
The Definitive Guide To
tm

The Definitive Guide To
tm

Scaling Out
SQL Server 2005

 Don Jones

Chapter 3

i

Chapter 3: Scaling Out SQL Server...49

Scale-Out Decisions...49

Real-Time Data..49

Cross-Database Changes..51

Scalable Database Designs ..52

Redesigning Your Database...52

Scale-Out Techniques Overview ...53

Distributed Databases and Replication ..53

The Effects of Replication on Performance...54

Partitioned Databases...56

The Effects of Partitioned Databases on Performance ..60

Distributed Partitioned Views..60

The Effects of Distributed Partitioned Views on Performance62

Windows Clustering...63

Better Hardware Utilization...64

Four-Node Clusters..65

SQL Server Clusters ..66

Effects of Clustering on Performance..68

Creating a Scale-Out Lab...69

Real-World Testing..69

Benchmarking ..70

Summary ..70

Chapter 3

ii

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 3

49

[Editor’s Note: This eBook was downloaded from Content Central. To download other eBooks
on this topic, please visit http://www.realtimepublishers.com/contentcentral/.]

Chapter 3: Scaling Out SQL Server

You’ve tweaked T-SQL until you’re blue in the face, upgraded your servers until they just can’t
fit more memory or processors, and bought the fastest disk storage—and your database is still
too slow. Whether you’re trying to support tens of thousands of users in a transactional
application or quickly retrieve terabytes of data, scaling up has taken you as far as it can—it is
time to scale out.

Before you start buying new servers and creating new databases, you must determine which
scale-out technique is right for your environment and test the solution that you choose. You need
to decide exactly how you will scale out and how to maintain a high level of fault tolerance in
your new design. You will then need to perform some real-world testing to determine whether
your database is ready to be scaled out and whether the scale-out decisions you’ve made result in
an actual performance gain. In this chapter, we’ll explore how to select the best technique for
your situation and the best methods for testing your selection to ensure it will handle the
workload.

Scale-Out Decisions
Exactly how you use your data and how your data is structured will greatly impact which scale-
out options are available to you. Most large database applications not only deal with a lot of data
and many users but also with widely distributed users (for example, several offices that each
accommodate thousands of users). One solution is to simply put a dedicated database server in
each location rather than one central server that handles all user requests. However, distributing
servers results in multiple copies of the data and the associated problem of keeping each copy
updated. These and other specifics of your environment—such as the need for real-time data—
will direct you to a particular scale-out technique.

Real-Time Data
The need for real-time data, frankly, complicates the scale-out process. If we could all just live
with slightly out-of-date data, scaling out would be simple. For example, consider how a Web
site is scaled out. When the number of users accessing the site becomes too much for one server
to handle, you simply add Web servers. Each server maintains the same content and users are
load balanced between the servers. Users aren’t aware that they are using multiple Web servers
because all the servers contain the same content. In effect, the entire group of servers—the Web
farm—appears to users as one gigantic server. A certain amount of administrative overhead
occurs when the Web site’s content needs to be updated because the new content must be quickly
deployed to all the servers so that they are in sync with one another, but there are many tools and
utilities that simplify this process.

) Microsoft includes network load-balancing (NLB) software with all editions of Windows Server 2003
(WS2K3) and Win2K Advanced Server. This software load balances incoming TCP/IP connections
across a farm (or cluster) of servers.

http://www.realtimepublishers.com/contentcentral/

Chapter 3

50

Why not simply scale out SQL Server in the same way? The real-time data requirement makes
this option unfeasible. Suppose you copied your database to three new servers, giving you a total
of four SQL Server computers that each maintains a copy of your database. As long as you
ensure that users are accessing SQL Server only via TCP/IP and you implement Windows NLB
to load-balance connections across the SQL Server computers, everything would work
reasonably well—as long as your users only query records (each server would have an identical
copy of the records). The minute someone needed to change a record, though, the situation
would change. Now, one server would have a different copy of the database than the other three.
Users would get different query results depending on which of the four servers they queried. As
users continued to make changes, the four database copies would get more and more out of sync
with one another, until you would have four completely different databases.

SQL Server includes technology to help with the situation: replication. The idea behind
replication is that SQL Server can accept changes on one server, then copy those changes out to
one or more other servers. Servers can both send and receive replication traffic, allowing
multiple servers to accept data updates and distribute those updates to their partner servers.

� SQL Server 2005 has a new technology called database mirroring which is conceptually similar to
replication in that it creates copies of the database. However, the mirror copy isn’t intended for
production use, and so it doesn’t fulfill the same business needs that replication does.

