Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 4
|

Chapter 4: What's Your QUAality LEVEL?...... e ssssssssssssssessessessessssssnns 68
The QUALILY QUIZ...ciuiereereererrressssssssssesssessessesses s s s s ssssss s ssssssssssssessssnsans 68
LORRF:10Un Y20 TR W 3 (0] 0] o) /000 TSP 72

TRE SCENATIO .ottt bbb s bbb 72
0 0TI 5 0] 0] (= 4 PP 73
THE SOIULION oottt ettt s bR b s 74
OO L A TR U o B 0§ {0) o O P 76
1 0 LI Y0l=) 4 E= (PP 76
0 0TI 5 0] 0] (=5 4 PP 78
TIE SOIULION oottt e s R bbb s 78
0D L A T T o 0] LS ES) (o) P 82
0 0 LY ol=) 4= (1 PP 83
THE PrODIEIM ..ottt e s bbb 84
TRE SOIULION oottt 84
QUALILY AS @ SCIEINCE. ...ttt sss s s s s st 85
Quality from the BeZINNINGccccreeeeereeeesreeesseesesseessessessesssesseessesssessesssesesssessssssesssssssssssssssssssssessssses 86
: o
Realtime 1 CIFochs
PUDIISNETS [eadin olution

Chapter 4

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 4

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for IT Professionals.
All leading technology eBooks and guides from Realtime Publishers can be found at
http://nexus.realtimepublishers.com.]

Chapter 4: What’s Your Quality Level?

It's nearly impossible to instantly go from little or no quality all the way to amazing quality;
much like building a skyscraper, you have to start with a solid foundation, complete the
lower levels, and only after getting everything in place underneath can you finish the top.
With quality, you need to get some fundamentals in place, and learn to build an
organization capable of implementing and sustaining quality in a repeatable, logical
fashion. So before going any further, it'll be useful to assess your organization’s current
quality level so that we can decide what the next steps will be to improve that level.

The Quality Quiz

The easiest way to quickly assess your current quality level is to take a short quiz. Simply
answer, as honestly as possible, each of these questions. Keep track of your answers on a
separate sheet (or print the answer card in Figure 5.1, which follows the quiz), and at the
conclusion, you'll create a score that points to your quality level. Choose only the best
answer for each question—that is, the one answer that fits your organization the most.

1. Your organization’s quality team...
a. Doesn't exist
b. Exists, but struggles to communicate quality
c. We have several quality teams that don’t always deliver consistent
quality
d. Exists and consistently delivers quality
2. Our quality tools...
a. Don’texist
b. Consist primarily of testing automation tools
c. Include automated testing and static code analysis tools
d. Track specific requirements and their business impact
3. We measure quality...

a. Primarily through end-user acceptance testing

b. Through mostly manual testing and some automated testing

c. Primarily through automated testing

d. Mainly by seeing how well business requirements are met by the
software

4. “Quality” means...

a. Bug-free

b. Thoroughly tested and accepted

c. Different things for different projects

d. Consistently bug-free software that does what the business requires

. 68 MICRO
Ht"(llumt‘ CIFochs

http://nexus.realtimepublishers.com/

Chapter 4
|

5. Our business leaders...

a. Have little faith in I'T’s ability to deliver quality
b. Are making a commitment to quality but don’t really know what to do
about it
C. See IT delivering quality sometimes but don’t know exactly when it
will happen or not happen
d. Have faith in IT’s ability to consistently delivery quality
6. Our company’s bottom line...
a. Has clear, negative impact attributable to poor software quality
b. Is hindered by buggy software, but we’re improving
C. [s hit less by bugs than by software that isn’t as productive as it needs
to be
d. Has a clear, positive impact attributable to good software quality
7. Our executives...
a. Have no idea where or why quality is being lost
b. See some automated testing but have no real connection to quality
C. Know that quality is being achieved sometimes but can’t point to
exactly why
d. Have visibility into how we achieve quality and know how to replicate
it
8. Our users...
a. Are frustrated with software that doesn’t do what they need, how they
need it done
b. Are patient with bugs but often feel that the software doesn’t work the
way they need—and feel that that outweighs the bugs they see
C. Generally receive bug-free software but are always asking for minor
changes and new features
d. Are typically pleased with their software and feel it makes them more
productive
9. We track software defects...
a. Primarily through Help desk tickets if at all
b. In a bug-tracking system that only our developers use
C. In a combined system that allows management reporting to reveal
bug correction rates per build
d. In a system that allows the existence of known bugs to influence the

next phase of requirements

. 69 MICRO
H{:’dlumt‘ CIFochs

Chapter 4

10. “Testing” means...

