Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 10
|

Chapter 10: Quality Application DelIVETYnineneeseresessssssssssssssesessessesssssssssssssesssssessessens 199
FINding LOSt QUALILY wcoueeureeceeseerceseesreecesseesessessessessessssssesssesssessesssesssessssssssesssssssessesssessesssessssssesssessssssssanes 199
[N REQUITEIMENLES ...t 199
0T DL ¥4 o PP 200
I DEVEIOPIMENT «..eeeeeeeeeeeeeteeses s s ses e s s s bbb 200
IN TOSHING i ——— 201
The Path to Better QUAliLY ..ot esessessssssssssss s sssssssssssssssssssssssssssssssssessesns 201
QXD 0174 T3 T 5 (0]] 20PN 201
QUALILY @S AN EffOITcuiiicecseireessessesssssessesssesssss s ssessnees 202
QUALItY S @ PTOfESSION .. ssssssssesss s ssssssssssssssssssssss s ssssssssssssssneses 203
QUALILY QS @ SCIEIICE ...eueureeereeeesreeeesreesesseesseseesses s ss s ssse s s bbb 203
Quality Tools: A SHOPPING LISt sesssssssssssesssssssssssssssesssssssssssssssssssssssaes 204
TOOLS fOr REQUITEIMIENLES ...ceueereeeeeeesreeseeseessesseessesseessesssessesssessesssssssesesssssssss s s s s s ssssssssesneas 204
10 T0) ES () gl D=1 =4 o OSSP 208
B0 T0) ES38 (o) W D=3 74=3 U} o) 4 =) oL PP 208
StAtiC COAR ANALYSIS .. ses s s s 208
SECUTIEY ANALY SIS coeuieueeuieurereesseesesseesseseessesssesse s s s ssss s s s s s b s e s s e 209
Performance ANalYSiS ... ssssenas 210

L0 4T T 0 212
EaSIEr DEDUGZING ...ovvueeieretcereeeeeseeseeect et ss e essss s bbb 213
TOOIS fOr MAnNAGEMENT......cuuieeiereererssrrssess s ssssess s sess s s s bbb 213
TOOIS fOI TESTINE .uuereecreerersersresseases e ses s bbb st 215
Test Case ManageImMeENt. ... ssssssssssenss 215
Test Data Management. ... ses s sss s ses s ssssssssssssenns 218
BT U] 00 B U (o) o OO TP 218
Performance TESHINEeeeseseesssssssss s sssssss s ssssssssssssssssssssssssssssssssssessnes 220

B 003's Lod 11 13 1o ' T OO 220

. i MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 10

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 10

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for IT Professionals.
All leading technology eBooks and guides from Realtime Publishers can be found at
http://nexus.realtimepublishers.com.]

Chapter 10: Quality Application Delivery

In this chapter, I'd like to reflect on some of the major points we’ve covered. I'd also like to
provide some real next-step actions that you can take in your environment to start
immediately improving application quality and to start tracking your progress toward
increasingly-better application quality. I'll focus especially on how tools—once you've
adopted an attitude and environment of quality within your organization—can help
expedite the process of creating higher-quality applications.

Finding Lost Quality

Let’s review: Where is quality lost? What hurdles must project teams overcome in order to
achieve better application quality? What areas of the project life cycle deserve the most
attention, and what specific activities can be improved upon to introduce more quality into
the project? Although lost quality is often detected most easily in testing, testing is rarely
where the quality is actually lost. In fact, although testing can often detect a wide range of
missing quality—bugs, poor performance, bad security, and so forth—many of these are
not fixable (without essentially starting over to some degree), so it pays to catch the lost
quality as early as possible.

In Requirements

Most quality, I find, is lost—forever—in requirements, simply because no requirements are
offered or because the requirements that are provided aren’t business-focused. Here’s my
final thought on this subject:

Requirements are the business’ only opportunity to define “quality” in business
terms. Any application that does exactly what the requirements state is, by
definition, a high-quality application. If an application meets those requirements but
is still perceived as being of low quality, the problem is in the requirements—not
the application.

There’s no simpler way to say it: You get what you ask for. If a business isn’t specific about
what it wants, it won't get it, but it has no reason to be disappointed with that fact later. |
know that some projects get infinitely bogged down in “requirements definition” phases,
and so there’s this feeling that requirements are something to be avoided. But think about
that for a moment.

Let’s say you and your spouse agree to purchase a new set of living room furniture. Neither
of you really has strong feelings about what you want, so you hire a designer to come over
and make a recommendation. You give the designer a few vague suggestions like “wood is
nice” and “we don'’t like blue,” but not much else. The designer tries to get more detail from
you, but you and your spouse start arguing about what you want, and so ultimately you
decide it’s easier to just let the designer use his or her best judgment. The designer
purchases something that should look great in your house. You love it, but your spouse
hates it and feels that you've wasted the money.

. 199 MICRO
H{:’dlumt‘ CIFochs

http://nexus.realtimepublishers.com/

Chapter 10

What happened? You and your spouse decided not to spend enough time defining your
requirements because doing so was too difficult, politically. Given your differences in
aesthetic, nothing the designer purchased would have suited both of you. The moral here is
that if your organization can’t manage to put together a clear and complete set of
requirements in a reasonable amount of time, you're not likely to get a quality application
no matter what you do. Recognize that fact and expect poor-quality applications or get
management under control and learn to produce solid requirements in a reasonable period
of time.

Note

There are many good books and classes on producing application and project
requirements, and these may be of help in educating managers and other
stakeholders to help streamlining the requirements phase of your project.

In Design

Most quality loss attributable to the design phase comes from incomplete requirements;
the rest most commonly comes from what I like to call the “elegance syndrome.” Designers
don’t always work directly with code or even with the resulting applications, and tend to
favor designs that are elegant, follow textbook rules and best practices, and may not be the
best for performance, security, or usability. Designers simply need to accept the difference
between practical reality and the textbook, and design accordingly. If a database design
with 20 tables is textbook-perfect but won'’t perform well under real-world conditions, it
needs to be fixed.

Designers also need to be willing to look literally outside the box—outside the box that
their chosen platform came in, specifically. For example, selecting Microsoft’s .NET
Framework or Sun’s Java as a development technology is fine—but don’t think that you're
stuck using every component of those platforms. Database drivers, visual components, and
more may need to be swapped out to meet specific project requirements, and designers
must feel free to do so if necessary.

In Development
The development process offers plenty of opportunity for lost quality, which I've written
about in previous chapters and I explore at length in Definitive Guide to Building Code

Quality (http://nexus.realtimepublishers.com). Some highlights:

¢ Not following best practices for coding, including formatting, naming conventions,
modularization, and so forth

e Building overly-complex code that is difficult to debug and maintain

¢ Insufficient and/or poorly-executed unit testing that doesn’t provide complete
coverage of the code or uses poor data

¢ Notunderstanding how to debug complex processes

And, of course, developers working without a design that maps back to a complete, clear set
of business requirements—especially requirements related to performance and security.

200 MICRO
Realtime |:||=|:||:us

Chapter 10
|

In Testing

If you're testing to a complete, clear set of business requirements—using those
requirements as a sort of checklist to determine whether the application is compliant—
then you’ve probably got as much quality as you need in testing. If you're testing to some
other specification, you'll never have any real quality to look forward to. Testing doesn’t
actually add or remove quality; it simply verifies whether you've achieved the quality that
was asked for in the beginning.

