Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 6
|

Chapter 6: Design—Building QUAality INcorninneneesessessssesssesssesessssessessssssssssssssssessessens 111
DeSigNing t0 the REQUITEMENTES........ccrvereereereesesseesesssessessessssssssssssssssssssssssessssssssssssesssesssssssssssssssssessesas 112
Designing Quality Points from the BEZINNINgccccerrereenecnernseneeseeseesseeseesesseessesssesesssesssesseens 117
Designing for COde QUAlITY ... ieessersesssesssesssessssssess s ssssssssssesssesssssssssssssssessssssssssssessens 118
Designing fOr PErfOrMANCE. ...t sesses e seses s s s sssssse s ssssssssssssssssesseeas 121
Designing fOr MaiNTENANCE. ... reereereereesseeseseesseseessessses s s ssss s ss s ess s ssasesneas 123
DESIGNING fOT USEI'S.ouuueuerrirsiessisssesssssssess s sesssssssess s s ssss s ss s s s asssaens 124
DESIZNING TESTINE c.uviureureiererrereerses e sss s s s s s nn s 127

Test Case DeVEIOPIMENT ... sssssssns 127
DR Fed 0N DN KT o D U - P 129
Test Environment Preparation ... s 130
TeSt EXECULION ..ottt 130
TESt RESULILS ANALYSIS. cuuieuriuieureereeeesreeeesseessesseessessessesssesssssessssss s ssessss s s s s sneas 131
Management REPOTTING ... ssssssssssns 132
10000000 T) oS P TP TTPRTTP 132
. ®
Realtime 1 CIFochs
PUDIISNETS [eadin olution

Chapter 6

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 6

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 6: Design—Building Quality In

At this point, we’ve thoroughly covered the idea that solid, well-written, business-aligned
requirements are the first key to delivering a quality application. But requirements in and
of themselves can’t simply be turned over to a team of programmers. Requirements are
missing crucial factors that developers need to get started: design decisions. For all the
emphasis that I've placed on requirements thus far in this book, I need to acknowledge that
requirements are purposely selfish, focusing primarily on the things the business needs.
Requirements should deliberately steer clear of technical specifications, leaving that up to a
design document. The design is intended to map those business requirements to technical
specifications.

Note

I've worked on more than one project where the “business requirements”
did, in fact, include technical specifications. The requirements might state
that a specific tool set would be used for development, or that GUI
applications would use such-and-such a third-party library for charting and
graphing. These “requirements” nearly always stemmed from what I call
“political motivations” and not actual business requirements. Often driven by
upper-level management decisions, these are unfortunate, but their
importance to management—perceived or otherwise—makes them
requirements nonetheless.

The design has a tremendous impact on quality. Although I feel it’s of utmost importance
for developers and testers to have access to the original requirements document, a well-
written design should remove any real need for them to read it regularly.

Note

Why do developers and testers need access to the business-level
requirements at all? Typically, developers and testers are less aware of how
the business is run, at a detailed level, than the people who contributed to the
requirements. The design tells developers and testers what to do; in the
event that there’s some question the design doesn’t answer, the
requirements can tell the team why they’re doing something a particular way,
helping them make better independent decisions.

—

SR PLI 111 MICRDO
Realtime CIFGEDS

http://nexus.realtimepublishers.com/

Chapter 6
|

In an article on Builder.au.com, Robert Brogue emphasizes that designs should focus on the
how, not the why:

...the answer is that you should be focusing on what must be done to complete the
solution. For instance, in an e-commerce Web site, you will have to handle users
forgetting their passwords. That is the "what must be done" part of the design.
Obviously, the person must receive some sort of verification information via e-mail
and return it to the site. As to how that is solved, cryptographically sound tokens,
hashes, and the like are not a part of a high-level design. They are details best left to
the detailed design or to program specifications.

As another example, if the requirement is that the system must have the ability to
secure specific content, you need only describe a security mechanism, which has
these requirements. You need not indicate the development of a security system
based on GUIDs where all items in the system have a unique GUID that can be
assigned to a user or group. The introduction of the "How" (using GUIDs) into a
design document is an unnecessary addition of information that does not help the
architecture or design. However, it solves your competitors need for a way to solve
the problem.

The focus of a design document is on "what is needed" to satisfy the requirements
(what the user wants and what the environment requires). Any other information in
the design document detracts from its primary purpose (Source:
http://www.builderau.com.au/strategy/architecture/soa/Application-Design-

Writing-design-documents-that-cannot-be-
stolen/0,339028264,320282726,00.htm).

In this chapter, we’ll focus on writing design documents that not only help developers and
testers understand how they need to write and test the application but also how they can
do so in a quality manner.

Designing to the Requirements

Perhaps the most important thing about a design document is that it be strongly tied to the
application requirements. As I've said, the design should answer every question a developer
or tester might have about what it is they’re doing, and it should do so in a way that
ensures the business requirements will ultimately be met.

Most design authors are aware of these facts, and may even be accustomed to using the
requirements document as a kind of checklist. After completing their design, they can go
through the requirements and make sure each thing is addressed. However, in my
experience, what many design authors aren’t accustomed to doing is permanently tying
their design to the requirements. Take a look at Figure 6.1, which shows a portion of a
sample requirements document.