a. Beating up on the software to find the bugs

b Repeating the same testing process over and over—automation!
C. Automated testing to run through most user experiences

d Automated tests that focus on the original requirements not just

specific user paths
11. When we look at our software quality tools...
a. We don’t see many
b. We see a few
C. We see several, but different groups use different ones
d. We see a consistent set being used across the organization
12. Our main software development metrics include...

a. How long it takes to deliver the next build

b. How many bugs we found in the last build

C. How many defects we find in each test cycle, along with how many
were corrected

d. How well each build passes business-focused tests, including trending

from each test cycle
13. We explain and communicate quality...
a. Poorly, if at all

b Using simple statistics, often based on defects
C. Through detailed statistics covering development and testing
d With detailed statistics from every step of the software development
life cycle
14. Return on Investment (ROI) for software development...
a. Is something we're still waiting for
b. I[s something we can measure a bit but haven’t achieved
C. Is something we see on only some projects
d. Is something we consistently look for and achieve
15.“Test data” is...
a. Whatever our developers make up as they’re testing
b Ad-hoc data plus a standard test data set the developers created
C. Drawn from standard test data libraries we developed or purchased
d Copied directly from production systems and includes both out-of-

bounds data as well as edge-case data

. 70 MICRO
H{:’dlumt‘ CIFochs

Chapter 4
|

16. Our developers...

Aren’t always aware of best practices in coding

Are educated in best practices but don’t use them consistently
Consistently use all major best practices

Use all major best practices as well as define and use major internal
standards for coding quality

Quality Maturity Assessment Quiz

a0 oo

A|B |C |D A|B |[C|D
1 8
2 10
3 1
4 12
5 13
6 14
7 12
8 16

Figure 5.1: Print this scorecard to track your answers to the quiz.

All done? Let’s see how you did:

e Ifyou mostly answered “A,” your organization is mainly treating quality as a hobby.
Don’t take that as a complete negative—it means that quality is on the radar in your
organization but that it's not being done consistently or constantly.

e If you mostly answered “B,” quality is an ongoing effort—and a lot of it—in your
organization. That’s good: It means you're focused on quality and are striving hard
to achieve it, although the organization needs some improvement to make quality
more consistent.

e Ifyou mostly answered “C,” quality is being treated as a professional resource, even
through it’s still a struggle sometimes. That’s great because now you just need to
take the last steps to make quality a repeatable, consistent science.

e Ifyou mostly answered “D,” you've made quality a science, and you know how to get
it every time. You've achieved quality nirvana!

. 71 B
Realtime ClFochs

publishers Leading t

Chapter 4
|

Of course, many organizations will find themselves split between one of these quality
levels, which isn’t unusual; IT folks are, if nothing else, incredibly clever and often work
hard to produce a better product. But if you see facets of your organization in some of these
questions, then read on: We're going to look at what makes up each of these quality levels,
and more importantly, look at the steps necessary to move from one to another.

Quality as a Hobby

At this level of maturity, organizations typically have little or no formalized Quality
Assurance (QA) processes, team, or tools, and quality—if it occurs at all—is usually a
random happenstance. This scenario is extremely common for organizations that are just
ramping up a software development effort or are trying to produce major software projects
on a very minor budget and are simply flying by the seat of their pants. Organizations with
a very small number of software developers (say, less than four) often find themselves
operating at this quality level.

The Scenario

This type of organization often lacks any kind of dedicated QA team or personnel and
usually has few or no tools—such as automated testing tools—designed to help improve
quality. Typically, few people in the organization have formal software QA training, and so
everyone struggles to make quality happen. In many cases, few team members even realize
that tools and processes are available to help improve quality. Software releases are often
ad-hoc and are definitely reactive: user finds bug, developer fixes bug and runs a quick test,
new software build is deployed.

These organizations tend to focus heavily on bugs as their main problem, and spend
considerable effort trying to root out bugs and eliminate them. It's not surprising, then, that
automated testing is often considered the ultimate solution to quality because the right
automated testing can certainly contribute to a drastic decrease in bug counts.

Developers in this type of organization are often allowed to accumulate bad habits, either
through laziness or, more frequently, through a simple lack of education in proper best
practices. Code may be undocumented or sparely commented, and standards do not exist
for basic practices such as input validation, boundary checking, and so forth. Developers
may be aware of some basic best practices but may not always follow those practices
consistently.