That said, testing can do a poor job of verification. It can be inconsistent when performed
manually, and it can use poor data that doesn’t reflect real-world conditions. It can be
incomplete, not covering all the code, and it can fail to mimic the real-world businesses
processes the application will see in production. Testing might ignore security or
performance, as well; however, if testing is being driven by requirements, the requirements
should address all those considerations.

The Path to Better Quality

So how will you know when you've reached the maximum level of quality that is practical
and feasible in your organization? Referring back to the “quality quiz” in an earlier chapter,
let me suggest some milestones and actions you can look for and take.

Quality as a Hobby

At this level of maturity, organizations typically have little or no formalized Quality
Assurance (QA) processes, team, or tools, and quality—if it occurs at all—is usually a
random happenstance. This is an extremely common scenario for organizations that are
just ramping up a software development effort or are trying to produce major software
projects on a very minor budget and are simply flying by the seat of their pants.
Organizations with a very small number of software developers (say, less than four) often
find themselves operating at this quality level. Look for:

e Few or no tools designed to improve quality
¢ No documented best practices and procedures for coding or testing

e No dedicated QA or testing personnel (relying entirely on developers to conduct
testing)

¢ No documented processes for conducting development (everything is ad-hoc)
e Few or no business requirements at the outset

¢ Minimal or missing technical designs

e Few or no reusable test assets

¢ No formal testing goals

e No metrics for measuring quality

. 201 MICRO
H{:’dlumt‘ ClFochs

Chapter 10
-

So how can you improve?

e Establish a defect tracking system that identifies and classifies every defect—not
just bugs but everything that the end users regard as a defect

e Begin to create sets of test data that reflect actual production data and scope

e Start to build a framework for testing automation; start documenting what needs to
be tested, writing out test “scripts” that will be performed manually, and so forth

e Begin tracking testing statistics: How often is code being sent back due to failed
testing?
e Establish a dedicated quality team—even if it'’s one person doing testing

¢ Document everything: best practices, processes, and procedures; documented means
repeatable and consistent.

Quality as an Effort

Your organization has a quality team, but they’ve not reached a high level of quality
maturity, yet. They're working hard, and producing good results—sometimes. Consistency
is a problem, and an awful lot of effort seems to go into getting consistent results. In fact,
you might worry that the amount of additional effort required to achieve consistent quality
is impractical. Some key indicators:

e Processes and procedures either not documented or documented (or followed)
inconsistently

e Only a few reusable test assets (like test data), which are inconsistently used

e May still not be working from clear, complete requirements that reflect business
needs and goals

e Afew tools in use but still working largely on manually-performed processes
e Developers have few (if any) tools that give them insight into code quality
Here are some ideas for moving forward:

e Start using clear, strong business requirements to drive development and quality
assurance

e Continue to grow your body of reusable test assets, ideally deriving them from your
business requirements

e Begin automating your test cases by using testing automation tools; you should have
sufficiently-mature test suites, at this point, to effectively use automated testing
tools, and automation will help make QA more efficient—meaning you’ll lower your
overall QA costs and have a more positive impact on ROI

e Firmly align quality to business goals; communicate quality in business terms,
relating quality back to defined business requirements

e C(reate executive-level visibility into quality by rolling up business requirements
into broad categories and aligning quality metrics to those categories

) J P . 202 MICRO
Realtime CIFGEDS

Chapter 10

Quality as a Profession

You've got a QA team—possibly even more than one. Quality is a serious part of the
business, and multiple projects are underway at any given time. You're still seeing
inconsistent release quality, though, and you’re starting to feel that you've invested in a lot
of different quality tools that aren’t all being used consistently. Some of the signs include:

e May have multiple QA teams working from different procedures and processes
e Inconsistent tools across projects

e Some projects have higher quality than others

e Few “dashboards” to reveal simple quality “grades” for projects

How do you take that last, final step? It’s mostly a question of fine-tuning and committing to
your processes. Some ideas:

e Establish best practices—Document how the quality team works, including their
tools and processes; draw flowcharts; and create the “Quality Manual” for your
organization

e Align to the business—No quality project should begin until the final requirements
are clearly stated—without those requirements, you can’t know what to test!

e Automate—Rely more and more on automation for testing, tracking business
requirements, tracking defects, and so forth; automation equals consistency, and
with the right tools, automation can remove the very human tendency to “innovate
on the fly”

e Involve the business—The business leaders who create a software project’s initial
business requirements should also be involved in developing key quality metrics

e Improve visibility—Continue to focus on quality metrics that are meaningful to
company executives and use those metrics to drive everything about the quality
process

Once you have these things in place, quality will be a science for you.

Quality as a Science

When quality becomes a science, business requirements drive everything. Business
requirements set the stage for the software design, which drives development; business
requirements specify what will be tested, while the software design drives how the testing
will be physically achieved. The ultimate quality output—quality reports—connect directly
back to the business requirements, telling business leaders (and software developers and
designers) how well the application is meeting their requirements. With that kind of
information in-hand, business leaders can more easily calculate ROI, balancing the need for
further quality against the anticipated business benefits that the application is meant to
deliver.

—

SR LI 203 MICRO
Realtime CiFoeis

Chapter 10
-

Quality Tools: A Shopping List

['ve written it many times throughout this guide: Tools alone can’t improve your quality
level. What tools can do is help automate tasks that would otherwise be repetitive or
impractical when performed manually. In other words, if you know how to achieve better
quality, tools can make it faster and easier to do so. Also, tools can help make quality more
consistent by allowing you to follow the same practices and patterns all the time.

I'm not going to recommend any specific tools or vendors. Instead, I'm going to provide a
shopping list of features, and you can use that as you start to explore and evaluate tools on
your own. I do want to point out that my “baseline” for features is the feature set included
in Microsoft Visual Studio, Standard and Professional editions. In my experience, they’re
the most widely-used editions of Visual Studio, and they’re the editions that most third-
party tool makers target for integration and support. Microsoft does offer a higher-end
“Team System” edition of Visual Studio, but that competes in many regards with the third-
party tool manufacturers because it bundles tools like code analysis, performance
reporting, and so forth. In many cases, those extra “Team System” tools are valuable but
less mature than what you’ll find from third-party vendors, and they still come with a
significant additional price with relation to the Professional and Standard editions of Visual
Studio.

Tools for Requirements

Because everything in a high-quality project tracks back to the project’s original
requirements, tracking those requirements becomes really crucial to success. You need to
be able to manage requirements as standalone entities, including managing changes and
tweaks over time. You also need to be able to manage requirements as drivers for things
like development and testing so that test cases (for example) can be mapped to specific
requirements. Ideally, you want to be able to manage your current level of compliance with
each requirement so that reporting and “dashboards” can help you see exactly where
you're at in achieving the requirements and thus meeting the specified level of quality.

There are a few key tasks that a requirements management solution should offer:

¢ Definition. Tools should not only capture requirements but also help prompt for
the capture of clear and complete requirements. Tools should be accessible and
intuitive for non-technical business users, utilizing flow diagrams and other
visualizations (see Figure 10.1). Tools should help maintain a project glossary so
that specialized words can be unambiguously defined and common words, such as
“should” and “must,” can also be clearly and unambiguously defined.

