication.

) To quickly select all tables, click the Publish All checkbox in the right-hand window, next to Tables.

4. Finish by specifying a name for the publication. You can also specify additional
properties for the publication, including data filters, anonymous subscribers, and so forth.
For more information about these additional properties, refer to SQL Server Books
Online.

The Local Publications list should be updated to reflect the new publication. You can also right-
click the Local Publications folder to examine the Publication Databases list (see Figure 5.11).

110

Chapter 5

Figure 5.11: The Publication Databases list.

� There are several caveats associated with complex publications that involve multiple publishers. For
example, by default, IDENTITY columns in a publication are not replicated as IDENTITY columns;
they are simply replicated as normal INT columns. This default setting doesn’t allow the subscribers
to update the tables and create new IDENTITY values; although SQL Server can certainly handle
publications in which subscribers can create new IDENTITY values, setting up these publications
requires more manual effort and is beyond the scope of this discussion. For more details, consult
SQL Server Books Online.

 As an alternative, you can generate globally unique identifiers (GUIDs) to replace IDENTITY columns
as unique keys. SQL Server can generate GUIDs for you, and will replicate GUIDs across servers
with no conflict.

To subscribe to the publication, you will follow similar steps. For example, right-click Local
Subscriptions to create a new subscription. As Figure 5.12 shows, a Wizard walks you through
the entire process.

111

Chapter 5

Figure 5.12: Pushing subscriptions.

To create a pull subscription, open Management Studio on the subscriber. From the Replication
sub-menu, select Pull Subscription. You will see a dialog box similar to the one in Figure 5.12
listing current subscriptions. Click Pull New Subscription to create a new subscription.

Once replication is set up, it occurs automatically. SQL Server includes a Replication Monitor
within Management Studio (see Figure 5.13) that you can use to monitor the processes involved
in replication. In this case, the Log Reader agent is the service that monitors the SQL Server
transaction log for new transactions to published articles; when it finds transactions, it engages
the distributor to distribute the transactions to subscribers of the published articles.

112

Chapter 5

Figure 5.13: Monitoring replication.

Partitioned Databases
Vertically partitioned databases are very easy to create—simply move tables from one server to
another. Deciding which tables to move is the difficult part of the process, and reprogramming
client applications to deal with the new distribution of data can be a major undertaking.

Unfortunately, there are no tools or rules for designing the partitioning of a database. You will
need to rely on your own knowledge of how the database works, and perhaps performance
numbers that tell you which tables are most often accessed as a set. Spreading commonly-
accessed tables across multiple servers is one way to help ensure a performance benefit in most
situations.

113

Chapter 5

114

There are also no tools for reprogramming your client applications to deal with the newly
partitioned database. However, SQL Server does make it possible to create an abstraction
between the data a client application sees and the way in which that data is physically stored,
partitioned, or distributed.

One technique to help make it easier for programmers to deal with partitioned databases is views.
Figure 5.14 shows an example of a vertically partitioned database in which different tables exist
on different servers. A view can be used to combine the two tables into a single virtual table,
which programmers can access as if it were a regular table. Stored procedures can provide a
similar abstraction of the underlying, physical data storage. Applications could be written to deal
entirely with the actual, physical tables; the virtual tables represented by views; or a combination
of the two, depending on your environment. Keep in mind that the server hosting the view uses a
bit more overhead to collect the distributed data and assemble the view; be sure to plan for this
additional overhead in your design and place the views accordingly.

) It’s also possible to use SQL Server as middle tier in partitioned database schemes. For example,
you might have tables spread across ServerA and ServerB, and construct views on ServerC. Client
applications would deal solely with ServerC, and ServerC would assemble virtual tables from the data
on ServerA and ServerB. This setup requires significant planning but can provide a useful abstraction
so that software developers don’t need to be concerned with how the data is physically distributed. In
addition, this configuration prevents either ServerA or ServerB from hosting all the views related to
the database application.