Testing—when it occurs—is typically unit testing, conducted by developers as they go.
“Test data” is usually made up on the fly by developers—look for names like “AAAAA” in
the customer table, for example—and rarely pushes data boundaries or includes edge-case
data (such as names with punctuation marks or names that exceed the maximum length
allowed). Some organizations may rely on peer testing—having developers test each
others’ code—and may find that peer testing doesn’t add a lot of quality to the situation.
New releases often bring back bugs that were fixed in a previous version, and it’s rare that
a new release fixes any bugs without introducing any new ones.

72 MICRO
Realtime |:||=|:||:us

Chapter 4
|

Notice that these organizations typically spend very little up-front time planning
application releases. In fact, that is one of the key indicators of the “as a hobby” quality
level. Software development usually begins with only a cursory design phase, and there is a
lot of confidence that the IT group knows exactly how the business does its business and
knows exactly how end users do their jobs. Design phases, if they exist, are typically
focused on the technologies—database entity relationship diagrams, for example, network
diagrams, or software module flow and connectivity diagrams. Some organizations may
spend significant time on designing (for example) the application’s database, and consider
that a logical starting point to kick off a new application or an application revision.

The “requirements phase” in these organizations—if such a phase exists—often consists of
a senior developer or application designer interviewing a number of managers from
throughout the organization, and may result in a fairly comprehensive list of reports and
outputs—although these are seldom as detailed as they could or should be. The developer
or designer is often given contradictory requirements from different business leaders (a
common and unavoidable situation) and is left to him or herself to resolve those conflicts
and decide how the application will behave. In many cases, a requirements phase reveals
nothing as much as the fact that the business leaders themselves aren’t always really firm
on how the business operates, and it winds up on the developers’ shoulders to decide
which way the application will function.

The Problem

Some of the problems in this type of organization are obvious—unstable software that
doesn’t work the way it needs to may be late in releasing and often doesn’t accomplish
everything the business needs.

e Software often doesn’t do what the business needs, typically because the business
didn’t provide sufficient input early in the process

e Software often doesn’t work the way users want it to, usually because those users
had little or no input into the software’s design

e Software is often buggy, which is most attributable to poor coding practices as well
as a lack of formalized testing
The situation can be depressing for developers, too, who are often trying to do a great job
and are usually surprised when the software isn’t a big hit. They know their testing didn’t
turn up any additional bugs, so why do so many bugs show up as soon as the software is
released? Most likely because the developers made two critical testing mistakes:

e First, they didn’t use good test data. Ad-hoc test data often doesn’t reflect real-world
test data, such as punctuation in people’s names, overly long entries, and so forth.
The simple test data the developers used probably worked fine; it's when real-world
data starts to enter the picture that the application starts to encounter problems.

e Second, they're using poor coding practices. Nothing as obvious as putting
comments in their code but rather more serious issues such as failing to include
boundary checks for data inputs, failing to normalize data prior to processing it,
failing to handle database errors or exceptions properly, and so forth.

73 I:IMII:RI:I
nNCalulllc FOCUS

Chapter 4
|

Another problem—one that is often only too easy to spot—of this situation is that
developers spend a great deal of time firefighting. The Help desk spends a great deal of
time logging problem calls. Users spend a great deal of time fighting the software. Managers
spend a great deal of time commiserating about the problems and trying to figure out how
to fix it. The Human Resources (HR) department spends a great deal of time trying to
replace frustrated IT personnel who are leaving the company. Time is spent—and you
know, there’s a good reason that the phrase uses the word spent: Time is, of course, money.

The Solution

It would be nice if there was a simple set of steps that could take your quality organization
from zero to hero. Unfortunately, there aren’t—any more than there are a simple set of
steps that could teach trigonometry to a second grader. Instead, there’s a path that your
quality organization needs to take, skills they need to develop, and techniques they need to
learn—much as the second grader needs to learn basic arithmetic before moving on to
algebra, geometry, and eventually trig. And, like that second grader, these steps are going to
take some time—although, in the case of improving your quality, it shouldn’t take 10 years!