—

SR PLI 204 MICRDO
Realtime CIFGEDS

Chapter 10
|

Requirements Map Flovw Diagram

=)]
e v
. (Present Atemative Browse Dptions)
% t
u Y
'

(Select Different Browse Mechanisn)

Browse by “Shipping Date’? —

Browse by-Gustomers

Dizplay Critena Display Customers Dizplay Critena

» I3

Indicate to Proceed | Indicate ta Pn:-ce.'ia_d Indicate to P'r'pceed

inm

"

-
4

Stey =
System Check if Logged |The system checks if the user is logged in and if not jumps to the 'Login to System' flowy, | 5N
In?
Systemn Present The system allovws the user to atternatively brovese (lookup) order(z) either: Ll
Alternative 1. by Customer or +
Browse Options |2, by Shipping Date _—
=zer Select Different | If the user indicates to the system that they wish to brovwse using either of theze mechanisms then the flo Fu
Browse the 'Brovese Orders by Customer' ar 'Brovvse Orders by Shipping Date' respectively otherwize the flow o z.,
Mechanism the Browese is by Order Mumber . | i€=
5B

System Display Criteria | The system allowws the following ways to browse by order number;
1. ghowy all arders
2. show orders between a range
3. showy the exact order number
U=zer Edlit Criteria The user may specify the range to zearch. If sothe following details are entered:
1. start arder number

2. end Order number -
PN | NI PPN DR RPN PN RPN PN TRr PR) PRTRRY RN
Kl | 4

hain Success Scenario | Eg AZ1: Browwse Orclers by Customer
2 Browwse Orders by Shipping Date | =4 ASE Mo Orders Found | =u AS4: Validation Falled?

= A

]

Figure 10.1: Using workflows to display project requirements.

. 205
Realtime CIFochs

Chapter 10

¢ Documentation. Tools should be able to take defined requirements and predefined
or custom templates and produce a set of project documentation that facilitates
communication across the business. Common formats (such as Microsoft Office, as
Figure 10.2 shows) as well as project management formats (such as Microsoft Office
Project or CSV) should be available.

't':j lg) - 5 s Order System- Default.doc [Compatibility Mode] - Microsoft Word Table Tools -8Xx
Home Insert Page Layout References Mailings Review View Developer Design Layout ‘@
= A e = 34 Find ~

Arial w0 - |AT AT | 4aBbCcDe %
B 5 z AaBbCeD 4a3:C<Ds 1 AaBl 1.1 AaE i Replace
Paste

|B I U -abe x, x* Aa~|[B?- A-| | 7 Caption Emphasis THeadingl THeading2 — Change
s 4 = e Styles = || Wi Select~

Styles) Editing

Clipboard = Font [5

Flgura § Ora3: Editlew Orger Tiow dlagram

51.4 Onid Delets Order

Daseription

Erecondiion

Fortzandition

Astanin)

SasiLavsl

Friarty

Trigger

\in Gusrenies]

(] Main Suc

5 Scanario

Bial 2
Rafinad By:

Branchas To:
Refined By:

Page: 20 of 59 | Words: 6,306 | 73

Figure 10.2: Exporting requirements to a Microsoft Word document.

¢ Collaboration. Perhaps most importantly, tools should enable collaboration across
the business, acting as a central repository for business requirements and any
supporting documents or media so that everyone can see the current, live state of
the project’s requirements at all times. Capabilities for upper-level review and sign-
off should also be available, as management may choose to deliberately forgo
certain requirements given by users or other contributors.

. 206 i
Realtime CIFochs

publishers saading the Bva

Chapter 10
-

e Validation. This is where a requirements-tracking tool can contribute directly to
the project’s actual production by generating written test cases automatically. This
helps drive acceptance testing as well as other aspects of the project and ensures
that everyone downstream is working from the same set of requirements.
Integration (often via Universal Modeling Language—UML) with other test and
design tools can help drive database design and other aspects of the project’s design,
as well.

¢ Management. Everyone should be able to manage and track the project in real time.
Changes should be captured and retained and coupled with email alerts and other
notifications to signal to stakeholders when elements change. Changes to dependent
elements should trigger alerts for upper-level dependent elements (called
traceability by many tools). Comprehensive reporting (such as the complexity
report in Figure 10.3) must allow views of the projects for various levels of
participants, such as managers, designers, developers, and so forth.

Complexity and Completeness Report

Project Order System
Description
Total Complexity Value. (Sum of all packages, structured/simple requirements, scenarios and steps/items.) 266
Total number of packages. 7
Total number of requirements (structured & simple). 23
Average number of requirements per package: 3(23/7)
Number of empty packages: 0 4
Maximum package nested depth: 2
B Total number of structured requirements. 10
Total number of scenarios. 30
Total number of steps. 119
Average number of steps per scenario: 3(119/30)
B Total number of simple requirements. 13
Total number of items. a7
aTota\ number of glossary entries. 1
Number of empty glossary definitions: 0 4
R 2
Number of empty actor definitions: 0 4
Maximum requirements in a single package: 8
Minimum requirements in a single package: 0
Reguirements
Number of bad links: 0
Package Complexity Value. (Sum of all structured/simple requirements, scenarios and steps/items.) 0
Total number of requirements (structured & simple). 0
Brotal number of structured requirements. 0
Total number of scenarios. 0
Total number of steps. 0
ETotal number of simple requirements. 0
Total number of items. 0
Number of bad links: 0
.E]Total number of Mon-Functional Requirements: 0 ?
Onumber of structured requirements with no steps: 0 v
Onumber of simple requirements with no items: 0 v
-?: Number of steps with no Actor 0 v
= Number of empty scenarios 0 v
Ef . - . ~ v

Figure 10.3: Example report from a requi

207

rements-tracking system.

Chapter 10
|

In many cases, these tools will integrate with other quality-focused tools, both from the
same vendor as well as other leading vendors. You may find integration with Microsoft
Visual Studio Team System, for example, which lacks strong requirements-tracking
capabilities of its own. Having integration across your entire tool set, all the way through to
final testing, is critical to ensure that your requirements can flow clearly throughout the
entire project and that results can flow back and be mapped to those requirements.

Tools for Design

Specific design tools are fewer in number. Generally speaking, the design tools that
designers are accustomed to using—modeling tools, documentation systems, and so
forth—are sufficient, especially if you're using a requirements-tracking solution that can
export modeling information (in UML or another interchange format) to the tools your
designers already use. The key is to make sure that each aspect of the design maps back to
a specific requirement. It’s less important that the code and tests that come from the design
map back to portions of the design than it is for those elements to map back to portions of
the requirements. Remember: It's the requirements that should be driving everything, and
the design is merely a technical explanation of how to implement those requirements.

Tools for Development

Development tools are designed to perform several tasks during the development process
to help developers produce higher-quality code. Some tools will be found integrated into an
Integrated Development Environment (IDE) like Visual Studio or Eclipse. Features such as
code snippets, syntax highlighting, automatic formatting, and code completion and other
elements can help encourage better code quality by supporting good coding practices.
Other tools help with aspects of quality that are often impractical to achieve manually.

Static Code Analysis

Also called source code analysis, this is where a tool reviews the source code without
running it and compares it with an often-extensive set of rules that help preserve best
practices, avoid common problem situations, and so forth. For example, Figure 10.4 shows
an analysis that has detected a situation that often causes errors at runtime. The tool
explains the problem and has prescriptive guidance to help fix it.