. 112 MICRO
H{:’dlumt‘ CIFochs

http://www.builderau.com.au/strategy/architecture/soa/Application-Design-Writing-design-documents-that-cannot-be-stolen/0,339028264,320282726,00.htm
http://www.builderau.com.au/strategy/architecture/soa/Application-Design-Writing-design-documents-that-cannot-be-stolen/0,339028264,320282726,00.htm

Chapter 6

The CEM application will be used primarily by the remote sales force, but will also be
used by HQ and WAN site personnel. Access to this application should be available
betwesn the hours of GBam and 10pm C2T Monday through Friday. Minety percent
uptime is expected during thess hours.

Table 1: Availability Requiremeants Summary

Application Required Target

Uptime Uptime Hours of Operation Access®
ERF Apolication 953% 99% 12am —11pm CST M-S5a HO,W
EMAIL B0, 950 Bam —10pm CST Su-Su W, H. A
Office Suite T9% 85% 6am —10pm CST Su-Su H R
Project Mgmt. Scitware a0 S0es Gam — 6Gpm CST M-F HQ, W
CHM Application 0% 950 Bam —10pm CST M-F HO, W
* HQ = Headguarnesrs, W = WAN sites, H = Home Users, R = Remote Users (Traveling
Users)
Scalability

CompanyX hag plans to acquire several new companies over the next few years. The
Metaframe environment is viewed as the quickest and most cost effective method 1o
provide application access for acquired companies. Itis currently estimated that the
number of ERP users will increase from 200 to 400 over the next eighteen months, E-
mail users from 300 to 600, Office Sunte users from 150 to 300, Project Managemsnt
software users from 50 to 75, and CRM application users from 50 to 75. It should be
noted that many employvees would be using multiple applications. The total user base
for this zolution is expected to grow from 400 to 700, and the maximum concurrent users
from 200 to 330, Below iz a table that estimates apglication user growth in thres-month
increments for the next eighteen months.

Table 2: Growth Projections

Application Number of Users

3 Months 6 Months 12 Months 15 Months 18 Months

ERP Apglication 200 2580 350 350 400
EMAIL 350 400 500 550 600
Office Suits 150 175 225 250 350
Project Mgmit. Scitwars 50 50 65 65 75
CRM Application 50 50 65 65 75
Total 450 500 GO0 650 a0
Maximum Concurrent 200 225 300 325 350

Figure 6.1: Sample requirements document.

Note

Design documents may also be referred to as specification, functional
specifications, and other terms. I'll use “design document” in this chapter and
throughout most of this book.

Now consider the sample shown in Figure 6.2. There’s a single significant difference
between these requirements in terms of their format and layout—can you spot it?

. 113 i
Realtime CIFochs

publishers A

Chapter 6
|

2.4 The administrator is also responsible for entering customization information into IMS, such as the standard working
day for the user organization.

3 Functional Requirements

3.1 Scheduling a meeting

3.1.1 A person calling a meeting (henceforth called the Initiator) will enter information into IMS about the desired
meeting, such as but not limited to its proposed purpose, earliest and latest times at which it can usefully be held, the
names of desired attendees, and an anticipated duration. IMS shall provide defaults for missing elements.

3.1.2 When the Initiator instructs IMS to schedule the meeting for which this information has been entered, IMS shall
obtain from those OLCs that contain schedule data for the desired attendees those attendees’ free times during the
interval between the earliest and latest times stipulated by the Initiator. IMS shall choose the earliest feasible time for
the meeting that meets the constraints specified by the Initiator and the free times returned by the OLCs.

3.1.3 When IMS chooses a time for a meeting, it shall send queries to the OLCs for all the rooms in which the meeting
could be held to ascertain which rooms are vacant during the selected time.

3.1.3.1 If no rooms are vacant during the selected time, IMS shall choose the next feasible time.

3.1.3.2 IMS shall choose which room should be the venue for the meeting from the set of rooms free at the selected
time by a room-choice algorithm that shall take account of the size of the room given the number of invitees to the
meeting, and the convenience of the room for the invitees.

3.1.4 If no feasible time exists for the meeting that meets the Initiator’s constraints and the OLC schedule data for the
attendees, or no room is free during any of the feasible times, IMS shall present the Initiator with a selection of choices
including the following:

(a) Schedule the meeting based on a subset of the originally named attendees.

(b) Put the latest time for the meeting back further into the future.

(c) Abandon the scheduling of this meeting.

3.1.5 If either 3.1 .4 (a) or (b) is chosen, IMS shall obtain from the OLC’s in question further schedule data and choose
the best feasible time as described above. If no feasible time is found again, IMS shall present the Initiator with the

Figure 6.2: Second sample requirements document.