However, replication doesn’t occur in real-time. Typically, a server will save up a batch of
changes, then replicate those changes in order to maintain a high level of efficiency. Thus, each
server will always be slightly out of sync with the other servers, creating inconsistent query
results. The more changes that are made, the more out-of-sync the servers will become. In some
environments, this lag time might not matter, but in corporate transactional applications,
everyone must see the same results every time, and even a “little bit” out of sync is too much.

� SQL Server offers many types of replication including snapshot, log shipping, merge, and
transactional. Each of these provides advantages and disadvantages in terms of replication traffic,
overhead, and the ability to maintain real-time copies of data on multiple servers.

What if you could make replication take place immediately—the second someone made a
change, it would replicate to the other servers? Unfortunately, this real-time replication would
defeat the purpose of scaling out. Suppose you have one server that supports ten thousand users
who each make one change every 5 minutes—that is about 120,000 changes per hour. Suppose
you copied the database across a four-server farm and evenly load balanced user connections
across the four servers. Now, each server will need to process only one-quarter of the traffic
(about 30,000 changes per hour). However, if every server immediately replicates every change,
each of the four servers will still need to process 120,000 changes per hour—their own 30,000
plus the 30,000 apiece from the other three servers. In effect, you’ve bought three new servers to
exactly duplicate the original problem. Ultimately, that’s the problem with any replication
technology: There’s no way to keep multiple copies of a frequently-updated database up-to-date
without putting an undesirable load on every copy.

As this scenario illustrates, the need for real-time data across the application is too great to allow
a scale-out scenario to take significant advantage of replication. Thus, one of the first scale-out
project considerations is to determine how up-to-date your data needs to be at any given moment.

Chapter 3

51

	 Later in the chapter, I’ll explore a scale-out environment that employs replication. If you don’t have a
need for real-time data (and not all applications do), replication does offer some interesting
possibilities for scale-out.

Cross-Database Changes
Another scale-out project consideration is whether you can split your database into functionally
separate sections. For example, in a customer orders application, you might have several tables
related to customer records, vendors, and orders that customers have placed. Although
interrelated, these sections can standalone—changes to a customer record don’t require changes
to order or vendor records. This type of database—one which can be split along functional
lines—is the best candidate for a scale-out technique known as vertical partitioning.

	 I’ll discuss vertical partitioning shortly.

However, if your database tables are heavily cross-linked—updates to one set of tables
frequently results in significant updates to other sets of tables—splitting the database across
multiple servers will still require a significant number of cross-database changes, which might
limit the effectiveness of a scale-out technique.

Vertical partitioning breaks the database into discreet sections that can then be placed on
dedicated servers (technically, both a large database that is partitioned by column and several
tables spread onto different servers qualify as vertical partitioning—just a different levels).
Ideally, vertical partitioning will help distribute the load of the overall database application
across these servers without requiring replication. However, if a large number of cross-database
changes are regularly required by your application, splitting the database might not actually help.
Each server participating in the scheme will still be required to process a large number of
updates, which may mean that each server can only support the same (or close to the same)
number of users as your original, single-server architecture.

) Analyze your database to determine whether it can be logically split into different groups of
functionally related tables. There will nearly always be some relationship between these sets. For
example, a set of tables for customer orders will likely have a foreign key relationship back to the
customer records, allowing you to associate orders with specific customers. However, adding an
order wouldn’t necessarily require changes to the customer tables, making the two sets of tables
functionally distinct.

Chapter 3

52

Scalable Database Designs
Vertical partitioning is one technique to make your database design more scalable, but it
certainly isn’t the most popular method. Many database tables are so heavily interdependent that
vertical partitioning just isn’t practical—horizontal partitioning is much easier. Thus, you’ll need
to decide how easily your database’s rows can be broken up. For example, examine the largest
tables in your database and consider how you might logically divide the rows into different sets.
Perhaps some of your orders were placed through an Eastern call center while others come from
the West, or perhaps one set of customers is managed by a different service center than others.
You can also look for arbitrary divisions that aren’t related to the functionality of the databases:
ranges of customers by last name (A through M and N through Z, for example) or the odd- and
even-numbered customer IDs as separate sets. Your database will very likely need to be split up
in some fashion in order to be scaled out—you simply need to decide how that split will occur.

Horizontal vs. Vertical Partitioning

Should you split your database horizontally, by data rows, or vertically, by breaking of functionally related
groups of tables? The answer largely depends on how your database is built and updated. Tables that
are extremely large and comprise a majority of your database traffic are the best candidates for horizontal
partitioning. If your database can be logically split into groups of functionally related tables, vertical
partitioning might be a valid technique.

Part of the answer also depends upon how your client applications are written. Vertically partitioning a
database can be expensive in terms of client application changes because you might need to heavily
modify those applications to make them aware of the new database architecture. Horizontal partitioning
can be simpler because you can more easily use SQL Server views to present the appearance of a single
database server to your client applications.

