Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 9
|

Chapter 9: Performance TeSHING ... imiesesessees 178
WHY PerfOrmanCe?..... e ssssssss s sssesess 178
Performance and REQUITEMENTSoouerrereuneeneseesseseessesssesseessssseessssssessssssssssssssssessssssssssessssssessseas 180
Performance and PerCepPtion ... eressessessssssssssssssssssssssssssssesssssssssssssssesssssssssassssees 183
Tools: More ImMportant than EVer ... ssess 185

MANUAL TESEINE ..vevrreureeeeureeeessessresseesresseessesssessessses s ssss s s s s s bbb s bRt 185
Automated Application TESHING ... ssssssssaas 186
Automated COAE TESTINEcvrrerrerrrrrerereresres s ses s ses s sees 187
BIUITING the LINES .. seeses s sessssssesssss e s sssssesssesssssse s ssssssssssssssssessneas 187
Working With PerformManCe...... e eneseeseseeecssessessesssessesssessssssssss s ssssssssssesssesssssssssssssssnees 187
DT T I T 0 = PPN 187
Performance Testing and TUNINEGocceereemeenesrersessesseeseessesssessesssessssssesssesssssssssssssssssessesssesseeas 190
The Performance GAmIE........ o eeeereeresseessesseessesssessesssessssssssssesssssssssessssssesssssssssssssssssssssssssassssnsas 197
Get Ready to DelivVer QUAlILY ... eeieseressesssesssssssssssssssssssesssssssssssssssesssssssssssssssessssssssssssssssees 198
. ®
Realtime 1 CIFochs
PUDIISNETS [eadin olution

Chapter 9

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 9

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 9: Performance Testing

We're approaching the end of our exploration of quality application delivery, but that
doesn’t mean that this chapter’s topic—performance—should be considered an
afterthought or somehow of lesser importance. As I've discussed in previous chapters, in
fact, performance is very often the first thing that end users see that gives them a good or
bad perception of the application’s overall performance.

Why Performance?

It’s funny: [don’t think I've ever seen a user believe that an application was a quality one
simply because it ran quickly. However, a slow application is immediately perceived as
being of low quality, even if the rest of the application is fantastic. Take Apple’s iPhone:
When the company released a beta of its v3.0 firmware, they loaded it with subtle and
important new features, most of which operated exactly as advertised. But, being beta (and
probably loaded with extraneous debugging code), it was far more sluggish than the
previous production-quality release, so, despite all the working features, it was perceived
by many to be of low quality, and much was written in the blogosphere about how to
downgrade to a prior version.

The world’s well-made software, and computers in general, have contributed to a declining
lack of patience in user communities. Even if an application has a perfectly good reason to
be responding slowly—perhaps it’s querying millions of rows of data—users simply cannot
tolerate much less than instantaneous results. Their lack of patience often turns into
negative messaging that goes out to their company’s customers: “I'm sorry, sir,” is the
often-heard phone agent phrase, “the computers are slow today.”

. 178 MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

Chapter 9

Dead Air = Poor Quality?

You have to be a bit careful when taking user feedback with regards to
performance. A couple of generations have now been raised on cable news
shows and other media where “dead air”—silence—is considered “poor
show,” and on-air personalities will chatter about anything to avoid silence.
This attitude has extended itself to our daily lives, where we even expect to
be entertained by music or advertising when we're placed on hold during a
phone call. So, when a phone agent at a call-in center is waiting on an
application—even for completely legitimate reasons—they feel the need to
fill that “dead air” and chatter—usually about how slow their computer is.

Be creative and cautious when analyzing this behavior and deciding what to
do about it. For example, spending tens of thousands of dollars speeding up
the application may not be practical, especially when the application is
actually performing well given what it's doing. A better solution, in those
cases, might be to avoid the appearance of poor performance and to fill the
“dead air:” I've seen one company whose applications automatically display
conversation suggestions (often related around upsell products and services)
that phone agents can use to make small talk while the application is doing
something intensive. This helps remove the perception of poor performance
by filling the silence with something useful and business-related.

This isn’t to say that filling the silence with advertising is always the
acceptable solution: You absolutely should focus on achieving the right level
of application performance. But when you’ve done that and are simply
combating perception, getting a bit creative can help solve the business need
less expensively than chasing after an impractical level of performance.

The other tricky thing about performance, of course, is that it’s situational: An application
might run great in the development environment, even when you're simulating a
production workload. Out in the real production world, however, you have hundreds of
factors to contend with: Client computer capability, networking conditions, growing data
stores, and so forth, all of which can contribute to poor (even if just in perception)
performance, and which are incredibly difficult to troubleshoot and solve. When multiple
users start using an application, you're opening up whole new areas for potential
bottlenecks: network communications may jam up when thousands of users try to log on,
server components may experience unseen locking and synchronicity problems when user
loads increase, or client applications may lock up or crash when server components time
out during periods of high application utilization.

That’s why no developer should be expected to write an application that achieves some
unvoiced, unquantified level of performance, and why everyone involved with a project
needs to realize that performance is a continuous scale, and that at some point someone
needs to put a stick in the ground and decide exactly what performance is right for the
project. That's called writing performance requirements.

179 MICRO
I:IFEII:LIE

Chapter 9

Performance and Requirements

['ve already discussed at length the need for everything in the project to be driven by
requirements. But what makes a good performance requirement? Consider this one:

The ability to handle a large workload with minimal processor time and to increase
the maximum achievable workload utilizing standard hardware scaling techniques.

This isn’t a good requirement. Why not?
e Itdoesn’t quantify the “large workload.” What does “large” consist of?

e What is the “maximum achievable” workload? Do we have an infinite amount of time
and money to spend on this, or is there some quantifiable, desired maximum we
should be aiming for?

e What are “standard hardware scaling techniques?” Adding memory? More
processors? How many? Infinite? Is money no object? Or is there some practical
upper limit that we want to define?