Chapter 5

Figure 5.14: Using a view with a partitioned database.

115

Chapter 5

116

Best Practices
Creating best practices for distributed and partitioned databases is difficult; every business
situation has unique needs and challenges that make it difficult to create a single set of beneficial
rules. However, there are certainly guidelines that have proven effective in a wide variety of
situations. Don’t consider these hard and fast rules—take them as a starting point for your
designs:

• Reduce the number of subscribers that a publisher must deal with when it is also acting as
a database server for users or database applications. If necessary, create a standalone
distributor so that the publisher only needs to replicate data once (to the distributor), after
which the distributor handles the brunt of the replication work to the subscribers.

• If latency is an issue, employ transactional or merge replication and create a fully
enmeshed replication topology. If latency is not an issue—for example, a product catalog
being distributed to read-only copies might only need to be replicated once a week—then
use snapshot replication.

• As I’ve already mentioned, minimize the number of cross-server foreign key
relationships and other cross-server object references when vertically partitioning a
database. Cross-server references pass through SQL Server’s Linked Servers
functionality (which I described in Chapter 4) and can have a negative impact on overall
performance if overused.

• Minimize the potential for data conflicts in replication so that you can use simpler
transactional replication rather than the more complex merge replication. Horizontally
partitioning tables so that each copy of the database “owns” particular rows can go a long
way toward reducing data collisions (or conflicts) and can make transactional replication
more viable in an environment with multiple writable copies of a database.

• Reduce the programming complexity of vertically partitioned databases by making use of
views and stored procedures. These objects can abstract the underlying physical database
structure so that software developers deal with a single set of objects (views and stored
procedures) regardless of where the underlying data is actually situated.

Working with distributed or partitioned databases can be especially difficult for software
developers, so make sure you include them in your initial scale-out design processes. They will
need to understand what will need to change, if anything, in their client applications. In addition,
perform basic benchmark testing to determine whether your proposed scale-out solution provides
tangible performance benefits for your end users; how client applications function will play a
major role in that performance. Including software developers in the planning and testing stages
will help ensure more accurate results.

Chapter 5

117

Benchmarks
Measuring the performance of a scale-out solution that uses distributed and/or partitioned
databases can be complex because it is difficult to determine what to measure. For example,
suppose you’ve created a distributed database like the one that Figure 5.3 illustrates. The purpose
is to allow more Web servers to exist by having multiple copies of a database. All hardware
being equal, a new database server should double the potential throughput of your Web site,
because the new database server can support the same number of servers as the original database
server. Similarly, if your existing Web farm can handle 10,000 users per hour with one back-end
database and 10 Web servers, having two back-end database servers and 20 Web servers should
provide the power for 20,000 users per hour.

) The main thing to measure is end-user response time because that metric is ultimately the sign of
success or failure in any IT project.

This type of calculation becomes less straightforward when you move into more complex—and
realistic—scenarios like the one that Figure 5.4 shows. In this case, the central Orders database
server could serve as a performance bottleneck, preventing you from exactly doubling your site’s
overall user capacity.

You could also be using distributed databases in a scenario like the one I showed you in Figure
5.2, with multiple database servers housed in different physical locations. Again, hardware being
equal, each database server should be able to handle an equal number of users. However, the
actual performance gain from such a scenario can be greater than simply providing more power
at the database tier. For example, suppose you start out with a single database server located in a
central office, and field office users connect via WAN. And suppose that your database server is
approaching its performance limits with several thousand company users connecting each day.
Adding a server at your two major field offices would provide two performance benefits: the
workload of the database application would be distributed across three servers (which will allow
each server to maintain peak efficiency) and users will be accessing data across a LAN—rather
than a WAN—which will create at least the perception of improved application performance.
Figure 5.15 illustrates how network speed provides the performance gain.

Chapter 5

Figure 5.15: Local SQL Server computers have an impact on perceived performance.