You can, of course, adopt both solutions, splitting your tables both horizontally and vertically to create the
scale-out scenario that best fits your needs. For example, you could use both solutions for a large
customer order database that you want to horizontally partition but you want to isolate your product
catalog on a separate server.

Redesigning Your Database
Very few databases are successfully scaled out without some type of database redesign and client
application (or middle-tier business object) modification. If it isn’t obvious how to best split your
current single-server database across multiple servers, plan for redesign work. Although
redesigning your database can be a difficult task in a production environment, it is time well
spent. Consider the following to be a “law” of scaling out:

Always finalize your scale-out database design in a single-server environment before
attempting to move to a fully scaled-out, multiple-server environment.

In other words, if you need to redesign tables, relationships, indexes, queries, stored procedures,
views, client applications, or middle-tier objects, do so while everything is on a single database
server. Finalize the architecture before you begin moving out to multiple servers. Moving a
database to multiple servers presents plenty of challenges without simultaneously working out
the kinks of an all-new (or even slightly modified) database design.

	 In Chapter 2, I presented an overview of techniques that you can use to fine-tune the performance of
your single-server databases. For a more detailed look at fine-tuning performance on a single server,
read The Definitive Guide to SQL Server Performance Optimization (Realtimepublishers.com),
available from a link at http://www.realtimepublishers.com.

http://www.realtimepublishers.com/

Chapter 3

Scale-Out Techniques Overview
Much of the rest of this chapter is devoted to an overview of scale-out techniques so that you can
consider your business needs and existing database design and get a feel for which techniques
are best-suited to your environment. In Chapters 4, 5, and 6, we’ll explore these scale-out
techniques in more detail, including step-by-step instructions for implementing each technique
on SQL Server 2000.

Distributed Databases and Replication
As I described earlier, one way—in fact, probably the easiest way—to scale out a database
application is to simply add more servers and give them each a copy of the database. There are
tricks and tradeoffs involved, but for some applications, this scale-out technique can provide a
working environment with a minimum of re-architecting.

Figure 3.1 illustrates how a distributed database, combined with replication, can be used as a
simple scale-out technique.

Figure 3.1: Scale-out through distributed databases.

53

Chapter 3

54

In this example, each server contains a complete, identical copy of the database schema and data.
When a user adds a row to one server, replication updates the copy of the data on the other
server. Users can then query either server and get essentially the same results.

The time it takes for ServerB to send its update to ServerA is referred to as latency. The types of
replication that SQL Server supports offer tradeoffs among traffic, overhead, and latency:

• Log shipping isn’t truly a form of replication but can be used to similar effect. This
technique copies the transaction log from one server to another server, and the log is then
applied to the second server. This technique offers very high latency but very low
overhead. It’s also only available for an entire database; you can’t replicate just one table
by using log shipping.

• Similar to log shipping, snapshot replication essentially entails sending a copy of the
database from one server to another. This replication type is a high-overhead operation,
and locks the source database while the snapshot is being compiled, so snapshot
replication is not a method you want to use frequently on a production database. Most
other forms of replication start with a snapshot to provide initial synchronization between
database copies.

• Transactional replication copies only transaction log entries from server to server.
Assuming two copies of a database start out the same, applying the same transactions to
each will result in identical final copies. Because the transaction data is often quite small,
this technique offers fairly low overhead. However, to achieve low latency, you must
constantly replicate the transactions, which can create a higher amount of cumulative
overhead. Transactional replication also essentially ignores conflicts when the same data
is changed in two sources—the last change is kept regardless of whether that change
comes from a direct user connection or from an older, replicated transaction.

• Merge replication works similarly to transactional replication but is specifically designed
to accommodate conflicts when data is changed in multiple sources. You must specify
general rules for handling conflicts or write a custom merge agent that will handle
conflicts according to your business rules.

• Mirroring, a new option introduced in SQL Server 2005, is primarily designed for high
availability. Unlike replication, which allows you to replicate individual tables from a
database, mirroring is configured for an entire database. Mirroring isn’t appropriate to
scale-out solutions because the mirror copy of the database isn’t intended for production
use; its purpose is primarily as a “hot spare” in case the mirror source fails.

	 Chapter 5 will provide more details about distributed databases, including information about how to
build them.

The Effects of Replication on Performance
Replication can be a good way to improve the performance for read-only applications. For
example, you might have a central server designed to take updates and multiple additional
servers that maintain read-only copies of the data. Transactional or snapshot replication—
depending on the latency you’re willing to tolerate—can be used to push updates to the read-only
copies of the data. Web sites with read-only data are a good example of this technique (see
Figure 3.2).