Performance requirements work best with numbers. For example, start by defining what
the production environment looks like, using a table like the one in Figure 9.1 (which is
taken from an excellent discussion of writing performance requirements, at
http://www.cmg.org/measureit/issues/mit23/m 23 2.html).

D ewice l:u:nllguruﬂ-un

Sr. Device Name Maodel # of |CPU Memory [HDD Capacity (GEB) ® of Cont
= (Hardware Machine) CPUs |Spaed
[HzY

W EBSRVOD1 protiantpizeo]l @ | 1400 (2304 M8 | %17 2x35 1

dWEBSRWVDZ ProLiant DLIBD 2 733 11152 MB 2x17f2x35 1

3 N4000 8 550 | 8 GE XP-Diskarray: 2 FC conb

pesrvol 5 64 GB for Oracle the se

Figure 9.1: Inventorying the environment.

Then, examine different critical business processes and analyze the time it takes to
complete them, and the exact workload in effect at the time. Figure 9.2 shows a short
example of this.

Business Transschon Sub-Transschons Average | Tramsachion |Tremsscton |Regquests fsecond
sener Count [Peak | Mix (96)
response | Durstion 0800
time (me) [t 1000 hours
Monday)
Percentile
5 HNo. S0% [G0%: |G5% |100%
[Menc)
1 Logon SEEL/logonasp 128 15106 1913 0.65 |2.48 258 |EDD
2 Check Balanoes Jeecune BalanceE nquiny.asp 256 6212 3EBS91
] Edit Account JSEL/Balancesasp 265 7B 008
JSSL/EditAccountasp g5
4 Sterbements Downlosd SEEL/Strbemen tDown loads asp E=3 17000 1621
Saecure Statermen t Detailsmsp 154

Figure 9.2: Measuring current usage.

. 180 MICRO
1€ I:IFEIE:LIE

—

Real

http://www.cmg.org/measureit/issues/mit23/m_23_2.html

Chapter 9

And here’s where things often get missed: Anticipate growth. A chart like the one in Figure
9.3 can help convey the amount of the data the system will deal with, when that data will be
purged, and so forth. This helps designers and developers understand the quantity of data
they will have to deal with, and that’s a crucial statistic to have when planning for
performance.

5. No. Database Entity [Retention time | Purge Cycle Year 2005
of Records
1 Address M A M A 05 280
2 Account A M A 2000
3 lte m 13 M onths 30 Days 76 424 500
4 ltem D etail 13 M onths 30 Days 763 578,000
h ltem History 13 M onths 30 Days 144 140 500
ltem Reference
6 Humber 13 M onths 30 Days RO 698 000
7 Order 13 M onths 30 Days 3 100
& |Order History 13 M onths 30 Days 129 500

Figure 9.3: Measuring data usage and estimating growth.

Given all that data, start projecting for growth—and add a pad of 20% or so. Figure 9.4
shows an example of key business transactions, the percentage each one contributes to the
overall mix of operations, and the expected peak usage with a 20% pad—giving designers
an exact number to work against, testers an exact number to test against, and so forth.

Projected peak hour values for transactions for September 2005
Peak Hour Load expected = 13800

S.Mo. | Business Transaction Current Expected Add 20% Total peak

Peak transactions | Contingency | hour (with
Transaction | " Peak hour contingency)
Mix (*sage)

1 Logon 19,13 26.35.54 CZT 000 316703

2 Chedk Balances 38.91 536058 1073515 544350

3 Edit Account 0.06 820 1656 T)

4 Statements Download 16.21 ZI35.58 227358 2004 30

Figure 9.4: Estimating required load

Figure 9.5 shows an example set of application requirements, focused on the performance-
based requirements. This is a template published by the US Centers for Disease Control
(CDC) for use in their own projects. Note that this isn’t specific to software projects (and in
fact I've selected a sample that isn’t, just to illustrate that these concepts are universal); and
that they provide a requirement, a standard that is to be met, a method by which
performance will be measured, and so forth.

181 MICRO
I:IFEII::LIE

Chapter 9

Sample Performance Based Requirement Template for use with Task Orders

Provide timely
resolutton for all
proobems wdenbibied
during service calls
tar all softwars
relabed support.

stancards for the
sahsfaciory
resolution of
1denhited proolems
will be iecleded 10
each task order.

Cardractor loghooks
ar of Help Desk
software penerated
documertabion for
service calls to
decumerd response
timees will be
performed by
fimsert name of
appropriate 1M
branch’tithe).

prohlem: resalabion
timees shall meed ar
exceed established
stancards toe 9593
of all service calls.

Far amy marth the
problem: resobsbon
timees fall bebow
stancards tog

92 5% of all
service calls or for
any ten
corseculive months
when problem
resolutor times
fall below
stancards tos 9594
of all service calls,
the Condractor shall
investigate and
Tepor] on reasons
and cHTective
aclvors taken ba
prevent re
OCCuTTenCe.

PERFORMANCE | PERFORMANCE METHOD OF PERFORMANCE PERFORMANCE TASK
REQUIREMENT STANDARD MEASUREMENT METRICS INCENTIVES DRDER
LINKAGE
REFERENCE
Task _ € Accepiable time Mortkly reviews of | Documerded Far each month where | To be idenbifted

{he resalubon time
stanciards are met or
exceeded for U755 of
all service calls, a
bomus of _5_ % of the
maorikly payment shall

be placed mbo a ‘pool’.

I'ar each month wrhere
resoluivor: trmes Fll
‘bebow standards for
492 5% of all service
calls, & deduction af

_ Ll %% of the monthly
payment shall be
recorced mie ths
same “poal’

The Govermment wikl
pay the Contracior all
amaunts accamulzxled
into the “pool” on a
quarierly bass.

a1 the fime task
arder 15 ssued.
Thas may alsa
rchede
relerences 1o
cartract
PIOVISHaNsS.