. 114 i
Realtime CIFochs

publis

S
;
1ET5

Chapter 6
-

In my view, the first sample may do a good job of spelling out requirements, but it doesn’t
lend itself to driving quality throughout the application-development process. The second
document does do a good job, for one simple reason: Each requirement is clearly labeled
with an identifying number. You may think that’s pointless, but consider how those
identifiers impact the design and the subsequent development and testing:

e The design can clearly map each design decision back to requirements. That way, if
there’s any trouble or dispute about the design decision later, anyone can clearly
trace the requirement that drove it. If a design decision needs to be revisited, that
can be done based on the original requirements—without trying to guess what the
design author was thinking.

e The design author can easily ensure that each requirement is addressed by simply
making sure each identifying number is covered in the design.

e Developers who have a question about the intent of a design decision can easily
refer back to the driving requirement. The requirements document is the intent
behind the application.

e Rather than testing only for functionality, testers can more easily test to the
requirements because each requirement has an identifying number. Testers can, for
example, indicate that the test for requirement 3.1.3.1 passed, while the one for
3.1.3.2 failed. This allows testing to generate a concrete quality score: the
application meets (for example) 92% of the requirements.

The moral here is that the design must—not should, may, or any softer word, but must—
map each design decision back to the driving requirement. A good, well-labeled
requirements document facilitates this.

But wait—what about design decisions that are more arbitrary and don’t derive from the
requirements? Let’s say that the designer needs to make a technology decision that isn’t
specifically driven by a requirement and doesn’t seem to specifically impact the
requirements. For example, deciding to use ASP.NET over PHP in a Web application might
seem completely arbitrary and detached from the business requirements.

But is it? The choice of programming language affects numerous business issues, such as
long-term maintenance of the code, business relationships with companies such as
Microsoft, and so forth. In this case, the designer would do well to go back to business
decision-makers and present them with choices, document their decision in a revision to
the requirements document, and update the design document accordingly.

115 MICRO
Realtime |:||=|:||:us

Chapter 6
-

In my experience, a designer who thinks, “I need to make a decision, but there’s nothing in
the requirements to drive it” needs to immediately decide, “I need to go back to the
decision-makers on this one.” Designers who make decisions in a vacuum are opening the
door to lowered quality in the application. Even seemingly minor technology choices can
and should be driven by business decisions. For example, a designer may have to choose
between different types of database drivers—surely the business doesn’t care whether we
use brand “X” or brand “Y,” right? But what drives the decision between the two? Is it price?
Performance? Corporate relationship? Those are all business decisions, and a designer
shouldn’t be making those on his own.

Earlier, [stated that the design document should address every single requirement; there’s
a corollary: Every design choice must map back to a requirement. If the mapping isn’t clear,
then it should be stated in the design. For example, rather than this:

3.2.1 Based on requirement 7.8.2.1, we will be using ACME brand database drivers
rather than the framework’s native database drivers.

A clearer design might read something like this:

3.2.1 Requirement 7.8.2.1 specifies performance requirements for the application,
and requirement 11.12.3 specifies the capacity of the network environment. Based
on these requirements, we will use ACME brand database drivers. Their
performance profile offers what we need.

The second example isn’t much longer, but it spells out that the decision to go with the
ACME drivers is based on their performance, and it ties in an additional requirement that
helps explain and justify the decision. If there’s ever any need to question this design
choice, the why that drove it will be clear.

Note

[t can become awkward to keep track of all the requirements that each
decision maps back to. That’'s where commercial applications come in: You
can obtain applications that let you document the requirements and design
choices in a sort of database, connecting each design choice to its driving
requirements. The application can then produce clearer documents more
easily, and lends itself to ongoing work and maintenance.

116 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 6

Designing Quality Points from the Beginning

A well-planned design document can, however, do a lot more than just make sure the initial
requirements are met. A good design document can actually include quality checkpoints,
metrics, and controls so that the entire development and testing process can continually
self-check to make sure they’re hitting the requirements. Quality points are especially
necessary for some business requirements; not so necessary for others. For example,
consider a requirement like this one:

5.12.9 The application must provide a means of archiving data that is older than 90
days. Archived data does not need to be immediately available to users in the main
portion of the application, but must be available through a separate query/lookup
mechanism.

That’s a pretty cut-and-dried requirement. Anyone could look at the final application and
determine whether that requirement had been met. The design would simply need to focus
on how that requirement was met: what the user interface would look like, where archived
data would be stored, what storage format would be used, how data would be archived,
and so forth. But now consider this requirement:

7.1.12 The application must be able to retrieve customer data within 10 seconds
when the sales agent specifies a customer phone number or customer number.

That seems pretty cut and dried but what can a designer specify that will guarantee that
level of performance? So many additional factors come into play: The condition of the
production network (which is something that the requirements should outline in a
description of the operating environment), the condition of the database, and so forth. This
is a very difficult requirement to actually create a design for, since you're going to need
developers to specifically test their compliance to the requirement as they develop. This is
exactly where a quality point can be added, in a design statement like the following:

Requirement 7.1.12 specifies maximum response times for data retrieval. Assuming
that the production network and slow client computers may add up to 3 seconds’
delay, developers must ensure that the code provides a response within 7 seconds
of receiving a request. This must be tested against Test Database 3-B using Test
Scenario 3. Response times greater than 5 seconds must be reviewed by
development managers.