Chapter 3

Figure 3.2: Using replication to scale out a Web back end.

However, for applications for which each copy of the data needs to support many write
operations, replication becomes less suitable. As Figure 3.3 illustrates, each change made to one
server results in a replicated transaction to every other server if you need to maintain a low
degree of latency. This fully enmeshed replication topology can quickly generate a lot of
overhead in high-volume transactional applications, reducing the benefit of the scale-out project.

55

Chapter 3

Figure 3.3: Replication traffic can become high in distributed, write-intensive applications.

To work around this drawback, a less-drastic replication topology could be used. For example,
you might create a round-robin topology in which each server simply replicates with its right-
hand neighbor. Although this setup would decrease overhead, it would increase latency, as
changes made to one server would need to replicate three times before arriving at the original
server’s left-hand neighbor. When you need to scale out a write-intensive application such as
this, a distributed, partitioned database—one that doesn’t use replication—is often a better
solution.

Partitioned Databases
Partitioning is simply the process of logically dividing a database into multiple pieces, then
placing each piece on a separate server. Partitioning can be done along horizontal or vertical
lines, and techniques such as replication and distributed partitioned views can be employed to
help reduce the complexity of the distributed database. Figure 3.4 shows a basic, horizontally
partitioned database.

56

Chapter 3

Figure 3.4: Horizontally partitioned database.

In this example, the odd- and even-numbered customer IDs are handled by different servers. The
client application (or a middle tier) includes the logic necessary to determine the location of the
data and where changes should be made. This particular example is especially complex because
each server only contains its own data (either odd or even customer IDs); the client application
must not only determine where to make changes but also where to query data. Figure 3.5 shows
how replication can be used to help alleviate the complexity.

57

Chapter 3

Figure 3.5: Replicating data across databases.

In this example, when a client makes a change, the client must make the change to the
appropriate server. However, all data is replicated to both servers, so read operations can be
made from either server. Prior to SQL Server 2000, this configuration was perhaps the best
technique for scaling out and using horizontally partitioned databases. SQL Server 200x’s
(meaning either SQL Server 2000 or SQL Server 2005) distributed partitioned views, however,
make horizontally partitioned databases much more practical. I’ll discuss distributed partitioned
views in the next section.

Vertically partitioned databases are also a valid scale-out technique. As Figure 3.6 shows, the
database is split into functionally related tables and each group of tables has been moved to an
independent server.

58

Chapter 3

Figure 3.6: Vertically partitioned database.

In this example, each server contains a portion of the database schema. Client applications (or
middle-tier objects) contain the necessary logic to query from and make changes to the
appropriate server. Ideally, the partitioning is done across some kind of logical functional line so
that—for example—a customer service application will primarily deal with one server and an
order-management application will deal with another. SQL Server views can be employed to
help recombine the disparate database sections into a single logical view, making it easier for
client applications to access the data transparently.

	 Chapter 5 will provide more details about partitioned databases and how to build them.

59

Chapter 3

60

The Effects of Partitioned Databases on Performance
Partitioned databases can have a significant positive effect on performance. By distributing the
rows or columns of a database across multiple servers, you can enlist several servers in your
overall application. What makes partitioning impractical for many companies is the resulting
complexity placed on client applications and middle-tier objects, which are now required to
understand what data lives where, where to read data from, and where changes can be made. So
while in theory partitioning is the ultimate performance boost—allowing servers to essentially
specialize either in a certain type of data or in a certain set of tables, or certain rows of data
within a table—the feasibility of converting a major single-server database application to one
that uses multiple servers with a partitioned database is low. However, there are techniques to
improve the feasibility and practicality of partitioning, including distributed partitioned views.

Distributed Partitioned Views
SQL Server 200x offers distributed partitioned views to reduce the complexity of working with
highly partitioned databases—primarily horizontally partitioned databases. For example, refer
back to Figure 3.4, which shows a single database horizontally partitioned across multiple
servers. The primary difficulty of this scenario is in writing client applications that understand
how the data has been distributed. Distributed partitioned views eliminate that difficulty from a
development viewpoint, but at a significant performance cost. Figure 3.7 shows how a
distributed partitioned view works.

	 Chapter 4 covers distributed partitioned views, including details about how to create them.

Chapter 3

Figure 3.7: A distributed partitioned view.

In this scenario, client applications are not aware of the underlying distributed partitioned
database. Instead, the applications query a distributed partitioned view, which is simply a kind of
virtual table. On the back end, the distributed partitioned view queries the necessary data from
the servers hosting the database, constructing a virtual table. The benefit of the distributed
partitioned view is that you can repartition the physical data as often as necessary without
changing your client applications. The distributed partitioned view makes the underlying servers
appear as one server rather than several individual ones.