Task _ [

Aussure a very high
degree of cuslomser
satistaciion: with all
Help Desk ard
service suppoart
actviiees,

A mnimumn af M
of the surveyed
cusomeer base must
e salisfied wiik the
averall level of
service provided.

The Cootractor shall
either develop or
proqose o CUOTS
aubomated customer
sabisbaction tood.
Hetare the 4oal 15
implemerded, CIHC
shall approve m
wriing the sofbware
proposed and the

Mo deviation 1o the
set performance
stancard 15
acceqtebie because
o the cribical
nature of thi rem.

Far amy mardh that
the sarvey shows
overall cuslomer

Far each month when
cusiomaer safistacton
resulbs exceed 9594, o
beonus of _5 % ol the
morikly payment shall

be placed mio a ‘pool’.

Far each month when
cusiomser satistachon
results are less than

To be 1denbied
a1 the fime tazk
arder 15 ssued.
Thas may alsa
e lwde
reberences 1o
cardract
PrOVISIORS,

Figure 9.5: Writing definitive, measurable performance requirements.

Remember: You want to start with defined, measurable performance requirements that
specify numeric metrics and include information about anticipated growth and
workload. Without those, you're never going to achieve an acceptable level of performance
because you won’t know what “acceptable” is.

. 182
Realtime

publis

S
;
1ET5

Chapter 9
-

Performance and Perception

So what happens when you’ve defined and achieved “acceptable” performance, but users
still think your application is slow?

The problem is user perception, and in many cases the answer is not to chase after faster
and faster performance, but rather to chase after a faster perception of performance.

Simply aiming for a faster application gets logarithmically more expensive: Squeezing an
extra 1% performance gain might initially cost you x, but the next 1% will be x*1.2, then
x*2.1, and so forth. But in many cases you have an application that’s already performing at
acceptable levels by everything you can measure, so why spend all that extra money
squeezing more performance out of it? Instead, focus on what users perceive as poor
performance, and address the perception.

Figure 9.6 shows what causes most users to develop a perception of poor performance:

3

Figure 9.6: The Windows hourglass.

Waiting, with nothing happening except for an hourglass spinning on the screen. [secretly
believe that the reason Windows Vista adopted the “glowing circle of waiting” over the old
hourglass was as much about providing a less-blatant icon as it as about a more refined
user interface. So ask yourself: What can you do to your application to reduce the amount
of time that the hourglass spends on the screen? Is it possible, for example, to construct the
application to perform a larger number of smaller, more discrete operations over one giant
operation? Smaller operations might allow you to start populating a user interface sooner,
so that users have some visible measure of progress.

Caution

Don’t be tempted to simply use progress bar user interface devices unless
you’re certain you can make an accurate progress bar. Everyone hates it
when they’re watching a progress bar change from “1 minute remaining” to
“5 minutes remaining” halfway through the process—it feels like the
computer is cheating, and you’re still effectively just watching the hourglass
spin itself around and around.

. 183 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 9

Apple’s Human Interface Guidelines has some wise statements about performance and
perception:

Performance is the perceived measure of how fast or efficient your software is and it
is critical to the success of all software. If your software seems slow, users may be
less inclined to buy it. Even software that uses the most optimal algorithms may
seem slow if it spends more time processing data than responding to the user. ...
Remember that the perception of performance is informed by two things: The speed
with which an application processes data and performs operations and the speed
with which the application responds to the user.

In other words, perception may not equal reality, and perception is more important. Author
Steven C. Seow wrote a book, Designing and Engineering Time, which lays out some
specific, measurable numbers that relate to perception. He suggests that operations which
complete within specific time ranges will be perceived in specific ways by most users:

Instantaneous (0.1 to 0.2 seconds)
Immediate (0.5 to 1.0 second)
Continuous (2 to 5 seconds)
Captive (7 to 10 seconds)

You can use these numbers—since they are definite and measurable—as part of your
application’s requirements. Requiring that, “dialog boxes must populate in an Immediate
timeframe except as noted otherwise within these requirements” is a measurable, testable
objective. In some instances, the only way to achieve it might be to present less information
on a dialog box (thus reducing the amount of time it takes to retrieve data), so you may
have some tension between performance and the desired workflow. You can read an

excellent discussion on this topic at http://unweary.com/2008/11 /specifying-

performance.html.

Other research conducted in the late 1980s also lays out metrics for performance that
relate to user perception; you can read an excellent discussion in The Art of Application
Performance Testing by lan Molyneaux.

P 184 MICRO
H{:’dlumt‘ ClFochs

http://unweary.com/2008/11/specifying-performance.html

Chapter 9

Tools: More Important than Ever

There are two ways to test performance, and there are also two general types of
performance test. Each of these absolutely depends on you having performance goals and
expectations that can be expressed numerically.

The two test types are:

e Testing the application’s ability to handle a specific workload—that is, a specified
number of simultaneous users performing a specified set of operations during a
specified timeframe.

e Testing the application’s responsiveness in specific transactions—in other words,
testing the user perception

These two test types are obviously interrelated; you typically perform testing that
measures both of these elements. After all, the performance a user perceives is definitely
affected by the workload that the application is undergoing. So testing often consists of
hitting the application with a simulated workload, and then using the application and
measuring the response times a user might see for specific operations.

Note

What is workload? It’s simply the performance of operations that you expect
your users to be doing. If you expect 1000 users to be entering a single sales
order apiece every 5 minutes, then that’s your workload. Since that’s your
expectation, you'll want to try and test to make sure your application can
handle it; stress testing might be entering even more sales orders at once,
from a larger number of simultaneous users, to see how long the application
can keep up before failing or slowing to an unacceptable level of
performance.