. 117 MICRO
H{:’dlumt‘ ClFochs

Chapter 6
-

This sets out a clear design goal, and provides instructions to testers and developers. It also
promises to provide realistic test data and a realistic test scenario. Having something like
this in the design documents puts everyone on notice that there’s a firm performance
commitment. Quality checkpoints like this can be built into numerous aspects of the
application - not just for performance-related issues. Consider these example design
statements that serve as quality checkpoints:

e Usability: “Each dialog box or screen of the application must be tested for
compliance with the company’s accessibility guidelines. The application must be
completely operable without the use of a mouse or other pointing device.”

e Compatibility: “The application must run on all operating systems (0Ss)
specified in Requirement 23.4.2, and when running must consume less than
800MB of memory in order to conform to Requirement 23.4.8.”

e Security: “The application may not use dynamically constructed SQL queries. All
parameterized queries must be built as stored procedures.”

When mapped to a corresponding business requirement, these design goals provide
specific points that can be unambiguously tested to ensure that requirements are being
met. That last one is a pretty straightforward design decision but it's something that a
tester couldn’t normally verify when looking at compiled code. Having a requirement like
that cues testers to the fact that they need to verify this by performing a code review, for
example.

Designing for Code Quality

You might think that “code quality” is something best left to developers. Although it’s
certainly true that you can’t get high-quality code without committed developers, it's not
true that amazing developers can always turn out quality code entirely on their own: They
need a good design to start with. There are a number of things a good design can contribute
to help improve code quality:

e Provide pseudo-code for critical algorithms and processes. Doing so makes key
components of business logic part of the design; it’s up to developers to implement
those in whatever technologies they’'re working in.

e Specify standards for checked-in code. Doing so allows the entire project to insist
that all code be of high quality. Standards might include coding conventions such as
variable naming, construct formatting, and so forth, and it might also include
standards around unit testing and other quality measures.

¢ Your design document should go as deep as specifying functional units of code, such
as programming objects, modules, and so forth. It should also specify unit tests for
these functional units so that developers can know when their code is ready to be
checked in.

118 MICRO
Realtime |:||=|:||:us

Chapter 6

Specifying and managing components and their interactions right in the design is a major
contributor to quality. For example, Figure 6.3 shows the relationships between four
components and a component that they all depend upon.

com.acme.ascp.web

L

- e
- =

w o

ol T

£ T
% com.acme.ascp.exception

L
'h.‘_h_
L=l

com.acme.ascp. frmwrk

Figure 6.3: Relationships between components.

By documenting these components, you not only help modularize the overall application,
but you also help manage ongoing change to the application. Knowing that changes to the
“Exception” class may require review and reprogramming in its four dependent classes is
important information. Too often, code quality is diminished by a “minor change” to a piece
of code, without sufficient insight into how that change may cascade into major problems
elsewhere in the application.

The relationships between units of code are referred to as coupling; Figure 6.3 is an
illustration of afferent coupling. Specifically, the “exception” class has an afferent coupling
of four, indicating that four components depend upon it. Components with a high afferent
coupling are extremely critical to the application; identifying this fact in the design can help
ensure that extra attention and care is given to this central piece of code.

By explicitly designing components and their couplings, a design can help avoid entropy,
which is the unexpected and unplanned-for coupling between components. Figure 6.4
shows an example: a third-party billing component, on the left, was intended to support a
custom billing component, which is on the right in the middle. However, during the
development process, other components—DAO and WEB—took dependencies on the
third-party component. Entropy can be damaging to the overall application because it
complicates changes to components; in this example, swapping out the third-party billing
component might be problematic, even if the original in-house billing component was
carefully designed to support replacement of its dependency.

. 119 i
Realtime CIFochs

Chapter 6

% com.acme.ascp.dao

-

-

i
§
v - -

=i

P E com.acme. ascp.billing

~. 3

T [|

™
) "% COM.8CMe.ascp.web

Figure 6.4: Diagramming entropy in code coupling.

Figure 6.4 illustrates another design concept that can lead to quality code: flexibility. Using
third-party components, such as this billing component, is a common practice—why re-
invent the wheel? However, by writing your own interface component—sometimes called a
wrapper—you achieve a few benefits. First, your wrapper—the “ACME Billing” component
in Figure 6.4—can be written for the specific needs of your application, making things
easier on other developers on the team. Second, provided that only your wrapper depends
on the third-party component, the third-party component can be swapped out more easily.

Note

Again, commercial software can help keep track of all the code units and their
relationships, and can provide statistics on coupling.

A final way that the design can help produce quality code is to help diagram efferent
coupling, which is essentially the number of dependencies a component has. Consider
Figure 6.5, in which the DAO component has an efferent coupling of three—meaning it
depends upon three other components.

. 120
Realtime ClFochs

publishers

Chapter 6

Eg COm.acme. ascp.exception

P ikl % com.acme.ascp utll
% L'-ﬂlf'l.-H'L;lf'lE.HSCp.UHC -

WOy

-IF'--hh-.._

T Em e e o
org.apache.logdj

Figure 6.5: Examining efferent coupling.

Keeping track of all these relationships is an important part of the design, and it can really
help drive quality coding by setting boundaries for developers, componentizing code to
make unit testing more effective, and insulating components of code from one another to
reduce cascades of changes and defects.