The first step is to establish a defect-tracking process. Even if you already have a Help desk
ticketing system that you're using to track bugs, look at a dedicated system for tracking
software bugs. You want to be able to classify bugs—keeping track of those that resulted
from simple syntax errors, for example, as well as those resulting from logic errors, poor
coding practices, and so forth. You need to begin establishing coding practices, such as
naming conventions, standards for input validation, and so forth. You also need to start
taking control of testing. Here are some specifics:

e Establish a defect-tracking system that identifies and classifies every defect—not
just bugs, mind you, but everything that the end users regard as a defect. This should
include sub-optimal user interfaces, missing report columns, and other “usability”
issues as well as actual bugs.

e Begin to create sets of test data that reflect actual production data and scope. If
possible, you may export production data from an existing system or you may
purchase test data sets. If necessary, be prepared to manually create test data. Tie
the test data set back into your defect system: Every time you discover a defect that
could have been caught through the use of better test data, add the necessary test
cases to your test data set. In other words, suppose you log a defect that describes a
software crash. Developers determine that the crash results whenever a customer
name like “O’Shea,” which contains a single quote, is used. You should immediately
modify your test data set to include names of this kind so that future software
releases can be tested for that scenario.

e Start to build a framework for testing automation. You might not be ready to move
into testing automation, which is fine, but start to document your testing processes
and procedures. Document what gets tested, how it gets tested, and which data set it
gets tested with. Testing might remain a manual process for now, but by
documenting those processes, you get better consistency and you get a leg up when
it comes time to begin automating.

74 I:IMII:RI:I
nNCalulllc FOCUS

Chapter 4
|

e Begin tracking testing statistics. Each test suite that you document should have
some kind of identification name or number; as you begin a round of tests, keep
track of which test suites have been completed and which ones are still waiting to be
run. Keep track of pass/fail statistics for each test you run. This might be done in a
spreadsheet, a simple database, or even in a piece of software designed specifically
for tracking software testing. The idea is to get some visibility into testing: How
often are you sending code back to the developers for fixes? What problems are you
catching in tests, and how can you modify your development processes to
proactively eliminate those problems?

e Tie your test suites into your defect tracking, as well. Each time a new defect is
found, examine the testing documents and determine where that problem should
have been caught prior to release. Modify test suites to include additional tests, test
data, or other measures.

The point here is that mistakes aren’t bad if you can learn from them and avoid repeating
them in the future. Figure 5.2 shows the relationship between your test data, the test suites,
the application itself, and the defect data collected from the application in production.

Software
App

Test
Suites

\

L------------------J

Figure 5.2: Test data feeds test suites, which tests the application; the application
creates defect data, which in turn improves both the test data and the test suites.

. 75
Realtime CIFochs

Chapter 4
|

Test Assets

At this point, let’s evolve from the phrase test data to test assets, which is a
broader term that allows for testing elements beyond mere input data. With
many applications, the bulk of your test assets will be input data sets, but as
you move into automation, you might develop assets that describe the user’s
actions in a graphical user interface (GUI) or you might create scripts that
run background processes, and so forth.

The idea is for these varied assets to be organized and reusable, and for you
to have corresponding outputs that the test assets should create. In other
words, given a fixed set of inputs, what output do you expect to achieve?
Software that can take the input, produce the correct output, and not
experience any problems in the middle is as close to bug-free as your testing
process can make it.

Finally, the big move you’ll need to make is establishing a quality team: Dedicated people in
charge of ensuring application quality. For now, they will focus mainly on testing the code
that your developers create, but once they’re in place, you're going to start building them
into a quality machine that can help ensure quality for every application you build.

Quality as an Effort

Your organization has a quality team, but they’ve not reached a high level of quality
maturity, yet. They’re working hard, and producing good results—sometimes. Consistency
is a problem, and an awful lot of effort seems to go into getting consistent results. In fact,
you might worry that the amount of additional effort required to achieve consistent quality
is...well, unachievable.

The Scenario

You have a dedicated team of QA folks, many of whom might have migrated from your
development teams. They’ve got the right ideas, including documented test cases and
reusable test assets. You might wonder if all the time they spend developing and
maintaining test cases is actually worth it, in fact, because they’re still struggling to define
effective testing goals and haven’t yet hit what you would consider a consistent level of
software release quality. They’re not able to convey “quality” in meaningful, business-
related terms. You've invested some money in getting them automated testing tools, and
you've put a defect-tracking system into place, but you're not sure that you're getting the
value you had hoped for from those investments. You're in what is perhaps the most
common quality scenario in the IT industry, and you're running up against a very common
set of hurdles that can seem insurmountable.