And of course the two means of conducting these tests are manually and automatically.
However, before we dive into these, it's important to understand that you can also
performance test the application’s code. That’s a little different from true, whole-
application testing, and it is generally conducted by developers who are searching for
specific areas of their code where performance is taking a hit.

Manual Testing

Manual performance testing, in my considered opinion, is horrible. For one, it’s incredibly,
incredibly boring. Boring leads to inconsistent, and inconsistent testing is worse than no
testing at all because it generates false alerts, misses important aspects, and generally can’t
be relied upon.

- 185 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 9
-

[used to think that manual testing was at least valid for making sure that user perception
metrics—Ilike the amount of time a particular dialog box takes to populate itself—since it
was a real user using the application. But even that wears thin on a tester’s attention span
after two or three cycles, so I now truly believe that the only reason to test something
manually is because you’ve got a tool recording what you're doing, so that future cycles can
be automated.

['ve said before that automation (and the tools that enable automation) won’t add any more
quality than what you already have. That’s still true; if you can’t engage in a manual test,
then you won’t know what to automate. But tools can and do make testing faster and more
consistent, and modern testing tools can easily capture things like execution times to make
sure you're hitting your performance metrics.

Manual testing becomes outright impractical when you start talking about load testing: It’s
not feasible to have five hundred human beings manually testing an application at the same
time in order to test its ability to handle that workload. Automation is the only way to
conduct effective, reliable load testing.

Automated testing is also the only way to spot seemingly-random problems that result only
when multiple users are using an application simultaneously. For example, consider a
simple scenario where an application creates some sort of status file on disk when a user
performs a specific operation. The file is deleted when the operation completes. With a
single user, there’s no problem—and even with several users, no problem might occur,
because none of them are performing the operation at exactly the same time. With enough
simultaneous users, however, you realize that the application isn’t creating one status file
per user, it's creating just one file—and two users performing the same operation at the
exact same time reveals the bug. Manual testing could rarely catch this; automated testing
often can.

Automated Application Testing

Whole-application testing utilizes automated tools to interact with an application in much
the same way that a human user would, only faster and without the human actually being
present. These tools commonly rely on sophisticated scripts, which may be created by
recording, or “watching,” an actual human interact with the application the first time
around. These scripts can check back-end data, examine on-screen data, and use other
indicators to determine if a test is successful or not, and they can measure basic execution
times to develop performance measurements. Automated tests can also perform load
testing, where the testing tool simulates the activity of many—potentially hundreds—of
users interacting with the application at the same time.

. 186 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 9
-

Automated Code Testing

Code testing is often conducted by developers, with the goal of identifying specific bits of
code that are consuming the most overhead in terms of performance. This is usually a step
conducted after whole-application testing identifies unacceptable performance. If, for
example, a given dialog box is taking too long to populate or a particular transaction is
taking too long to complete, then a developer might run deeper-level performance testing
against their code to identify pieces of the code that are contributing to the overall
performance problem.

Blurring the Lines

Modern testing applications often blur the line between “whole application” and “code”
testing by providing both capabilities within a single solution or suite. That is, some tools
or suites of tools can not only automate the end-user interaction and identify poor
performance, but they can also dig deeper and identify specific sections of code that are
having performance problems. Whether these capabilities come paired in a single testing
application or not isn’t relevant; you do need both capabilities, and they’re commonly used
by different members of the projects team (QA and developers), although they’re often
used in conjunction and to achieve the same business goals.

Working with Performance

So you know what kind of performance you want, and you’re familiar with the basic types
of testing. Now it’s time to start discussing testing specifics. I'll break this down into two
main sections: Load testing, which tends to focus most on whole-application performance,
and deeper-level performance testing that works a bit more at a developer-centric level,
and which are often used to pinpoint problems detected during load testing.

Load Testing

Load testing is typically conducted by creating testing scripts that simulate end-user
interaction with an application, and then using an automated load testing tool to run that
script in hundreds of parallel streams, to simulate the usage of many, many users at once.
Some testing tools are capable, with the right infrastructure, of simulating the load of
hundreds of thousands of users—enough to get a clear performance picture of almost any
anticipated production workload. In fact, tools with this kind of power can be used to
stress-test an application, and predict how many users it will be able to support at a given
level of responsiveness, and to predict the total number of users it can support before
failing outright.

The most time-consuming part of load testing is usually the initial development of the
testing scripts. These need to accurately reflect real-world usage scenarios, but ideally need
to require a minimal skill set in programming—skills that are often in short supply in QA
teams. Many tools, like the on pictured in Figure 9.7, utilize graphical, workflow-driven
design tools to help create testing scripts with less overt programming. They also often
offer the ability to record manual application usage or traffic, observing that usage and
automatically generating a script to replicate that usage.

) J P . 187 MICRO
Realtime CIFGEDS

Chapter 9
|

[e Lt ew comons iesmon ook weudhewester widow Lok BEE

=1-- % Akl aE: @ e &

2| Web Images Maps Hews Mideo Bmad more v Replace Parameter with Variable

F i Step 2 of & Define the variable 1o replace the ¥alue field
‘ {-‘ 'a \.{‘ I Defins the ralndstion e that wall replace the Valie fisld. This clniation hle: ok renlace Hy
\ S 1919 i ety

o buid a cakadation, or enter ket Press the “Insert info
Cakouiation” button to the oursor.
= &b NavigaloTor bt v google.c. — Verisble ame: [ser s Frecuency: [Once per Transatbon, v
3% Begin Checkpoik: Home Page Al : -
Tempiates Detak
Date and Time Select a varisble from 2 datapodin the tree.