Cross Reference

I'm also the author of The Definitive Guide to Building Quality Code (Realtime
Publishers), which goes into more depth—from a developer perspective—on
code quality. Get it free from www.realtimenexus.com.

Designing for Performance

In almost a decade of experience, I could count on one hand the number of projects I've
worked on that included design specifications for application performance. Yet
performance is often one of the top two or three things that lead to a perception of poor
application quality! Even giants like Microsoft have run afoul of performance: When they
first released Windows Vista, they provided hardware requirements that were, in reality, a
bit too generous. The result was users trying to run the brand-new operating system on
barely-suitable hardware—and a lasting perception of poor quality that the company
spend tens of millions fighting.

. 121
Realtime ClFochs

publishers

http://www.realtimenexus.com/

Chapter 6
-

In my experience, designers often ignore performance for three reasons: First, it’s difficult
to design for. Second, they feel that eventually, hardware and other environment factors
will catch up. Third—and most important—is that their requirements didn’t specify any
performance metrics. Hopefully in the previous chapter I put sufficient emphasis on
performance as a part of the requirements document. The requirements should also specify
the environment that the application will run in, so that eliminates the latter two excuses
and leaves us with “difficult to design for.”

First, I'll acknowledge that unless the requirements states performance goals, then there’s
little a designer can do to help. You can always design for better performance, but at a cost
in time and effort; a designer relies on clear requirements to help draw the line between
performance and cost. When I'm tasked with designing an application, I look for
performance requirements first. If I don’t, [won’t proceed until the requirements are
modified to include performance!

Once the requirements are clear on the level of performance required and the environment
in which that performance must be achieved, the design can take over. There are numerous
techniques and considerations a designer has to help design for a desired level of
performance:

e Scaling up on larger systems, or scaling out across many systems

e Selecting communications components, such as networking stacks or database
drivers

e Managing concurrency in data access
e Specifying caching to reduce communications requirements
e Improving algorithms to require less processing

e Leveraging multi-tier architecture; for example, designing database queries to best
leverage the capabilities of the database back-end

e Replicating data to reduce communications bottlenecks
e Partitioning data to reduce communications bottlenecks and to increase scalability

e C(Careful examination of blocking operations - those which necessarily suspend
processing while waiting on a dependent process, and which can create a perception
of poor performance simply because the end-user can’t see the background
processing in action

. 122 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 6
-

So here’s how the design needs to lay things out: The requirements must specify some
desired level of performance. The designer must estimate any performance overhead from
out-of-control components such as the environment (client computers, network, and so
forth), creating for themselves a performance cushion, which is deducted from the desired
performance metric. The remaining room in the performance metric becomes a testing
goal, from unit testing through final acceptance testing. The design specifically needs to
indicate how that performance testing will occur: In what conditions, using what data, and
under what load—something we'll discuss more in the second half of this chapter.

Designing for Maintenance

In addition to working as a developer, I also have a background in systems administration.
One of the most common laments of administrators is that nobody designs software to be
maintained. Unfortunately, software that can’t be maintained is often perceived as poor
quality software, but administrators aren’t entirely correct in that nobody designs for
maintenance; in fact, few requirements documents I've read specify any requirements for
maintenance.

However, assuming that you're working with a good set of requirements that do include
maintenance criteria, a designer can have a significant contribution to the long-term
maintainability of the application. I'm not referring to maintainability of the code, by the
way; while that’s obviously important, too, I'm focusing on the maintenance tasks that keep
the application up and running smoothly over the long haul.

Maintenance tasks can include:

e Archiving data

e Deleting old data

e Backing up and restoring data

¢ Managing user access and permissions within the application

e Monitoring the application’s health and performance

e Managing the application’s configuration and operating parameters
e Maintaining primarily static data such as lookup tables

e Deploying the application (and subsequent patches or updates)

Some estimates suggest that application maintenance consumes 50 to 70 percent of IT
budgets; my experience supports that. In other words, most administrators spend most of
their time maintaining applications. The problem is that writing administrative interfaces
and maintenance code is, frankly, boring and tedious. Developers don’t like to do it, and so
they won’t do it unless the application design includes clear specifications.

. 123 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 6
-

Here are some ideas for design specifications that address application maintenance:

e Don’t wait until the application is finished to code maintenance capabilities. As each
unit of code is written, its corresponding maintenance interfaces need to be built at
the same time. This allows testers to test the entire application end-to-end.

e Never forget to include performance monitoring instrumentation. In Windows, for
example, this is commonly done through performance counters or through
Windows Management Instrumentation. Proper monitoring capabilities within the
application can help tremendously when it comes to performance tuning, since
you're able to “peek inside” the application for key performance metrics.

e Don’t assume that a particular form of administration is the universal best:
Graphical user interfaces, scripts, and command-line tools all have their place.
Ideally, code maintenance capabilities in a form that can be leveraged by various
interface types. For example, a set of maintenance code classes could be
implemented in command-line tools, which lend themselves to automation, or in a
GUI, which is often easier for less-experienced technicians.

e Design a complete disaster recovery plan for the application. Even if you can do so
using capabilities which already exist in your platform—such as using a database
server’s native backup and restore capabilities—your design should clearly indicate
how it will be handled.