� Some environments use distributed partitioned views and NLB together for load balancing. A copy of
the distributed partitioned view is placed on each participating server and incoming user connections
are load balanced through Windows’ NLB software across those servers. This statistically distributes
incoming requests to the distributed partitioned view, helping to further distribute the overall workload
of the application.

 However, because of the difficult-to-predict performance impact of horizontal partitioning and
distributed partitioned views (which I’ll discuss next), it is not easy to determine whether the NLB
component adds a significant performance advantage.

61

Chapter 3

62

The Effects of Distributed Partitioned Views on Performance
Distributed partitioned views don’t increase performance, but they make horizontally partitioned
databases—which do increase performance—more feasible. Large queries can be distributed
between multiple servers, each contributing the necessary rows to complete the query and
produce the final distributed partitioned view. SQL Server 200x’s distributed partitioned views
are updatable, so they can be treated as ordinary tables for most purposes, and any changes made
to the distributed partitioned view are transparently pushed back to the proper back-end servers.

However, the ease of use provided by distributed partitioned views comes at a cost with potential
performance drawbacks. First, the performance benefits of a horizontally partitioned database
depend on an even distribution of rows across the various copies of the database. If, for example,
the most-queried rows are all on one server, that server’s performance will become a bottleneck
in the overall application’s performance. When designing partitions, you need to design an even
initial split of rows based on usage, and you might need to periodically repartition to maintain an
even balance of the workload across the servers.

Distributed partitioned views incur a performance hit. The servers queried by a distributed
partitioned view are required to execute their query and then maintain the resulting rows in
memory until all other servers queried by the distributed partitioned view complete. The rows are
then transferred to the server physically containing the distributed partitioned view, and the
distributed partitioned view is presented to the user or client application. A problem arises if your
servers have significantly different hardware or some servers must respond with a much larger
set of rows than others; in such cases, some of the servers queried by the distributed partitioned
view will be required to retain rows in memory for a significant period of time while the other
distributed partitioned view participants complete their portion of the query (requests made to the
different servers are serial). Retaining rows in memory is one of the most resource-intensive
operations that SQL Server can perform (one reason why server-side cursors have such a
negative impact on performance).

) Maintain an even distribution! The key to successful horizontal partitioning—and distributed
partitioned views—is to thoroughly understand how your data is queried and to devise a technique for
maintaining an even distribution of often-queried data across the participating servers.

When are distributed partitioned views a good choice for scaling out? When your data can be
horizontally partitioned in such a way that most users’ queries will be directed to a particular
server, and that server will have most of the queried data. For example, if you partition your table
so that East coast and West coast data is stored on two servers—knowing that West coast users
almost always query West coast data only and that East coast users almost always query East
coast data only—then distributed partitioned views provide a good way to scale out the database.
In most cases, the view will pull data from the local server, while still providing a slower-
performance means of querying the other server.

) In situations in which a distributed partitioned view would constantly be pulling data from multiple
servers, expect a significant decrease in performance. In those scenarios, distributed partitioned
views are less effective than an intelligent application middle tier, which can direct queries directly to
the server or servers containing the desired data. This technique is often called data-dependent
routing, and it effectively makes the middle tier, rather than a distributed partitioned view, responsible
for connecting to the appropriate server in a horizontally-partitioned database.

Chapter 3

Windows Clustering
I introduced Windows Clustering in Chapter 1, and Chapter 6 is devoted entirely to the topic of
clustering. Clustering is becoming an increasingly popular option for scale-out scenarios because
it allows you to employ many servers while maintaining a high level of redundancy and fault
tolerance in your database server infrastructure. WS2K3 introduces the ability to support 4-way
and 8-way clusters in the standard and enterprise editions of the product, making clustering more
accessible to a larger number of companies (8-way clusters are available only on SQL Server
Enterprise 64-bit Edition).

� As I noted in Chapter 1, Microsoft uses the word cluster to refer to several technologies. NLB
clusters, for example, are included with all editions of WS2K3 and are used primarily to create load-
balanced Web and application farms in pure TCP/IP applications. Although such clusters could
theoretically be used to create load-balanced SQL Server farms, there are several barriers to getting
such a solution to work.

 To complicate matters further, Windows Server 2003, x64 Edition, supports a new clustering
technology called compute cluster which is completely different from Windows Cluster Server-style
clustering. I’ll cover that in Chapter 7.

 In this book, I’ll use the term cluster to refer exclusively to what Microsoft calls a Windows Cluster
Server. This type of cluster physically links multiple servers and allows them to fill in for one another
in the event of a total hardware failure.