oy -
7

e & L

0T Cooker sty Sonvs = e e ——
e — B oo | S —{ e B o]
= § Subflequest: © | WarZ nddframba |
L Skecp O seconds | [= _—
=& NavigateTo: hip: iclents] oo Adver ‘ g g
ws
e LEs)
= &l Page 2: heip ickerts google com | lFE —_—
&% End Checkpaint 5 eaich Stings | = il =
@ Pane 2: ey i g comies = e
2 Contark Check: [dabled] =
o Foapd Juad ol d: ik
L Sk 12 seconds

iy MavigaeTu hig i) o Varkable by receive string
13} UagnLeskponk Liek Lk
= U Poaped il M Sedd s vz mih

End Chochpont: Cicls Link The shring b be e
= g PogeS: g iciors | goed

Cdaddion: b T
Cample: User I0s

Huyn Unuh ol Luurch Fage

Papa & ity #/ciantz 1 poogla comsh Freccded by [RAV

T

Page 7: hitpe #cicris] poogic comsh — -
[Corers Check: [drabied)] E et | | o |
gl Y ;i Flowanid H w |
% ;bw 1$£Luu o = Filallod | Extiact Random |
T I Miskoh Foursd in Man Ripad 24 A
Crd Checkpont Launch Page —
= & Pao=: Hip tickerts1 googie comé.] =
£33 Hopn Lieskport Linic Scasn I~ Ertw S)
+ i Page % hip tirfients] gongie ot Manualy Tolengthen or shorten the left and right strings e
et the spin cortroks E

Figure 9.7: Developing testing scripts.

Since performance is the goal here, tools should be able to provide performance analysis.
This is often performed by specifying performance “checkpoints” at various key places in
the testing script, essentially telling the testing tool that, “at this point, no more than x
seconds should have elapsed.” Figure 9.8 shows an example of the types of results a tool
can generate from those checkpoints.

. 188
Realtime ClFochs

publishers Leading the Ev

Chapter 9

Apphcation Server: Context SwitchesfSec

Top ASP Methods

1400.00 |
E 12901 11 |
5 |
S 100000
300,00
50000
40000
200.00 |

Remuote Monitoring

0.0 ! t 1 1
0.0o 400.00 800,00 120000 160000 2000.00

Elepsed Tme (Seconds)

— Bolts_LoacdTest_ 0031 72,22 46 16 System; Contes Swichasizec EEEICNE

40 a0
48 00

a8 o0 /
44 00

43 00

&

0 oo

BENUS
geRESR
.ru—_‘
g

B

? 0 00 E
0 w0 00
£ mw E
E:\lm =
&7 R BT SOt RETE. SRS . DTS VORI S, SIS (Pt SR IESre e TS| PRES M A wdaronsl 3
& 0@ ¥ w000 -

1080

1w -

140 ___.-.// 20000
1200 _——

g ___.__——'—._'_-_.—

i g - - . — 10000

oo
oo
0 o0 200 oG 00 oo 00 00 "o 0o 1000 00 1200 00 1 400 00 SO0 O 1D OO OO O 2200 00 200 OC 0 0 000 oo
Ebmertped Tt | St ot

Figure 9.8: Example performance analysis results.

This approach to load testing typically provides the “whole-application” testing that a QA
team would conduct. If poor performance is identifies, the tools may be able to pinpoint
specific bottlenecks—like memory consumption—or developers may need to dig deeper
and perform code-level performance testing and tuning.

There are two things you need to look at in terms of performance. First, the overall
performance of the application as it would be perceived by a user. That’s obviously
important, but so is the second thing: The individual performance of infrastructure
elements, such as the network and storage, as well as individual supporting applications,
such as database servers. Good overall performance but poor performance from a single
element (such as the network) may be indicative of a configuration problem and, at the
very least, suggests that you'll be facing performance issues in the future.

) 189 i
Realtime CIFocts
publishers Leading the Evolution

Chapter 9
-

Why Reports?

Performance reports from a load-testing tool are not only useful at helping to
identify problem areas, but they’re also an incredibly useful management
tool. By retaining performance reports from throughout the project lifecycle,
you can map the project’s progress with regard to performance and relate
that progress back to the time, money, and other resources expended in
getting there. In other words, you can see what it’s costing you to achieve a
given level of performance, and use that information to estimate what
additional progress is going to cost—and then decide if it's worth it or not.

Performance Testing and Tuning

Many modern programming platforms, including Java and .NET, offer a “black box” runtime
environment where it can be difficult to determine actual performance metrics—
everything runs inside what seems to be a sealed environment. The right testing tools,
however, can dig inside that sealed environment to expose a broad performance view.
Some of these tools are useful at a high-level of application performance, while others are
useful at a lower, more code-specific level.

For example, Figure 9.9 shows a tool that exposes a customizable dashboard that monitors
specific .NET components and provides performance information on each of them. This is
more detailed than a whole-application view, because it helps focus on specific components
that may be contributing to an overall performance problem.

. 190 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 9

= P. DO [D Qe - i
File Edit “iew Help
4 | A b3 B

= =
-:r*;.-;- Enterprise Web Sernices Dashboard

WeblLogic Web Services Performance
Server Stats

Q
CFU
z L]
Inventory Service Order Service Tax Service Billing Service Heap
MNET Web Services Performance
Server Stats
Q
CRU
Q
Calculate Service Compare Service ROl Service Count Service Heap
W
< >
Hide gauge data - Show gauge chart - Acme/Tax Service
Wetric definition
Blon, 12:52:390 P
Show dashboard/gauge data £
Low Limit ™ YValue ¥ High Limit ™=
Instance ™ p = = =
hanlc JTAMamed 0 60 n 3 5
bante JTAMamed 4 40 1] 2 5
banlc JTAMamed 3 40 il 2 5 3
Data Packet #207 (hor, 12:52:39 Ph) | fonnected @ hon, 12:52:40 Phi

Figure 9.9: Viewing component-level performance in a dashboard.