A designer should try and foresee maintenance issues, even if they’re not addressed in the
requirements. If you're building an application that stores data, for example, you can
anticipate that data will accumulate over time. How will that be handled? Will it affect
performance? Is there a requirement to archive older data to near-line or off-line storage?

Caution

A set of requirements that doesn’t address maintenance is a red flag for
designers. Go back with a list of questions, and ask that the requirements be
revised to indicate how the business would like those questions addressed.
Questions might include, “how will this data be maintained over the years?”
and “how will administrators monitor the performance of this application?”
Requirements authors may overlook these issues, but a smart designer will
help them realize the importance of addressing them.

Designing for Users

In the previous chapter, [described how a requirements document may include
suggestions or directives for designing user interfaces. Figure 6.6 shows an example sketch
that a requirements contributor might provide.

124 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 6

[oRvER ENTRY
FioD CUSTdHeER

T @)

- GRYVER \TENS—

LR e [ERON) mee A

2. (same)
3. (w8 7))

o] = em L

TANX

— i peiNG —

(ercon W] eeneE /ow's &y SR

Figure 6.6: User interface sketch.

A designer needs to formalize these types of sketches, and in fact provide details on every
single aspect of the application’s user interface. Do not leave Ul design entirely to
developers to create ad-hoc: Developers shouldn’t be doing anything that isn’t in the
design, and developers should only be implementing the design, not designing new things.

Generally, Ul sketches shouldn’t be treated as the final word; many times, the contributors
of such sketches seek only to illustrate workflow and layout, and may not understand all
the background requirements that an application has. So consider the spirit of such
sketches. For example, Figure 6.7 shows an in-progress, formal Ul design that captures the
tab order from Figure 6.6. That tab order was clearly important to the person who made
the sketch, so it's important to make sure that is communicated through to developers if it’s
to be in the final application.

. 125 o
Realtime CIFochs

Chapter 6

Order Entry

Find Customer

Order ltems

Figure 6.7: In-progress user interface design derived from a requirements sketch.

Ul design is another are where requirements authors may not think of all the things that a
designer needs to know, so the designer can help improve the application quality by going
back, asking questions, and seeking expansion of the requirements. Don’t assume that just
because something isn’t in the requirements that it isn’t needed; the requirements authors
may simply have no realized they were overlooking something. These often-overlooked
considerations may include:

e Globalization—Will the user interface need to support different languages? That not
only affects the Ul layout, since some languages require more physical space on the
screen, but will also affect many other application design decisions.

e Accessibility—Will the application need to be used by users who have physical
challenges, such as poor eyesight or difficulty using traditional pointing devices like
a mouse?

e Usability—What's the exact workflow that users will need to follow in order to
obtain maximum productivity? A designer will rarely know this, and shouldn’t
guess, but it’s a key to making an application that’s perceived as being of high
quality.

.__.
P
F

.o 126 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 6

Designing Testing
Finally, we come to one of the most important aspects of a high-quality application design:
How will the application be tested?

Test Case Development
How will the application eventually be used? The various scenarios you can think of—
order entry by a phone agent, data export by a manager, and so forth—are referred to as
use cases. Each major use case needs to be tested, typically in discrete tests known as test
cases. Test cases must derive directly from the requirements, and must be clearly
defined in the application design.

Figure 6.8 shows an example test case for performance testing. This is a simple chart,
which includes a reference to a more detailed description of how each test is to be
performed. This is obviously a simplified example, suitable for summary reporting and
keeping track of various tests.

Rea

ll_imt"

Reference Test |Specific Test Date -
Number Test Case e b Expected Results PASS/FAIL Testad Initials| Comments
reskoan | el and Sesrch procossing sl
1 ¥) ¥P take less than & Pass 12/30/2004)48
weblog file |Load |size of those
- ; hours per batch {1/2
load into available from i
ABC Monday - Friday ¥
Process a single
batch containing Processing should
Test batch |ETL weblog Fact data take less than &
: load of Datalload |representative of in |hours per batch (1/2 rass 127 20/ 200408
Mart size of those day of files)
available from
Monday - Friday
Test
incremental Process the completelProcessing should
load of ETL set of daily referenceftake less than 2
3 SYSTEM Load |data files from hours per daily set of rass 127 20/ 200408
reference SYSTEM SYSTEM reference
data data
Processing should
Process a single take less than 24
IABC ETL :
4 Load ETL days worth of hours e!ap;gd time Pass 12/30/2004A8
p Load |reference and and no individual
rocess S
weblogs data from [segment (running in
IABC parallel) should take
rmore than & hours
Investigating
Test report Initiate Customer At least 12,000 issue.
generation Report generation Customer Reports " Customer
> - Customer REI:":'rtsthrcuugh daeman should be generated L 420408 reports
Reports process on a nightly (3 pm - 3 tterminated
am) basis abnormally
Test report Initiate Heading AL least 2,000
generation Repaort generation Heading Reports
6 - Heading REI:":'r-tstI"uru:nugh daeman should be generated Fass L4/ 200408
Reports process on a nightly (3 pm - 3
am) basis
Figure 6.8: Example test case summary.
127 F*
D MICRO

Chapter 6
-

Going into more detail can be accomplished in several ways. One way is to identify various

scenarios. In an example from it.toolbox.com, one scenario type list identifies various
business scenarios for bank account scenarios. Figure 6.9 shows a portion of the list.