To illustrate this concept with another example, suppose your original server, located at one of
your company’s two offices, can support all 5000 of your company users, which is far from the
server’s limit. Half of the users access the data across a WAN link. Now suppose you get another
identical server and place it in your other office. Neither server will be working close to its
capacity, but the second office will definitely see a performance benefit from the distributed
database because they are now accessing data across the LAN instead of across the slower WAN
link. The first office’s users won’t see any performance change at best; at worst, they might see a
slight decrease in performance as a result of the additional load of replication (performance
degradation is unlikely in this case; replication isn’t that big of a burden in a scenario such as
this). This setup illustrates how it can be difficult to measure the performance gains of a
distributed database scale-out solution—there are several factors completely unrelated to SQL
Server that can affect users’ perception of performance.

118

Chapter 5

119

Measuring the success of a vertically partitioned database can be even more difficult. It’s nearly
impossible to measure the performance each table contributes to an application’s performance.
For example, if you were to divide a database between two servers so that exactly half the tables
were on each server, it’s unlikely that you would double performance. The reason is that some
tables are more heavily used than others. Additionally, a poorly designed partitioning scheme
can hurt performance by forcing servers to rely too much on remote foreign key tables, which
must be queried across the LAN.

The only accurate way to measure the performance benefits—or drawbacks—of a vertical
partitioning scheme is to objectively measure the performance of the database application as a
whole. In other words, construct metrics such as maximum number of users or average response
time for specific user activities. By measuring these end user-based metrics, you will be able to
account for all of the various factors that can affect performance, and arrive at an objective
performance measurement for the application as a whole.

Summary
Distributing and partitioning databases are time-tested flexible ways to increase the performance
of a database application. In fact, distributed partitioned views, which I discussed in the previous
chapter, are an outgrowth and refinement of the database distribution and partitioning techniques
I’ve discussed in this chapter. Distributing a database gives you the flexibility to place multiple
copies of data in a single location and balance workload between the copies. Alternatively, you
can distribute data across locations to provide faster access to different groups of users.
Partitioning—both horizontal and vertical—can also provide a performance gain, particularly for
well-designed databases that offer logical divisions in either tables or rows.

It is not a straightforward task to predict performance gains from distributing and partitioning
databases. It’s difficult to fire off sample queries against a non-distributed copy of a database and
compare the results to the performance of a distributed copy; the nature of distribution is to
increase potential capacity, not necessarily to increase the performance of individual queries.
When making performance comparisons, consider the total activity of an entire application to
determine the effectiveness of your scale-out solution.

In the next chapter, I’ll focus on Windows Clustering. Clustering is a common addition to scale-
out solutions, as it prevents the single point of failure that a database server can represent. By
clustering SQL Server computers, you can create a multiple-server scale-out solution that isn’t
vulnerable to the failure of a single piece of server hardware.

Chapter 5

120

Content Central
Content Central is your complete source for IT learning. Whether you need the most current
information for managing your Windows enterprise, implementing security measures on your
network, learning about new development tools for Windows and Linux, or deploying new
enterprise software solutions, Content Central offers the latest instruction on the topics that are
most important to the IT professional. Browse our extensive collection of eBooks and video
guides and start building your own personal IT library today!

Download Additional eBooks!
If you found this eBook to be informative, then please visit Content Central and download other
eBooks on this topic. If you are not already a registered user of Content Central, please take a
moment to register in order to gain free access to other great IT eBooks and video guides. Please
visit: http://www.realtimepublishers.com/contentcentral/.

http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/

	Chapter 5: Distributed and Partitioned Databases
	Pros and Cons
	Distributed Databases
	Partitioned Databases

	Design and Implementation
	Designing the Solution
	Distributed Databases
	Partitioned Databases

	Implementing the Solution
	Distributed Databases
	Partitioned Databases

	Best Practices
	Benchmarks
	Summary
	Content Central
	Download Additional eBooks!