. 208 MICRO
H{:’dlumt‘ ClFochs

Chapter 10
|

Summaty Problems iuamlng 1 Metrics] call Graphl

Fixed Title Severity + | File Method Class Tvpe o

O 1035 Reflecting errors from unmanaged code to managed code High Memary.cs GetProcessHeap Memory Petformance -l
D' q T UnMmanag g 1 High g { frmBug Pei Io=]
O 1055 Finalize method not Suppressed in Dispose method High ScarceResaurce.cs Dispose ScarceResource Garbage Collecti I
O 1095 Literal, hard-coded string found in code High frmBugBench.cs btnInterop_SetStatusBar frmBugBenchDotMET Internationalizat

O 1095 Literal, hard-coded string Found in code High frmBugBench.cs FrmBugBenchDotMET frmBugBenchDotMET Internationalizat

O 1095 Literal, hard-coded string Found in code High frmBugBench.cs btnException_Click frmBugBenchDotMET Internationalizat

a 1012 Paotential performance problem with class cantaining a destruckar High ScarceResource.cs ~3carceResource ScarceResource Garbage Collecti

O 1095 Literal, hard-coded string Found in code High frmBugBench.cs btnDisposeScarce_Click frmBugBenchDotMET Internationalizat

a 1095 Literal, hard-coded string Found in code High frmBugBench.cs frmBugBenchDotMET frmBugBenchDotMET Internationalizat:

O 10958 Literal, hard-coded string found in code High frmBugBench.cs choHandieExceptions_Che... frmBugBenchDotMNET Internationalizat %

< ¥

Reflecting errors from unmanaged code to managed code

Trigger: Reflecting errors from unmanaged code to managed code. [Occurrences: 1
Original Source Line: [Dlllmport"atiCOMServer.dil', EntryPoint="CauseanError")] |
Location: frmBugBench.cs I

Explanation

when P/ Invoke is used to cal an unmanaged function and an exception is thrown, this exception is reflected back to unmanaged code orly when the SetLastError
property is set to #uein the DLLImportAttribute attribute, However, setting this property to fakeimproves performance. The default is ks

Wisual C# MNET example:

[ClIrmport . " AALIEY Pinvokelib.dl®, EntryPaoint="?DoSomething@C TestClass@@QAERH@Z", CalingConvention=CalingCorvention, ThisCall, SetLastErrar=true)]
public static extern int TestThisCaling(IntPtr ths, inti); |

‘Wisual Basic MET exarnple:

< DllImport] " ALIE Pinvokelib.dli®, _EntryPoint:="?DoSomething@CTestClass@@QAEHH@Z", _CalingConvention: =CalingConvention. ThisCall , SetLastError=truel= _Shan
TestThisCaling { Byval ths As IntPtr, ByWal i As Integer) As Integer
End Function

Repair
Either:

Set SetLastError to #ue to retrieve any thrown errors from unmanaged code. Performance will be reduced.

Figure 10.4: Code analysis can reveal problems and should recommend solutions.

Security Analysis

Similar in many ways to static code scans, security scans focus on situations involving
potential security issues. Using rule sets and typically working while the application is
being compiled, rather than just running a scan of the static code, security analysis tools
can often help spot common security problems before they become too deeply embedded
in the application to fix easily. Figure 10.5 shows an example where a tool has detected the
potential for falsely elevated privileges, displays an example of code to illustrate the
problem, and recommends a fix.

. 209 i
Realtime CIFochs

publis

AT y
L f oI
1€T5

Chapter 10
|

Rle | Title: J Sewerity 1 Type l Language | Owner J ”~
1790 Improper denial of SiteldentityPemission on a type High Security Vieual Basic NET, Visual C#.MET DevPartner
1787 Avyoid WellKnown Hidden Field Mames High Security HTHL DievPartner
1722 Unszafe ThreadPool Methods Drop Security Information High Security Yizual Bazic NET, Wisual CHMET DevPartner
1753 WalidateR equest Disabled in web. config File High Security DevPartner
1698 EnableliewStateMAL iz Dizabled in Page High Security HTHL DevPartner
1674 Ineffective Demand Placed an a Static Constructor High Security Wisual Basic MET, Visual CH.MET DevPartner
16855 SuppresslinmanagedCodeS ecuity Detected High Security Wisual Basic MET, Visual CHMET DevPartner

1914 Use of LoadwithPartialMame High Security Vigual Basic NET, Visual C#.MET DevParther
Potential for Falzeli Elevatad Privileges Security Wizual Bagic,MET, Visual CHE:MET DevPartner
1660 Aszembly Dpen to Partially Trusted Callers High Security Yizual Basic NET, Wisual CMET DevPartner

1658 Clasz or Structure Open to File Path Hacking High Security Yizual Basic NET, Visual CH#MET DevPartner
1657 Potential Exigts for Security Circumyvention High Security Yizgual Basic NET. Visual CHMET DevPartner
1642 Potential for Bufter-overrun High Security Yisual Basic. NET, Visual CHMET DevPartner
1740 Congider using S5L to pratect Farms Authentication cookiss High Security DevPartner
1688 Possible Loss of Deny or PermitOnly Infarmation High Security Vigual Basic NET, Visual C#.MET DevPartner v

Potential for Falsely Elevated Privileges
Trigger: Trigger title and number of occurances

Original Source Line: Source line if available
Location: Location details

Explanation

Demanding privileges in a constructor allows or prevents that object from being created based on its given permission set. If the Demand fails, the object is not created, and it
cannot be used by the calling code. I the Demand succeeds, the members of this newly-create object do not need to Demand any other permissions. While this simplifies securing
an object, permissions only have to be Demanded once in the constructor, not in every public/protected/internal (in VB.NET Public/Protected/Friend) member, which can open a
security hale.

//C# Example
public class MyObject
b
public MyObject()
" FileloPermissionAttribute MyPermission =
new FileIOPermissionAttribute(SecurityAction.Dermand);
Permission ip = MyPermission.CreatePermission{);
ip.Demand{);
+

public void UseMyObject() i}
i
'VB.NET Example
Public Class MyObject
Public Sub Hew()
Dim MyPermission As Mew FileIOPermissionAttributel

SecurityAction.Dermand)
Dim ip As IPermission = MyPermission.CreztePermission()

Figure 10.5: Security analysis can help spot potential security problems.

Properly using this type of tool is critical. In addition to each developer using it frequently
to spot security problems, developers as a group should review the security problems
they’ve been finding using the tool, and help each other watch out for poor security
practices. Many developers are not well-educated in secure coding concepts and practices,
so using a tool like this can be a learning experience; sharing that experience across the
development team can help improve security for the entire application.

Performance Analysis

Good tools should provide a variety of performance capabilities. For example, Figure 10.6
shows how a tool can provide not only a method-by-method breakdown of where time is
being spent when running your application but also a “code path” that visually illustrates
where performance is being consumed. The latter is especially useful for catching smaller
modules of code that, on a single execution, don’t consume much time but are called
repetitively and add up to a significant performance hit.