The idea behind clustering is to enlist several servers as a group to behave as a single server.
With Windows Cluster Server, the purpose of this union isn’t to provide load balancing or better
performance or to scale out; it is to provide fault tolerance. If one server fails, the cluster
continues to operate and provide services to users. Figure 3.8 shows a basic 2-node cluster.

Figure 3.8: A basic 2-node cluster.

63

Chapter 3

This diagram shows the dedicated LAN connection used to talk with the corporate network, and
the separate connection used between the two cluster nodes (while not strictly required, this
separate connection is considered a best practice, as I’ll explain in Chapter 6). Also shown is a
shared external SCSI disk array. Note that each node also contains its own internal storage,
which is used to house both the Windows OS and any clustered applications. The external
array—frequently referred to as shared storage even though both nodes do not access it
simultaneously—stores only the data used by the clustered applications (such as SQL Server
databases) and a small cluster configuration file.

Essentially, one node is active at all times and the other is passive. The active node sends a
heartbeat signal across the cluster’s private network connection; this signal informs the passive
node that the active node is active. The active node also maintains exclusive access to the
external SCSI array. If the active node fails, the passive node becomes active, seizing control of
the SCSI array. Users rarely notice a cluster failover, which can occur in as little as 30 seconds.

� Although the service comes online fairly quickly, the user databases must go through a recovery
phase. This phase, depending on pending transactions at time of failover, can take a few seconds or
much longer.

Better Hardware Utilization
An inactive node isn’t the best utilization of expensive hardware. For this reason, many
companies build active-active clusters (see Figure 3.9).

Figure 3.9: An active-active cluster.

64

Chapter 3

In an active-active cluster, a separate external SCSI array is required for each active node. Each
node “owns” one external array and maintains a passive link to the other node. In the event that
one node fails, the other node becomes active for both, owning both arrays and basically
functioning as two complete servers.

Active-active is one of the most common types of SQL Server clusters because both cluster
nodes—typically higher-end, pricier hardware—are serving a useful purpose. In the event of a
failure, the databases from both servers remain accessible through the surviving node.

� Why not cluster? If you’re planning to create a partitioned or distributed database, you will already be
investing in high-end server hardware. At that point, it doesn’t cost much more to turn them into a
cluster. You’ll need a special SCSI adapter and some minor extra networking hardware, but not much
more. Even the standard edition of WS2K3 supports clustering, so you won’t need specialized
software. You will need to run the enterprise edition of SQL Server 2000 in order to cluster it, but the
price difference is well-worth the extra peace of mind.

Four-Node Clusters
If you’re buying three or four SQL Server computers, consider clustering all of them. Windows
clustering supports as many as 8-way clusters (on the 64-bit edition), meaning you can build
clusters with three, four, or more nodes, all the way up to eight (you will need to use the
enterprise or datacenter editions for larger clusters). As Figure 3.10 shows, 4-node clusters use
the same basic technique as an active-active 2-node cluster.

Figure 3.10: A 4-way cluster configuration.

65

Chapter 3

I’ve left the network connections out of this figure to help clarify what is already a complex
situation: each node must maintain a physical connection to each external drive array, although
under normal circumstances, each node will only have an active connection to one array.

It is very uncommon for clusters of more than two nodes to use copper SCSI connections to their
drive arrays, mainly because of the complicated wiring that would be involved. As Figure 3.11
shows, a storage area network (SAN) makes the situation much more manageable.

Figure 3.11: A 4-way cluster using a SAN.

In this example, the external disk arrays and the cluster nodes are all connected to a specialized
network that replaces the copper SCSI cables. Many SANs use fiber-optic based connections to
create a Fibre Channel (FC) SAN; in the future, it might be more common to see the SAN
employ new technologies such as iSCSI over less-expensive Gigabit Ethernet (GbE)
connections. In either case, the result is streamlined connectivity. You can also eliminate the
need for separate external drive arrays, instead relying on external arrays that are logically
partitioned to provide storage space for each node.

SQL Server Clusters
In a SQL Server cluster, each cluster node runs at least one virtual SQL Server. In a 2-node,
active-active cluster, each node runs two virtual servers; in a 4-node cluster, each node runs four
virtual servers. In a simple configuration, only one virtual server per node is actually running
(although that doesn’t have to be the case; multiple instances of SQL Server can be clustered).
When a node fails, another node in the cluster runs the corresponding virtual server and takes
over the operations for the failed node. Figure 3.12 provides a basic illustration of this concept.

66

Chapter 3

Figure 3.12: Virtual SQL Server failover cluster.

Users access the virtual servers by using a virtual name and IP address (to be very specific, the
applications use the virtual name, not the IP address, which is resolved through DNS).
Whichever node “owns” those resources will receive users’ requests and respond appropriately.

	 Chapter 6 will cover clustering in more detail, including specifics about how clusters work and how to
build SQL Server clusters from scratch.