Tools can also help monitor a specific application’s performance with relation to specified
performance goals like Service Level Agreements (SLAs). Rather than analyzing end-user
performance—like the time a dialog takes to populate—these tools often rely on more
back-end metrics, like the time it takes for certain database calls to execute. Again, this
deeper-level view of performance can help pinpoint areas that are contributing to a
performance problem. Figure 9.10 shows how a tool can deliver this information, using
both raw statistics as well as graphical charts that help you to visualize the performance
more easily.

. 191 i
Realtime CIFochs

publis

S
;
1ET5

Chapter 9

drstamontorng

g ———Madimize (+1—
Z| Anents 3 SLA Marne SLA Monitoring || SLA Limit || Current Walue Last (MNS) SLA Last (M) S...| Log File || Email ... DE Log External Crml |
rﬁ} W NETAgent - 00.2016.00 || Field “alug (ins) (ms] “ialation Time ‘iolation %... |Enabled |Enabled | Enabled Enabled
|1 ASP_RULE Recent Avg Re... [0.01 () Al
|2 lapRry_sia Recent Avg Re... |00 0 D5/DE/06 0515 51.76 [}
|3 IMETONETimer e Time Exceed|0.01] 0605106 0655 13.10 @ @
|
Global Method Stetistics | Giobal SOL Stalistics | Muinizel)
Mothod Claliat o e e
| Class Name: | *DatNetDema ieh pages #| @ Throughput E] Meathod Throughput
“DiosetDiema ek pagea Cialomervervi e
Methad Mame: |Cus10marOverviewPage_aspx(*) VI Resporise Time - R g i e
I W ccovOther Ml 16.73%S0L 0%EdemaliSockst =
& oo
| - Total CPU Time Statistics —————— 1 [Total Transaction Time Statistics ——————) - Total Invocation Statistics ——————————— é
| CPU Time: || Transaction Time: S422s5 | Total Invocations: 1times | o
| 1 1 | 1517 15:18 1519 1520
| CPU %: || Transaction Time %: 1829 % | | Throughput(450Throughput]: 0 bxisec | Last 460 seconds
|| Avg Responze Time: 542z | R D Wy

Figure 9.10: Analyzing performance against pre-defined goals.

When you identify a performance problem, digging deeper to find the root cause can be
complicated. Again, tools can help by tracing low-level activity, such as transactions, use of
individual methods, and so forth. A “transaction viewer” like the one shown in Figure 9.11
can break down exactly how much time is being spent on specific database calls or
transactions, allowing you to quickly spot those which are consuming the most time and to
focus your performance-improvement efforts where they’re most needed.

) 192 i
Realtime FOCLS
|’Jl| MISNIETS

Leading the Evolution

Chapter 9

- , P - " e e e m e e e

a 100.00% (4.89%) (+) ML iney. (12361 00 tx ms) (4008.00 cpu ms) Tranzaction Time Explarer Tree - Cther 66 86% SGL 0 64% External: 32.50% Ca
= __j 37 69% (0.00%) 12 inv. 358.25 m=z avg resp (4659.00 tx ms) (1291.00 cpu ms) org.apache struts action ActionServiet doGet - Cther:55.03% S0L1 35% E
= ___j 37.69% (5.859%) 12 inv. 385.25 mz avg resp (4629.00 tx ms) (1291.00 cpu ms) arg.apache struts action. ActionServiet pracess
|'lf,’l 13.44% (0.00%) 6 itw. 27617 mz avg resp (165700t ms) (216.00 cpu ms) com bea medrec cortroller RecordSessionEJB getRecordsSumenaty
= Eﬁ F.73% (0.00%) 5 inv. 191.00 ms avg resp (955.00 tx m=) (¥6.00 cpu ms) com bea medrec controller RecordSessionEJE getRecord
= a 4.43% (013%) 5 inv. 10940 ms avg resp (547 .00 tx mz) (61 .00 cpu ms) com bea medrec entities RecordEJB getRecord
E a 2.639% (0.38%) 3 inv. 65.40 ms ava resp (327 00 tx ms) (46.00 cpu ms) com bea medrec entities RecordEJB_xwopGo__WWeblLogic_CMP_R
=
ﬁ 0.00% (0.00%) 1 inv. 0.00 ms avg resp (0.00 tx ms) 1000 cpu ms) com bes medrec entities VitalSignsEJB_ra9srk_ WebLogic_CMP_R
D 0.00% (0.00%) 1 inv. 0.00 ms avg resp (0.00 tx me) (000 cpu ms) com bes medrec entities VitalSignsEJB <init=
D 0.00% (0.00%] 1 iny. 0.00 ms avg resp (0,00 tx ms) (0.00 cpu ns) com bes medrec entities vitalSignsEJB _ra9srk_ WeblLogic_CMP_R
155 000 (0.00%) 1 iny. 000 ms avy resp (0.00 b ms) (0,00 cpu ms) com bes medrec entities . VitalSignsEJB _ra9srk__WeblLogic_CMP_R
a’i 0.00% (0.00%3 1 inv. 0,00 m= avg resp (0,00 tx ms) (0.00 cpu ms) weblogic ejb GenericErtityBean . =init=
123 0.00% (0.00%3 1 inw. 000 ms avg resp (0.00 tx ms) (0.00 cpu ms) com bea medrec entities VitalSignsEJBE_r59srk_ WeblLogic_CMP_R
lﬁl 1.635% (0.13%) 3 inv. 40.80 ms ava resp (20400 tx ms) (15.00 cpu ms) com hea medrec entities RecordEJB getRixs
D 0.00% (000%) 5 iree. 0.00 mz avg resp (0.00 tx ms) (0.00 cpu ms) com bea medrec entities RecordEJB _xwepBo_ YWeblLogic_CMP_RDEM
D 0.00% (0.00%) 5 irve. 000 m= avg resp (0.00 tx ms) (0.00 cpu ms) com bea medrec entities RecordEJE _xwepBo_ Weblogic_CMWP_RDEM
lﬁ 0.00% (000%) 5 iree. 0.00 mz avg resp (0.00 tx ms) (0.00 cpu ms) com bea medrec entities VitalSignsEJB getWitalSigns

[} 0.00% (0.00%) 5 inv.
T,

0.00 mz avg resp (0.00 tx m=) (0.00 cpu ms) com bea medrec entities RecordEJE_xwepBo_ Weblogic_CMWP_RDEM

Figure 9.11: Viewing transaction performance from an application.