. 210
Realtime CIFochs

Chapter 10
|

= =1 all { Modules: 15 Methods: 769) Method List Source [deadiockphilosophersview. cpp] ISession" |
= B MHT42427H01 - 1644 (Deadlock Dema) | o % vilh Childen ol o p
B3l Source (2:9%) 318 0.z 4,435.6 deMemory. CreateCompatibleDC (pDC) :
= j%ﬁa;t;::m;hixa o 318 0.1 1,568.7 CBitmap *pBitmapOld = deMemory.SelectObject {chmpFood) :
ig deadackphiosephersdoe c.pp 3ie 0.0 31.9 CRect foodRect = tableRect:
" 318 0.0 380.6 foodRect.DeflateRect (foodRect . Width() /2.5, foodRect.Height

2] mainfrm.cpp (0.3%)
[E) chopstick.cpp (0.1%) Sig o
@ phifasopher.cpp { 0.1%)

] phida.cpp (0.0%)

[B] deadlockphiosophers.cpp (0
5] phichooser.cpp (0.0%)

a phifnumberdlg.cpp { 0.0%) 118 18

BITHAP bm:
930.8 bupFood. GetEitmap | dhm) ;
memDC. StretchBle (foodRect. left, foodRect.top,
foodRect .Widceh({), foodRect.Heighti).,
sdelemory,
o, 0,

o

| & Syst 97.1%) .8 | 515,188.4 bmw.bwWidth, bmw.bmHeight, SRCCOPY):
E Top 205;1::; : ; 318 0.1 2,478.7 deMemory. SelectObiect (pEitmapold) ;
g':np ;Ez‘::;d; et 318 0.0 388.3 const double increment = CalciAnglelncrement():
En“zo o rods 318 0.0 1,306.2 const double radius = CaleSeatRadius () :
o s 318 0.0 438.5 stick vect::const_iterator iter3ticks = pDoc->GetChopsticl
316 0.0 79.3 if m_wvecState.size())
{
318 0.0 39.1 for(int i = 0; i < m nbhiners; ++i)

4

=l
= CDeadlockPhilosop... | 25.3 % #8468 (mfc71d.dIl)
¥ 16% Y 0.0% d
7% |
dint 192% #346 (mfc71d.dll} 58.5 % . CreatePatternBrush
- 0E% =% 1000 %
st 5.2 % 03%
—
i S T L P R o o
R 0.3% t i T21% =
e AR
e
i 2% 0.1% 13.5%
sl
il
0% #5623 (mfc71d.dil) 0.0% IsBadReadPtr Relle |
ronin 1% + | 100.0 % 1l
- 18% 0.0%
o
e — 15% #2766 (mfc71d.dil) 0.0% GerObjectType
pirchs 23% * 100.0 % ! |
s 1
2 1.3 % 0.0% 1!
B = I}
BT B

Figure 10.6: Example performance analysis.

Tools may also be able to help with multi-tier testing, helping developers to spot
performance problems on a middle-tier or database tier that can’t be easily detected in a
single-machine development environment. Finally, tools can also help with difficult
performance problems resulting from system resource consumption, such as memory
leaks, overall memory footprint, and so forth. Figure 10.7 shows how a tool can display
memory consumption, helping developers visualize memory leaks and other resource-
related problems.

. 211 i
Realtime CIFochs

Pl iblishers Leading the Eq

Chapter 10

Memory Leaks [&] FéAb Footprint IE Temporary Objects |

[Ey) View RAM Footprint & 11 [RSRAIGHT w2K - 1512 [Driver.exe) =l
[System Memory [Profiled Memory
500,000
400,000

Memory (bytes)

300,000 &
200,000 |
100,000 |

ark Page | driver.dpprf | driver - ram Foo, . .nalysissnap. dpmerm | driver - temporar., .ct analysis.dpmem| WBdothet vb | driverl . dpprf driverZ.dpprf | 4 x

El - Al { Modules: 26 | Mathod List | Sayree [Driver.z21| Session Summary |
- Q RSRAIGHT ! Methiod %hain 5| % with i’
Tame rMethod Children Called il
: DialogBoxParams 4.3 9.9 1 188,627.7
[=] Top 20 Source M | LineTa 1.8 1.8 10,060 7.9
Top 20 Methods SpeedBurnp. Driver Forml ., chor 1.7 35.8 1 72,0735.6
Top 20 Called 50 System.Reflection. ., 1.4 2.7 z 30,577.5
Top 20 Called Me System, windows. ... 1.3 29,9 664 52.7
ReleaseDC 1.2 1.3 5,038 10.5
4 I I _;I Syskem. AppDomai. .. 1.2 1.8 1 51,149.2 LI

Figure 10.7: Visualizing resource consumption during development.

Unit Testing

Good development tools can also help encourage unit testing. This helps ensure that every
possible code path—not just the ones the developer thinks of ad-hoc—is thoroughly tested.
Figure 10.8 shows an example of this kind of “code coverage” report, which makes it clear
which portions of the application’s code have never been tested so that those portions can
be unit-tested and any bugs caught and found before the code moves on to more resource-
intensive integration testing.

== All{ 25.31% of 1,992 lines)
=) (= MHT42427N01 - 3236 (BugBench)
=129 Source { 28.3% of 1,992 lines)
=T TFACE.dIl 4,3% of 327 lines)
: athwin.h { 0.0% of 87 lines)
: atlcom.h { 0.0% of 124 lines)

| 280 of 469 lines executed (53.7%)

TR 33 of 52 methods called (56.9%)

tethod Ligt Source(bugbench.cpp] | Session Summaryi

athost.h { 0,0% of 100 lines) _Cou
H] iface.cpp (87.5% of 16 lines)
=1 main.bug 22.6% of 1,196 lines) 1 if (FAILED(AfxOleInit(})))
- cppert,cpp { 0,0% of 10lines) i
B errarhase.cpp { 0.0% of 11 lines) a MessageBox | NULL , "COM could not ke initialized." , "BugBench Initializ:
(3 leakerr.cpp { 0.0% of 40 lines) o return -1 ;
- [B) afedibeh { 0.0% of 7 lines) ¥
(2] bugutiity.cpp { 10.4% of 681 lines)
E treectrl.cpp { 12.3% of 5 lines) /¢ Dynamically regiscer the Interface Test Chject that will he used by the
5 ptrerr.cpp £ 19.4% of 67 lines) f{ error generating COM code.
i wiriteerr.cpp [21.4% of 28 lines) 1 if { ! RegisterInterfaceTestObject () |
--[3) readerr.cpp { 47.58% of 23 lines } 4
: main.cpp (52,2% of 23 ines) o Citring strippName;
-[8] comerr.cpp (56.0% of 108 lines) o stripplame. Loaditring (ID3_APFNAME) ;
; daingall.cpp § 63.6% of 11 lnes)
: apiert.cpp { 66.9% of 121 lines) TCHAR * szMsg = _T | "Unable to register the IFACE.DLL Interface Test ¢
—:] BugBench.exe { 53, 7% of 469 lines) "COM errors will not he generated.Wn"

. bbtreecontral,cpp { 31.4% of S1ling | O "Please re-install the BoundsChecker samples." | i
] bbrommandineinfo.cpp { 46.4% of 2 o MessageBox | NULL , =szMsg , strippName , MB_APPLMODAL | MB_OK | :

--[8) bugbenchdlg.cpp { 62.4% of 346 line | O ¥

H “-[3) bugbench.cpp ¢ 79.5% of 44 lines)

1% Methnds Mok Covered /¢ Create an instance of the main dialog
[=] Methods Less Than 20% Covered CEugBenchDlg dlg:

: Cwer 30 Lines, Less Than 10% Covered 1 m plainiind = &dlg:

/4 Get the command line passed to the app
i CBECommandLineInfo cwdLine;
ParseCommandLine (codLine) ;

/¢ Dispatch commands specified on the command line

if {!Process3hellConmand (cmdline))
““““““ Tt o,

B

~
»

% S

Figure 10.8: Code coverage reports help ensure more thorough testing.