BUSINESS SCENARIO TYPE LIST

Business Business Scenario Type
Scenario Type
Identifier

T IRA Savings Account - depositor is 70 1/2 years old or older

T2 IRA Savings Account - depositer is less than 70 1/2 years old

T3 IRA Timed Deposit - depositor is 70 1/2 years old or clder

T4 IRA Timed Deposit - depositor is 59 1/2 years old - term deposit
within 91 days through 10 years

IRA Timed Deposit - depositor is less than 59 1/2 years old - term
deposit within 91 days through one year

IRA Timed Deposit - depositor is less than 58 1/2 years old - term
deposit > one year < or = two years

IRA Timed Deposit - depositor is less than 59 1/2 years old - term
deposit = two years < or = 10 years

Figure 6.9: Business scenario types.

Notice the type identifiers T1 through T7. The designer can now specify test cases that
relate to these various real-world scenarios.

Test designs can become quite complex—more complicated, in some cases, than the rest of
the application design simply because test cases need to not only cover the proper
operation of the application, but also improper use. Commercial test management
applications can help in a few ways:

e Managing test cases and their relationship to the original requirements
e Managing test data associated with each test case
e Automating some types of tests

e Tracking tests and their results

128 MICRO
\CdlUlllc DFEII:LIE

Chapter 6
-

Designing Test Data

Poor test data is, in my experience, a leading contributor to poor-quality applications.
Developers instinctively seem to avoid “bad” data when performing unit tests, and without
good test data even testers won'’t be putting the application through its paces.

There are three ways to obtain test data:

e Make it up. This isn’t the preferred approach, as you tend to get fairly simplistic data
that doesn’t reflect real-world operating conditions. As soon as real-world data hits
the application, you're likely to find defects.

e Generate it. Sites like GenerateData.com, as well as many commercial testing tools,
can generate various kinds of data. Good generators are an ideal source for test data,
and they have the advantage of producing data that is fictional - meaning real
customer data (for example), with all of its privacy concerns, doesn’t become an
issue.

e Borrow it. Use real-world production data taken from another system. This is the
best and preferred source of good test data, since it reflects exactly what the final
application will deal with. However, real data can carry security and privacy
concerns. A medical billing application, for example, may not be able to use
borrowed data due to privacy laws.

Tip
One trick is to borrow production data but then scramble sensitive data. The
name “Connie Smith” might be scrambled to “Ninoce Htmis,” for example, or

identifying numbers rearranged. This technique helps provide test data that
is real-world in nature, but which may be considered less sensitive.

Commercial applications exist to help manage test data sets. After designing and creating
the appropriate sets of test data, the application can ensure that the data is available to
anyone who needs it. The application may assist in populating databases and other data
stores with test data sets on demand, and the application may help manage the security of
sensitive test data — such as that borrowed from a production environment. An application
may even provide auditing capabilities, so that all access to test data can be tracked; this is
often useful when dealing with sensitive real-world test data that is subject to privacy or
security laws.

The bottom line is that the application design needs to clearly indicate what test data will
be used, when it will be used, how it will be managed, and so forth.

. 129 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 6
-

Test Environment Preparation

The designer also needs to specify what the test environment will look like—again,
referring back to the requirements for information on what the application’s production
environment will look like. Specifying detailed test environments is easier these days, with
the broad availability of virtualization software. Virtual machines can run nearly any
operating system that the application needs to run on, and virtual machines can have
arbitrary restrictions places on their memory usage, processor capability, network
bandwidth, and other resources—allowing a bank of virtual machines to behave in much
the same way that real, in-production computers will behave. Virtual machines also have
advantages like the ability to “roll back” to a given state, allowing for easier reset-and-re-
run test cycles.

The test environment may also need external systems such as load generators, test control
systems, and so forth; the application’s test design should specify the availability and use of
these resources.

Test Execution

Many organizations feel that automated testing is the key to better software quality.
Certainly it is a key—but only if combined with well-designed test plans, realistic test data,
and properly-configured test environments. Automation can improve consistency and
speed of testing, but it cannot improve a bad or missing test design.

Note

Let me emphasize this: Automated testing tools are wonderful at removing
tedium, ensuring that tests are completed consistently every time, and often
at improving the speed with which tests can be run. That is all. Automation in
and of itself contributes very little to software quality - automation simply
makes it a bit easier to achieve whatever quality you have set yourself up to
have.

Even in an environment using automated testing, there’s still value in manual testing. An
automated test can'’t try different things, can’t act on hunches, and so forth; it's just dumb
repetition. If the automated tests don’t cover a particular scenario, then it won'’t be tested.
That’s why manual tests can be so valuable: If nothing else, they help identify additional
scenarios that can be set up for automated testing!