Similarly, tools may also be able to break down transaction performance into individual
method calls, helping you further drill down into the portions of the application that are
consuming the most time. Figure 9.12 shows this type of view, where each method’s
contribution to the overall transaction is shown, along with statistics like CPU calls.

Interactive Filter Set Filter .. [Apply

{Types

Clazz Mame

ketinput=trea
org.apache struts action A

é:rg.apache _struts action A
ol

isp_servlet. viewrecords

java.net PlainSocketimpl
co
com.bea.medrec entities. i

Sp servlet._ start
on

org apache.struts action.A
cotn beamedrec. startupn St

Figure 9.12: Reviewing performance on a per-method basis.

. 193 MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 9
|

Dealing with all those raw numbers can sometimes be less than productive, so many tools
can visualize the data in charts or graphs—such as the one shown in Figure 9.13, which
illustrates the top ten worst-performing methods in an application. This type of
visualization makes it easier to see where your development efforts should be directed for
the most impact.

op- 10 Mathods

1%

W Searth Reque OB, coldeitage [JohServarServivl walForReilts mviewmbs fip . JobSwssion. memory Leak
m Page Requesti B cink» g RtatupSendet int g Statement srecutedueny serveondig ip

i Prepared Stitenment sretileCusry g Job DARaWEE_v4574_Loeal Hoime npl 212555

Haake A cidadinglaryod I srrh
Kahad Hame Type Counl Tolal Tx HonChild Ta TolalCPU vy Respania

Figure 9.13: Viewing per-method performance data in a chart.

Tools may also integrate directly with a development environment like Visual Studio, or
may offer deeper-level analysis of individual code performance. For example, Figure 9.14
shows a call graph generated by an application performance testing tool.

1 - -
e £ CDeadlockPhil 2%.3% #8468 (mbc71d.dIl)
o5 + 16% = i 0.0% *
7%
e
s 18.2% 2346 (mfc71d.dll) 385 % o
- 6% =F » 100.0 %
it 5.2% 03%
e s ey L T Ty G o~
sz 03% * i 1% -
- i
-
i 21% 0.1 % 5%
S
Sy
it 0% #5623 (mfc71d.dil) 00 IsBadReadPtr Rl
s 2% 100.0 %
il 18% 0%
-
s
it - 15% #2766 (mic71d.d1) 0.0 % GetDbjectType
pirsiof 131% 100.0 %
=
i 13% 0.0 %
< | %
4 B 3

Figure 9.14: Application call graph.

. 194
Realtime ClFochs

| \II' I ‘Il] 5 | 'III' l‘l 3 Le: the Evolution

Chapter 9
|

This type of graph illustrates two important things: The actual execution path that the
application is taking, as well as the amount of time each individual code module is
contributing to the overall application performance. This can make it very easy to see
where you're suffering the most on performance, allowing you to focus your efforts much
more effectively.

So many of today’s applications are data-driven that the data layer must often be treated as
a unique and important component. Some testing tools are able to analyze database traffic
directly on compatible database server platforms, generating statistics like the ones shown
in Figure 9.15.

Interactive Filter Set Fitter .. [mpply

e e e BillekNomesi sl i R R i R Y
ETu:ltaI T Titne % 0.5 (Top10)

SEL String

I Longest
=p Ti

SELECT VL0, WLD.record_date, WLO.pat_id, LD syrmptom..

SELECT username, droup_rame FROM droups WHERE Y = %N 001/ 00,00

Figure 9.15: Analyzing database performance.

Here, specific database queries are captured and their performance analyzed. By detecting
poor-performing database statements from within the same toolset, you can not only focus
your efforts to poor-performing components, but to specific database calls which may
require additional fine-tuning in the database layer itself (such as re-thinking your indexing
strategy, rebuilding or reorganizing data and indexes, and so forth).

Finally, some performance problems are buried so deeply in runtime components that,
while your code may actually be at fault, the problem itself is incredibly difficult to detect.
Chief amongst these types of problems in my experience is a memory leak. A good
performance tool will be able to monitor application memory usage, ideally by digging into
the development framework’s runtimes, and bring your attention to memory leaks and
their sources. Figure 9.16 shows an example of one tool being used to detect memory leaks.