. 212 i
Realtime |:I ?6'::55

publishers

Chapter 10
|

Easier Debugging

Some of the most difficult-to-solve bugs involve differences between the machine where
the bug was detected and the developer’s machine. On Windows systems in particular,
these changes can be subtle and difficult to detect; good tools can help by providing
machine-comparison capabilities that help developers easily spot differences that might be
preventing them from duplicating—and solving—a problem locally. Figure 10.9 shows
what a difference report might look like.

! : @ e
Differences by category Difference details L

Systemlnfu[‘l‘lﬂ)
| Systemn Files (2352

Inztalled Products 98 differences/428 CDI'ﬂDEIIBd Sho _n‘:\"dIFFE!anEBS- [

[naliod Prad * | MHT 39348001 MHT42427N01 Al
| Services (39) — Whdware ‘W orkstation 55019175 [mizzing] |
| Startup Itemns (25) = webEx [miszing] installed

|IE/Outlook Components (34) L ‘windaws %P Hatfix - KBE7 3333 [rrissing] 20050114.005213

gSQE gi)rver 2 — Windows XP Hotfix - KBS88310 20041027 095746 [missing]

| Drivers (75) “windows <P Hotfix - KB229ET3 20041116.025248 [mizzing]

| Registry (0) = Windows #P Hotfix - KBE30047 [mizzing] 20041221.1245806

|File (0)

“Windows ¥P Hatfi - KBB33086 [mrizzing]

i e Pack 2 an
| “wirnZip Command Line Support Add-0n 1.1 inztalled [mizzing]
Category description: =+ System Components

— Connection Manager installed [miszing]

Installed Products — kB8B401E inztalled [mizzing]

Shows differences in — KBR33803 installed [mizzing]

m’; f‘at”';r;.d“m are | | Micrasoft NET Framework 2.0 2050727 [issing]
Version information is — Microzaft MET Framewark 2.0 Beta 2 [rrizzing] 2050215 |
shown (if available}, | Microsoft Document Explorer 2005 £.0.50727 42 [missing]
miz ;;tlgzcr;endu‘lﬂm I Microsoft SOL Server 2005 Express Edition [SALEXPRESS] 9.00.1399.05 [missing] e
Programs section of — Microzoft SOL Server 2005 Tools Express Edition 9.00.1399.06 [mizzing]
the registry. I~ Microzoft Visual J& 2.0 Redistributable Package 2080727 [mnizsing]
— Microzoft Visual Studio 2005 Team Suite - ENL 8080727 42 [mizzing] 5

Details for: ProductsfWindows %P Service Pack 2§
Yalue on MHT29945001 Yalue on MHT42427M01

Search the inkernet for more information on this item

Figure 10.9: Machine difference report.

Any difference can be responsible for a big problem occurring in one place but not another;
by detailing these changes in this fashion, a tool can help developers focus their efforts and
solve the problem more quickly.

Tools for Management

Management needs good tools, too, and these often come bundled as part of development
tools and testing tools. For example, a development tool suite can include management-
focused reports that help chart developer progress, as in the code coverage report that
Figure 10.10 shows.

Realtime

213 MICRO
I:||=|:||::|_|s
] [fin ’ n

Test Coverage - Summary of tested code, test gaps and code volatility

Chapter 10

Project
Session date

Total Line Coverage

Total Method Coverage

Volatility
Stability

W Details

C:\Program Files\Compuware\BNTNET'\BNTNETWIinApp\bin\BNTNETWinApp.exe

§/19/2008 12:33:54 PM
4913 of 9044 lines.

230 of 481 methods.
0%

100%:

Test Coverage Results

Session File: Z:\BENTNETWinApp\ bin\ BNTHETWinApp.dpmrg

System:

Projact

ShoppingCartClass.dll

Filename

ShoppingCart.vb

Session File: Z:\BENTNETWinApp\ bin\ BNTNETWinApp.dpmrg

All Methods
50%

Methods
S50%

All Lines

45%
Lines

45%

System:

Project All Methods All Lines
LoginClass.dll E4%ﬁ 57% i
Filename Methods Lines
p— o+ o+
comdeth o -
ehvecdtr.cpp 0% _ 0% _
managdeh.cpp D%_ 0% _
internal.h 40%— 36% —
mstartup.cpp 4%ﬁ 55% i
puremsilcode.cpp 0% i 445 —
msilexit.cpp a5 [EE e sew [
loginclass.cpp wo%ﬁ 26% ﬁ
acrobh N | e |

Figure 10.10: Management reporting from a quality development tool.

Other tools can include can include code complexity measurements and other metrics, as

the example in Figure 10.11 shows. These metrics can help managers know where to focus
additional testing efforts, more peer reviews, and other measures to help mitigate the risk
of more complex portions of the application.

Realtime

publishers

214

Chapter 10
|

Caode Metrics Results @
5 Filter: Mone = Min: -| Mae | v| | ﬁ'. -Iﬂ
Hierarchy = Maintainability Index Cyclomatic Complexity Depth of Inheritance Class Coupling Lines of Code
EI-"_E BusinessLayer (Release) (o 38 545 1 9 565
E-{} BusinessLayer = 38 545 1 9 565
E\’[g Address] 37 265 1 7 275
-~ Address(int, string, string)] 76 1 4] 4
- Td.get() : int @ 98 1 0 1
-4 LoadAddress(int) : Address X 18 102 7 108
- Save() : void Q 7 159 3 160
- StreetAddressl.get() : string] 98 1 a 1
P 25 StreetAddress2.get() : string] 93 1 0 1
% Customer = EL] 280 1 7 290
----- ﬁh Address.get() : Address "] a8 1 1 1
----- % Customer(int, string, string)] 76 1 4] 4
----- i Firsthame.get(] : string] a8 1 i} 1
----- 257 Id.get() : int] 93 1 0 1
----- e LastMarme.get() : string] 98 1 1] 1
----- w LoadCustomer(int) : Customer @ 8 146 [152
----- W Save() : void X 13 129 2 130
E:I-"_Z’ﬂ DataAccessLayer (Release) @ a5 [1 2 6
[]---,Z‘ﬂ Mainipplication (Release)] 84 10 7 5 16

Figure 10.11: Code metrics reports can be used to help manage and mitigate risk.

Tools for Testing

Testing—more specifically, integration testing that involves the entire application rather
than individual units—is the last chance to ensure that an application meets its originally-
planned requirements. Again, tools can help both by automating tedious tasks and
performing more consistently as well as by easing the overall management burden that QA
testing can involve.

Test Case Management

What do you test? Obviously, you need to test to make sure that an application meets its
requirements. Tight integration between a test management tool and your requirements
management tool can ensure that test plans are created to act as a kind of checklist against
your original business requirements, saving time and helping testing keep in sync with
changing requirements. The results of these tests are meaningful to the entire business,
and act as a gauge of the application’s completeness from a business perspective. As Figure
10.12 shows, tools can help the business determine how many requirements have been
met in the code to date, what tests (and therefore, which requirements) have not yet been
completed satisfactorily, and so forth.