Discussing clustering in SQL Server terminology can be confusing. For example, you might
have a 2-node cluster that represents one logical SQL Server (meaning one set of databases, one
configuration, and so forth). This logical SQL Server is often referred to as an instance. Each
node in the cluster can “own” this instance and respond to client requests, meaning each node is
configured with a virtual SQL Server (that is the physical SQL Server software installed on
disk).

67

Chapter 3

68

A 2-node cluster can also run two instances in an active-active configuration, as I’ve discussed.
In this case, each node typically “owns” one instance under normal conditions; although if one
node fails, both instances would naturally run on the remaining node. A 2-node cluster can run
more instances, too. For example, you might have a 2-node cluster acting as four logical SQL
Server computers (four instances). Each node would “own” two instances, and either node could,
in theory, run all four instances if necessary. Each instance has its own virtual server name,
related IP address, server configuration, databases, and so forth.

This capability for clusters to run multiple instances often makes the active-passive and active-
active terminology imprecise: Imagine an 8-node cluster running 12 instances of SQL Server,
where half of the nodes are “doubly active” (running two instances each) and the others are
merely “active” (running one instance apiece). SQL Server clusters are thus often described in
terms of nodes and instances: An 8 × 12 cluster, for example, has 8 nodes and 12 instances.

Effects of Clustering on Performance
Clustering doesn’t directly impact performance and clustering of this type doesn’t offer load
balancing. However, SQL Server clustering does offer a very high degree of tolerance for
hardware failure. Larger clusters tend to utilize fast SANs to reduce cost and complexity, and
those SANs can have a very positive effect on performance (I’ll discuss this idea in greater detail
in Chapter 7).

Clusters can hurt performance through over-engineering. A best practice is to size cluster nodes
so that each node will normally operate at about 50 percent capacity. That way, if another node
fails, the node that picks up the failed node’s share of the workload won’t exceed 100 percent
capacity. If your nodes are all built to 70 to 80 percent capacity (a more common figure for
standalone servers), a node failure will result in one server trying to carry 140 to 160 percent of
its usual load, which is obviously impossible. The result is drastically reduced performance.

) Buy pre-built, commodity clusters. Microsoft’s Windows Cluster Server can be a picky piece of
software and has its own Hardware Compatibility List (HCL). Although building a cluster isn’t
necessarily difficult, you need to be careful to get the correct mix of software in the correct
configuration. An easier option is to buy a preconfigured, pre-built cluster (rather than buying pieces
and building your own). Many manufacturers, including Dell, IBM, and Hewlett-Packard, offer cluster-
class hardware and most will be happy to work with you to ship a preconfigured cluster to you. Even if
you don’t see a specific offer for a cluster, ask your sales representative; most manufacturers can
custom-build a cluster system to your specifications.

 Also look for clusters built on commodity hardware, meaning servers built on the basic PC platform
without a lot of proprietary hardware. In addition to saving a significant amount of money, commodity
hardware offers somewhat less complexity to cluster configuration because the hardware is built on
the basic, standard technologies that the Windows Cluster Server supports. Manufacturers such as
Dell and Gateway offer commodity hardware.

Chapter 3

69

Creating a Scale-Out Lab
Once you’ve decided how to create your scale-out solution, you need to test it. I’m a strong
advocate of creating a throwaway pilot, meaning you build a complete pilot in a lab, test it,
gather the facts you need, document what worked and what didn’t, and then ditch the pilot.
You’ll start fresh when building your production solution, keeping all the good things you
discovered in your pilot and leaving out all the bad. To do so, you’ll need to be able to conduct
real-world testing and you’ll need to have some benchmarks available to you.

Real-World Testing
Perhaps the toughest part of conducting a scale-out pilot is getting enough data and users to make
it realistic. Try to start with a recent copy of the production database by pulling it from a backup
tape because this version will provide the most realistic data possible for your tests. If you’re
coming from a single-server solution, you’ll need to do some work to get your database backups
into their new scaled-out form.

) Whenever possible, let SQL Server’s Integration Services (called Data Transformation Services,
called DTS, prior to SQL Server 2005) restructure your databases, copy rows, and perform the other
tasks necessary to load data into your test servers. That way, you can save the DTS packages and
rerun them whenever necessary to reload your servers for additional testing with minimal effort.

It can be difficult to accurately simulate real-world loads on your servers in a formal stress test to
determine how much your scaled-out solution can handle. For stress tests, there are several
Microsoft and third-party stress-test tools available (you can search the Web for the most recent
offerings).