P 195 MICRO
Ht"(llumt‘ ClFochs

Chapter 9
|

Metnory HotSpots Wiew Maximize (+)
Showe All Callections Memmory HotSpots Summary Sort by Cournt
® Show Growing Callections # CollectionsMaps Tracked: 341 # Collections Pruned: 340 Sort by Size
i ¥ . Sart by Detection Date
Shawr Active Not-Growing Colections # Hitp Sessions Tracked: 0 # Hitp Sessions Pruned:0 Sort by Last Modified Date

® Zort by Collection Marme

Show Inactive Collections

176 objects of type: java lang.String (12.35 kb.) added st com.sockets. TCPClient sendData
D gjbbook.chap0d.ex3 build HelloBean cal TCPServer
= E} 176 objects of type: javalang.String (12.38 kb)) added at com.sockets TCPClient sendData
=] a gjbbook .chap0d.ex3 build HelloBean cal TCPServer
= &) ejhbook.chap03.ex3 build HelloBean. recur
= a ejbbook chapl3.ex3 huild HelloBean recur
= 43 ejbbook chap03 ex3 build HelloBean recur
= a ejbhook.chap03.ex3 build HelloBean recur
= a ejbboaok chap03.ex3 buid HelloBean recur
= a ejbbook .chapl3 ex3 huild HelloBean recur
= 13 gjbbook.chapl3.ex3 build HelloBean.recur
=] ejbbook chapl3.ex3 buid HelloBean.recur
= a 200 ohjects of type: java lang. String (4.69 kb) removed at com.sockets TCPCliert.sendDsta
= ejabook.chap03.ex3 huild HelloBean cal TCRServer
= @ 100 ohjects of type: java lang. String (2.34 kb.) removed at com.sockets TCPClient. sendData
D ejnhook.chap03.ex3 build HelloBean .cal TCPServer

Collection Object Counts

#of Objects

15:12:33 151234 0 162385 0 164288 181287 1501238 1512:89 1512400 154241 0 151242 1519243 1511244 1511245 15:12:48
Time

[M java. util Vector |

tistios Restore(+)

Figure 9.16: Detecting memory leaks in a running Java application.

Finally, some of the tools designed for this type of developer-level detail can also take you
back to the higher-level, user-perspective performance. This isn’t load testing; it's analyzing
the application’s real-world production-style performance and, using checkmarks and
metrics you define, indicating which transactions are happening at a user-acceptable level,
and which ones are beginning to fall behind. Figure 9.17 shows an example of a report
which a tool might generate that addresses specific end-user perceptions of performance,
based on previously-defined metrics. You're not trying to measure production application
using developer tools, of course, but you are trying to measure performance in the same
way that it will be reviewed once the application is in production.

. 196 MICRO
Realtime CIFGEDS

Chapter 9

>

| Client C-N-S Exception Report (From 08/10/2005 14:00:00 to 08/10/2005 15:00:00)

E.ET% Type # Trans % Business Model Dta Filters
E Good 10 BEET Business Application CRM Package Transaction Mame Update Customer Info
E Poor 3 3333 Business Location Chicagoe Service Level Monitoring Active
M Unavailable a 100.00 Availabilty Monttoring Yes
TOTAL 15 100.00
33.33%

 Transa

Zompares all Iierrt Ti =t have exceeded their service level threshold against an establizhed baseline. The actusl transaction compared to the baseline shows where the transaction is spending time
aetwesn the Client, Metwork, and Server
[Tl Bazeline
Cliert Metweark Server I:l Mo stz
(T Actual
Total :
Transaction DatedTime Agent Titne Alocation G ! 2 Time Fercent
(s2c) [=ec) (s2c) SLA ¥
[sec)
.
08M0/2005 14:21:03 Chicago 23 .74 18.15 2813 2E3.56
:
08M0/2005 14:51:13 Chicago A3 814 16.05 2512 257 .54
08M0/2005 14:26:55 Chicago T 122 744 16.32 2408 28515
.]
08M0/2005 14:21:43 Chicago 25 T.56 12,69 2005 23477
08M10/2003 14:03:20 Chicago A3 B23 1266 1922 23354
w
£ i (.

Figure 9.17: Reviewing “perspective performance” and detecting poor-performing
transactions.

Note that none of this information can be practically gathered without the right tools—
manual testing simply isn’t an option.

The Performance Game

The performance game can be tricky, but with the right equipment and a firm knowledge of
the game’s rules, you can absolutely succeed at delivering applications with better
performance—both measurable and perceptive. The rules are actually straightforward:

1. Establish your performance goals, using language that is clearly defined, lends itself
to testing and verification, and ideally uses hard numbers rather than vague
statements. Focus on performance goals that address the entire application’s
performance, such as times to complete specific transactions, workload estimates,
and so forth.

2. Inventory the production environment, and estimate the amount of data that the
application will handle now and into the future.

. 197 i
Realtime CIFochs

publis

S
;
1ET5

Chapter 9
|

3. Test the application using load testing tools. Use tools that support the use of
performance checkpoints, so that you can get automated performance reports. Use
those reports to identify any metrics which aren’t being met—this is detecting the
problem.

4. Dig deeper with performance testing tools that can monitor the running application
and analyze it at a fairly deep level. This is focusing your efforts on the root cause of
the performance problem that you detected.

Those four steps—establish, inventory, detect, and focus—define your performance goals
and provide a means of solving performance problems. It all takes the right tools, though.

e Tools can help track your performance requirements throughout the project, and
provide a basis for building test scenarios.

e Tools can help automate the testing process and detect problems faster and more
accurately.

e Tools can help focus your efforts at finding the root cause of a performance problem.

Get Ready to Deliver Quality

We’ve nearly reached the end of our discussion on quality application delivery. In this
chapter, we focused on performance and the various ways to detect and solve performance
problems using automated tools. In the next and final chapter, we're going to bring
everything together. We'll look at quality application delivery holistically, review some of
the key points from previous chapters, and create a sort of “shopping list” for procedures,
techniques, and tools that you should begin acquiring for your environment. We'll also
create “report cards” that can be used to continually assess the quality efforts within your
organization and to help drive and direct continuing quality maturity.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 198 MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

	Chapter 9: Performance Testing
	Why Performance?
	Performance and Requirements
	Performance and Perception
	Tools: More Important than Ever
	Manual Testing
	Automated Application Testing
	Automated Code Testing
	Blurring the Lines

	Working with Performance
	Load Testing
	Performance Testing and Tuning
	The Performance Game

	Get Ready to Deliver Quality
	Download Additional eBooks from Realtime Nexus!