. 215 .
Realtime CIFochs

Chapter 10
- -

(8§ D VewCovesge -~ S X ¥ GG o+ e v WD P B L8RS
Requirements « || 9 Default Requirement Folder
Favorite Folders * Name | Disglay 1D ‘Tests [|Coveage [Passed Faled | Mot Execuis
ﬂ Ho Favonite Folders i 11258 Defauk Requirement Folder 1710 9% 3 20
El | Surginet Test Maragement: SURGIFOO0 7. 9% Fe] 20
[E m =u|gmel Funmmal Testi 7
g%ﬁ&?&eﬁnﬁ:m ; BILLNGO1.01 Endo.. BILLNGO1.O1 1[100%) 100% 0 1
=) CAF Requiemert Folder 1 BILLNGO1.02 OB C. BILLNGOLO2 1(100%) 100% 1 i
552 Integestion Cpcle 2 1 BILLNGO O3 LitBr. BILLNGO1.OZ 1[100%) 100% i} 1
= Lawson Interfaces i BILLNGO1.D4 Torsi. BILLMGO1.04 1100%) 100% a 1
fl-C.l Master Backup E BILLNGO 05 Tetd. BILLNGO1.06 1(100%) 100% 1 o
?ﬂ,,,) Master Surgine: cycle 1 1 BILLNGOI.06 Ursd. BILLNGI1.06 10100%) 100% 1 0
) SC2Biling Cycls 2 % BILLNGOIO7 Vatus_ BILLNGOLO? 1(100%) 100% 1 0
g e gﬁ;ﬁ:ﬁ:?“'ﬁz ® & SURGIFO0SOidess DRDERS %) 0% 0 0
o e B] @ %] SURGIFON3 CASE TR CASETRKN! 3(3%) 100% 1 2
Reports 23] ﬁ SURGIFODT S5CHEDU .. SCHEDOO 1815%) 100% 18 g
& % SURGIFO0Z PREFER.. PREF001 4(3%) 100% 3 1
% SURGIFOO04 CLINICA.. CLIMDOCI 1614%) 4% 14 1
@ F SURGIFO09 CARE MOB . CAREMOBO 11%) 0z 1] o
& SURGIFOO7 INTERFAC.. INTRFAD 13(11%) 100% 13 o
e z:z SURGIFO0S INTEGRATI. INTEGRATIO. 42(373%) 7% 0 13
j Project ® & SURGIFO10 SYSTEM ls.. SYSTEMOOOD 11 [3%] 0z o 1]
Y- Requirements

o

Figure 10.12: Requirements-based testing helps the business understand how

complete the application is.

“Dashboard” views can be especially useful to executives concerned about the progress of
an application. As Figure 10.13 shows, the entire body of testing information, combined
with application requirements, can be rolled up into a single view that shows managers
exactly how much quality—with regard to business requirements—the application

currently achieves.

ealtime

publishers

216

&

EIMII:REI
FOCUS

Leading the Evolution

Chapter 10

Project « || 84 Dashboard
Project Information 2 r
Folder: Default Requirermnent Folder (Requirerment Folder)
. Dashboard)
=3 Statistios Cycle: Sprint 1 Cycle
LIRS . Requirements\T est coverage: =
Release status: ' Warning
Repl.th DY T
El L System Reparts Quality indes: WA
=] Project
[+ ICgi Requi 1
Lo Tests
L Scripts Actual [A01)=0.70 a0
- Eseculion Plained [PQI}=0.20
Lo Results TF'ass rate = 79%
Lo Defects
[Public Reparts
[My Reports Test distribution:
Priority No. Test.. TestPlan E... TestPla.. Tests Execut... P... F.. Oth_. Actual... Test Cove |
High 3 100% 3 2 1 1 1 67% 67%
Above Avg 2 90% 2 2 2 0o 0 100% 100%
— Average 0 B80% [i] 0 [i] o 0 0% 0%
(= List of Projects
- Below Avg 1] T0% [} 1] [} [} [} 0% 0%
=] Project Low 0 60% 0 0 0 0 0 0% 0%
lgnore 0 50% 0 0 0 0o 0 0% 0% i

If_:l Requirements

. -
< | »

ﬂ Tests
Defect status:
9 Scripts Defects Priority... Priority... Priority.. Priority... Priority4.. Total
) Test Plan Exit Criteria (36) 0% 0% 0% 10% 15%
'S * | Execution
Test Plan Exit Criteria (#) 0 V] 0 0 1 1
e [+ Number of Defects Open 0 [¥] 1] 1] 4] 1] -

Figure 10.13: Management dashboards roll up complex test results and
requirements into a simple overview.

But none of this means that testing is purely about requirements. As a form of risk
mitigation, complex portions of code are often scheduled for more frequent and
comprehensive testing, and a test management tool should accommodate this type of risk-
based testing activity. As Figure 10.14 shows, the right tools can help managers plan the
appropriate amount of testing given the limited time available by helping managers
visualize the risk and quality associated with various tests, portions of code, and so forth.
By getting the optimal coverage of testing over riskier portions of code, the application’s
quality can be maximized within the limitations of the project’s resources.

. 217 i
Realtime CIFochs

publishers

Chapter 10
|

Requirements + 15 Default Requirement Folder
R R (Hsres Oisploy |0 (Testiw) Cowerage . Passed |failed Mot Exeout Im Progress Mot Sosred [Nt Subewn . Risk Tests o Defedts
o N Fisrs Foltan 1.3 Defnult Regurersent Folder o '] L [[i 2546 1518
| @ & custors afributes (2) P % i i i i " S imars PIFTS y
e S naihbosd [3) 5417 Quisbity Cipeierizer % i i i
Raquirement Folders & |71 3 vefects Conter 51 (7% FETY 3

=

e t
s % e =
2} Cusiew Anef] Hiiry Ciptireczas b e gl 4| Foide Bedisit Bequirement Folder Filner A
LT Dashbond - |
P b, = 1 Wi otahas
L} Delecis Corg 208 | View By Statas.
L Ewerubon G} poider Defwalt Recuinemens Folder Fiiligr WA o Paiied ¥ Fuilad @ Mot Euecatable
L) P Feide
& port-Eaodd Wi By SRS |
= Iah';ﬂ:(o P asiad @ Faited oot Exeld |
0 Lmaneing Ft{ Opornize Mk Ty Tien 1k B e
-E‘: Marage (i @ et Subrmtted @ et Eated ¥ inevegd | By T ok by o T
L} Marnst Tosd | Risk Cotegery i et Tasks elnched: dedTents Fume fhead

G Mot Tabmitted @ Yok Tavted P | Progeess

o Mares Tes .
:—: Dk Wik By Thesa e o & 8@
&) Progects Cofl Fiak Catrgary #.0f Tasks Tafwcted sofnens o o .
el Gumity Coag| H £ 1 L) i i FTL)
L) Rngansl Dy - = - el i Bl { " & &

i Requeeme {

L Raewuits Cony
i Rink Modeis)| - .
L Beripn Cong FagE =r o) 243 | ik - & a
L% fmae Test o é | N
s A 4 1 e =8 i]]
L Tews Cormi o P . & ™
) Toots Foidey 1 .