For other tests, you can simply hit the servers with a good-sized portion of users and multiply the
results to extrapolate very approximate performance figures. One way to do so is to run a few
user sessions, then capture them using SQL Server’s profiling tool (SQL Profiler in SQL Server
2000). The profiling tool allows you to repeatedly replay the session against the SQL Server, and
you can copy the profile data to multiple client computers so that the session can be replayed
multiple times simultaneously. Exactly how you do all this depends a lot on how your overall
database application is built, but the idea is to hit SQL Server with the same type of data and
traffic that your production users will. Ideally, your profile data should come from your
production network, giving you an exact replica of the type of traffic your scaled-out solution
will encounter.

Chapter 3

70

Benchmarking
The Transaction Processing Council (TPC) is the industry’s official bench marker for database
performance. However, they simply provide benchmarks based upon specific, lab-oriented
scenarios, not your company’s day-to-day operations. You’ll need to conduct your own
benchmarks and measurements to determine which scale-out solutions work best for you.
Exactly what you choose to measure will depend on what is important to your company; the
following list provides suggestions:

• Overall processor utilization

• Number of users (real or simulated)

• Number of rows of data

• Number of transactions per second

• Memory utilization

• Network utilization

• Row and table locks

• Index hits

• Stored procedure recompiles

• Disk activity

By tracking these and other statistics, you can objectively evaluate various scale-out solutions as
they relate to your environment, your users, and your database applications.

Summary
In this chapter, you’ve learned about the various scale-out techniques and the decision factors
that you’ll need to consider when selecting one or more techniques for your environment. In
addition, we’ve explored the essentials of building a lab to test your decisions and for
benchmarking real-world performance results with your scale-out pilot.

A key point of this chapter is to establish a foundation of terminology, which I will use
throughout the rest of the book. The terms distributed and partitioned come up so frequently in
any scale-out discussion that it can be easy to lose track of what you’re talking about. The
following points highlight key vocabulary for scale-out projects:

• Partitioned refers to what breaks up a database across multiple servers.

• A vertically partitioned database breaks the schema across multiple servers so that each
server maintains a distinct part of the database, such as customer records on one server,
and order records on another server. This can also be referred to simply as a partitioned
database.

• A horizontally partitioned database breaks the data rows across multiple servers, which
each share a common schema.

Chapter 3

71

• Distributed simply refers to something spread across multiple servers. Generally,
anything that is partitioned is also distributed (however, you can partition on a single
server); the partitioning method tells you how the database is broken up before
distribution.

• A simple distributed database may refer to one which has been horizontally partitioned,
perhaps with rows from different regions physically contained on servers in those
regional offices. Replication is often used in these situations so that each server contains
a copy of the other servers’ rows.

• Another kind of distributed database may simply replicate all of a server’s data to one or
more other servers. This configuration allows users in various locations to query a local
copy of the server and increases the number of users that can be supported. The database
isn’t partitioned, and techniques such as merge replication may be used to handle
multiple conflicting updates to the data.

• A complete distributed partitioned database is one that combines the techniques we’ve
explored in this chapter. The database is typically partitioned horizontally, with each
server containing different rows and using the same database schema. However,
replication isn’t typically used, and each server doesn’t contain a complete copy of the
data. To access the complete database as a single unit, distributed partitioned views are
used to virtually recombine rows from multiple servers. In cases in which distributed
partitioned views aren’t suitable due to performance reasons, an intelligent middle tier
takes on the task of directing queries to the appropriate server or servers.

In the next chapter, I’ll dive into scaling out by using distributed partitioned views. I’ll discuss in
more detail how they work and will provide step-by-step instructions for creating a scaled-out
database that uses distributed partitioned views to reduce complexity and potentially provide
radically increased performance.

Content Central
Content Central is your complete source for IT learning. Whether you need the most current
information for managing your Windows enterprise, implementing security measures on your
network, learning about new development tools for Windows and Linux, or deploying new
enterprise software solutions, Content Central offers the latest instruction on the topics that are
most important to the IT professional. Browse our extensive collection of eBooks and video
guides and start building your own personal IT library today!

Download Additional eBooks!
If you found this eBook to be informative, then please visit Content Central and download other
eBooks on this topic. If you are not already a registered user of Content Central, please take a
moment to register in order to gain free access to other great IT eBooks and video guides. Please
visit: http://www.realtimepublishers.com/contentcentral/.

http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/

	Chapter 3: Scaling Out SQL Server
	Scale-Out Decisions
	Scale-Out Techniques Overview
	The Effects of Replication on Performance
	The Effects of Partitioned Databases on Performance
	The Effects of Distributed Partitioned Views on Performance
	Better Hardware Utilization
	Four-Node Clusters
	SQL Server Clusters
	Effects of Clustering on Performance

	Creating a Scale-Out Lab
	Summary
	Content Central
	Download Additional eBooks!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