The actual execution of tests should be part of the test design. In the case of automated
tests, detailed descriptions of what is being tested, what inputs will be provided, and what
outputs are expected, should be documented in the design. Manual tests should have at
least the same level of detail, although some application designers I've worked with tend to
think that human testers can be set off on their own to “beat up on” the application. My
experience is that “beating up” on an application does a poor job of revealing significant
defects and doesn’t contribute much to application quality; the best use of manual testing is
to actually use the application just as any end-user would. Often, manual testing is the only
way to test complex software and processes that involve actions and evaluations that
automated testing can’t accommodate.

130 MICRO
Realtime |:||=|:||:us

Chapter 6

Test Results Analysis

Analyzing test results is a skill in and of itself. Some simpler tests are easy to analyze, such
as pass/fail tests that check for proper operation by feeding specific input into an
application and then checking for specific output. Such deterministic tests are often the
most easily automated, and they can be very useful in testing the various paths through an

application.

Other tests can be more complex. For example, Figure 6.10 shows an example result from a

performance test of a Web application.

Project: Projectl
Scenario: MyScenario
Start date: Scp 5, 2006 11:08:45 AM

End date: Sep 3, 2006 11:25:50 AM
Duration: 00:17:05

LG Hosts: localhost

Load Policy: e The population Populationl is ramping up
from 100 users adding 100 users every 3

minutes, to a maximum of 400 users.

Description: Test of the Petstore application running on
Tomcat5.5 with an Apache2 WebServer. The
anticipated production load on this application is
300 simultaneous users. The primary objective of
this test is to determine the response times and to
measure the capability of the application to
function correctly under this load.

Average hits/s 182 Total hits 186760
Average Request response time 1,01s Total errors 1444
Average Page response time 381s Total throughput 174.09 MB
Average throughput 173.0kB/s Total users launched 5323

Errors

400

300

s1asM)

| 200

100

50

&

[
o

Response Time (s)
[A]
o

o o

| 2 000

1500

S/SUH

1000

500

P e A e T N L

—_— PN

00:00 oo:02 00:04 00:08

0o:08 0o:10 0o:12 00:14

Time

|— Users — Errors — Hits/s — Response Time (s)l

Figure 6.10: Example test results from a performance test.

This isn’t a direct pass/fail result, although if it can be related back to a requirement that
specifies a maximum response time, then these results can be interpreted as pass/fail.
However, the results themselves are useful to developers and development managers,
because in the event that performance is not acceptable, this test helps provide the detail
needed to determine where the performance bottleneck lies. This test, for example,
revealed an increase in application errors toward the end of the test, resulting in a marked
climb in response times. That's something that bears further investigation in the code.

Realtime

publishers

131

| eadina

|:|M||::R|:|®
FOCUS

Chapter 6
-

Management Reporting

Knowing the results of tests is critical, because it helps manage the overall application
lifecycle. An application that is only successfully completing 10% of its tests isn’t close to
release, and the business can make appropriate decisions about the project—perhaps
extending timelines, if needed, adding more resources to the project, and so forth.

Ideally, detailed reports will be available for development managers. These might include
specifics on which code units passed and failed which individual tests, allowing the
development manager to continually balance resources across the project as needed. Other,
higher-level reports might show the application’s state of compliance with requirements—
something that should be easy if the test cases relate back to those requirements (and
something that test management applications can help keep track of). While lower-level
reports typically need a good amount of detail, higher-level reports may be expressed as a
list of requirements and a pass/fail indicator.

With the right management reports, development managers and higher-level managers can
keep track of the project. They can see the application’s current level of quality at a glance,
and they can more easily measure the balance between obtaining more quality and
controlling project expenses and timelines. Because these types of management reports
must roll up a great deal of test data, many development teams rely on test management
applications that can store the results of discrete tests, map those back to requirements,
and automatically generate management reports, “dashboard” displays, and other higher-
level reporting.

Summary

A solid, high-quality application design is the first step in translating business requirements
into a functional, high-quality application. A great design should live little, if anything, to
the imagination: Developers should be able to use a good design as a clear set of “marching
orders” that help them produce the exact application that the business needs. A good
design will clearly relate each design decision back to the original application
requirements. That's a carefully-planned flow of information, and by following a few simple
rules designers can ensure that they're producing a high-quality design:

¢ Nothing goes into the design unless it derives from the requirements.
e Everything a developer will need to know or guess must go into the design.

e If something needs to go into the design but isn’t addressed in the requirements, go
back and get it into the requirements first.

e If something isn’t in the requirements, it's because the requirements authors
overlooked it—not because they didn’t feel a need for it. If, for example, the business
doesn’t need performance monitoring in the application, modify the requirements
to simply state that.

In the next chapter, we’ll look at things developers can do, while implementing the design,
to bring more quality to the application project.

132 MICRO
Realtime |:||=|:||:us

Chapter 6
|

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 133
Realtime ClFochs

publishers

http://nexus.realtimepublishers.com/

	Chapter 6: Design—Building Quality In
	Designing to the Requirements
	Designing Quality Points from the Beginning
	Designing for Code Quality
	Designing for Performance
	Designing for Maintenance
	Designing for Users
	Designing Testing
	Test Case Development
	Designing Test Data
	Test Environment Preparation
	Test Execution
	Test Results Analysis
	Management Reporting

	Summary
	Download Additional eBooks from Realtime Nexus!