& Vpgrade M Igrere (= & 2 | Al sy =t]) 2334 o
=l Uer A | . . {
W TR {
n"nuu Al By fray =]] e | Aaakyre: Ltk Uy Lowpragt

& L} Roqueoly 1

& fa Publi T Tk # 4 Tl THBE [= e P il o el GEE

e R N T I AR]

5 Provane || Anshyre Watition Suprarrnry Fr— _ BrermeriComage 1

Toial i o Twin 4 (b i wiecind e Suleciwd Wl Tk, 1321

" él.ildi'ﬂ | Requbrnssi Comage Pa s

T Pregeet

Lot o
e

=L
g -
peres
Fropoud Kb

iy o il o 8 T . -

'l Téas

§ sows e [-

5| Exceution

Figure 10.14: Optimizing application quality by selecting appropriate test coverage
for the time available.

Test Data Management

Managing test data is difficult, but not managing it leads to poor-quality data, which results
in poor-quality tests, which result in poor-quality applications. Test data can be large and
unwieldy, may involve security concerns, and are the perfect candidate for management
tools. These tools often provide graphical interfaces so that developers and testers can
utilize quality test data without resorting to manual scripts. And with everyone on the
project working from the same set of test data, more bugs are caught earlier in the
development and testing cycle, which saves time and money.

Test Automation

Most IT professionals who think about “testing tools” are thinking about automation.
Although automation is certainly a valuable aspect of testing, it must flow from good,
requirements-based test management and must utilize good, quality test data.

Test automation often involves building complex test scripts that execute an application,
feed it data, and look for specific results—all automatically. These scripts may involve a
complex and/or proprietary scripting language or, as Figure 10.15 shows, may utilize a
graphical user interface (GUI) to develop “scripts” without additional programming
(typically, such tools also allow the resulting scripts to be manually tweaked if necessary).

. 218 i
Realtime CIFochs

publishers

Chapter 10
|

Screen Preview Actions ¥ Test Steps Actions 7
=lolx [2B [steps =
74 Click 'ID=urlbar' at 253, 14

7 Set bext ko 'bbe,co.uk!

76 Enter {Return}

78 Attach to 'BBC MozilaBroveser'

79
&1

i Vst sted A Gt Svted -, Lot Heas || istonos s) Tmet Buszen S, | The B Srcks N0, || Web Soe Galery] Widows Mirhatiace

Web Imiges Video Maps Mews Shopping Gmail mors v

iGoogle |

Click 'Caption="Fraudster Madoff gets 150 vears"

Attach to ‘BEC NEWS Business Fraudster Madoff gets ...
Click 'Caption=Americas'

Attach to 'BBC NEWS Americas MozillaBrowser'

Google Seaich | 1 Fesiing Lucky
! How you can chat with iiends on iGeogle, Loarn more 82
84
]
86
E
]
a0
a1
az
93
94
9%
a7
99
100
102

S8l sl|E 25

Nevw! tro ducing maturs thamos for your iGoagls page. Changs.

Scroll window to position 623
Click 'Caption="Brazilight back ta win Canfed Cup”
Attach to 'BEC SPORT Football Internationals US 2 M...

aipr

Scroll window to position 623
Attach to 'BEC SPORT Football Internationals U5 2-3 ...

Click mouse down on 'To=urlbar' at 310, 11
Release mouse on TD=urlbar’ at 310, 10

chat

Set kext to 'google.com’

Enter {Return}’

Attach to 'Google MozilaBrowser'
Click "Caption=iGoogle’

Attach to 'iGoogle MozilaBrowser'

spraprslEE24ss

2 |
ity Googie. comflgPhimentsiromighs e
Storyboard L

3-76 77-79 50-82 83 - 86 87 -94 95-97 98- 100 101 - 103 104 - 108

== kL o [e =4

S - g B L =

-] - T ~

< | 3l

Figure 10.15: Building test scripts using a visual environment.

Such tools often allow test developers to create a “storyboard” that illustrates the flow of
the application, allows test developers to specify the data that will be fed into user input
forms and so forth, and allows them tospecify which results to look for. Some visual tools
require that the application itself be available in order to capture its screens and workflow;
others allow test developers to work from screen captures (bitmaps) provided by
developers. This functionality is especially useful, as it allows test development to proceed
in parallel with coding, helping to shorten project timelines and better utilize team
resources. Tools should also provide an easy way to update application screens without
starting test development from scratch, as the application will almost certainly change over
the course of its development.

When testing tools do allow or require scripting or programming, they should ideally rely
on independent, well-known languages rather than proprietary ones. Common ones
include variations of Microsoft’s Visual Basic language, Perl, ECMAScript, and so forth.

Collaboration is also key. Imagine a scenario in which:

e End users can use an existing application to capture a business process, submit it to
the testing system, and flag it for a test developer to include in the application’s
future testing.

e Test developers can reproduce a defect in the application, flag the exact point in the
process where it occurred and the data that was used to create it, and assign that to
a developer for resolution.

. 219 MICRO
Ht"(llumt‘ CIFochs

Chapter 10
|

This type of collaboration is provided by larger, enterprise-class test automation and
management tools and can significantly reduce the effort needed to obtain higher levels of
quality.

Performance Testing

Another key capability offered by many toolsets is automated performance testing and load
testing. Those are really two different faces of the same coin. Performance testing—often
incorporated into automated testing suites—helps ensure that the application operates at a
specific level of performance for specific tasks and workflows. Load testing, which may be a
separate toolset, is designed to simulate the workload of many users performing specified
workflows within the application to ensure that the application can handle a certain
maximum number of users or to test and see how many users the application can actually
handle while delivering acceptable performance.

Both of these key tasks are pretty difficult to complete manually. It’s not practical to have
five hundred real-live users pounding away at an application, for example, and it’s
extremely difficult for a human tester to accurately gauge application response times and
other performance metrics. Tools can not only make these kinds of testing practical but
also make them easier to repeat as often as necessary ensure that each test run is
consistently performed.

In Conclusion

So this is quality: Starting with a set of clear, unambiguous requirements that communicate
the business’ expectations for the application; moving on to a design that maps to those
requirements and specifies clear metrics that can be tested throughout the development
life cycle; development that encompasses best practices and continual unit testing to verify
compliance with requirements; testing that focuses on the requirements as a checklist for
acceptability. Throughout, an organization can utilize the right tools—in an environment
that has matured to an advantageous quality level—to greatly enhance the process of high-
quality application development.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 220 MICRO
H{:’dlumt‘ ClFochs

http://nexus.realtimepublishers.com/

	Chapter 10: Quality Application Delivery
	Finding Lost Quality
	In Requirements
	In Design
	In Development
	In Testing

	The Path to Better Quality
	Quality as a Hobby
	Quality as an Effort
	Quality as a Profession
	Quality as a Science

	Quality Tools: A Shopping List
	Tools for Requirements
	Tools for Design
	Tools for Development
	Static Code Analysis
	Security Analysis
	Performance Analysis
	Unit Testing
	Easier Debugging

	Tools for Management
	Tools for Testing
	Test Case Management
	Test Data Management
	Test Automation
	Performance Testing

	In Conclusion
	Download Additional eBooks from Realtime Nexus!