76 MICRO
I:IFEII:LIE

Chapter 4

The Quality Bar

Businesspeople are familiar with a number of “tiers” in building a business.
For example, it’s said that any sufficiently disciplined individual can build a
business that makes a million dollars, or perhaps even two. Making that
business into a five million dollar company, however, is where many
entrepreneurs fail, because they have to learn an entirely new and
uncomfortable set of skills—like managing people. Going from a five million
dollar company to a twenty million dollar company requires even more
unfamiliar skills, like how to manage a sales team, how to build an IT staff,
how to deal with HR issues—all things the smaller company didn’t have to
deal with.

Quality works in much the same way. A given quality skill set will get you to a
certain point but then you have to make a revolutionary change—change
attitudes, change skill sets, change processes—to move to the next level of
quality maturity.

At this level of quality maturity, the QA team is struggling to find their identity. Resentment
between them and the developers may have already started, as the QA team is viewed as
the “guys who try to break our code.” You might have established competitions—intended
to be friendly and motivating—that reward developers with the most defect-free code and
reward testers who find the most defects. But the QA team is still struggling to test the right
things, to efficiently update test cases and test assets to reflect real-world defects that
they’re tracking, and to keep the software aligned to the business.

Communicating quality is also difficult for the QA team. Oh, they have statistics—number of
test cases passed, number of defects found, and so forth—but none of that speaks directly
to quality in a business sense of the term. In other words, you’re well aware of how much
money you're spending on quality, but you're not seeing hard numbers on a return on your
quality investment. Quality is being discussed as a statistical exercise, not as a contribution
to the business’ bottom line.

It's difficult to get IT innovations through the pipeline, and sometimes the QA team comes
across as a bottleneck rather than a benefit. QA seems to hold things up, to slow things
down, and you’re not able to put your finger on any numerical, business-related benefit
from that.

77 MICRO
I:IFEII::LIE

Chapter 4

The Problem

The problem here can often be traced to the beginning of your software development
process, and in order to move to the next level of quality, everyone in the business needs to
change the way they think about software development. Let’s look at this problem from a
purely business standpoint:

e We've implemented a quality team

e They're telling us that they’re catching bugs
e Software releases are coming slower

e QA s costing us a lot of money

You see what’s missing? The benefit. And the statistics your QA team is producing are not
regarded as a benefit. Tell a business leader that the QA team prevented 52 bugs from
making it into production and the likely—and perfectly reasonable—response will be,
“okay, so we need developers that won’t produce those 52 bugs in the first place.”

Return on investment. ROI. That's what the business wants to know: What benefit or gain is
all that QA money getting us? Many QA managers simply throw their hands up in the air,
unable to explain any better than via the statistics they’ve produced. Many business
managers throw their hands up in the air, too, knowing that they need QA but not able to
really comprehend whether they’re spending too much, not enough, or just the right
amount on quality.

The ultimate problem at this phase of quality maturity is that quality and the business don’t
have a common set of terminology. QA likes statistics on defects caught; the business wants
ROI numbers. Interestingly, the solution to this problem also helps to solve the problem of
QA being perceived as a bottleneck in the development process, and even helps developers
produce higher-quality code in fewer revision cycles.

The Solution

The solution? Business requirements. Examine Figure 5.3, which presents a slightly different
view of a fairly generic software development life cycle.

. 78 MICRO
H{:’dlumt‘ CIFochs

Chapter 4

Business
Reqg's

App Test
Dev Test Data Suites

Test
Reports

Figure 5.3: The role of business requirements in determining quality ROL..

Here’s how it all needs to fit together:

e Business requirements drive both the software’s design and its development

e Business requirements also drive the test assets and the test suites—the idea being
that testing is intended to see how well the software is meeting the business
requirements—bugs per se are incidental; a bug is merely a symptom of the
software not meeting a given business requirement. “Bug free” isn’t a business
requirement; it’s a technical means of achieving business requirements.

e Business requirements therefore drive the test reports coming out of QA: “The
software has passed 80% of the business requirements and has failed to meet 20%
of them.”

. 79
Realtime CIFochs

Chapter 4
|

By having a strong, clear set of business requirements to begin with, and by tying every
point in the software development life cycle back to those business requirements, suddenly
you can communicate quality ROl much more easily.

Think about it: The business presumably knows the business value of the business
requirements (if they don’t, that’s beyond what you can fix). They can then look at the time
it takes for the software to be developed, and the amount of time (and other resources) that
QA requires to ensure 100% compliance with the business requirements. If the
combination of development and QA exceeds the original value of the business
requirements, you have negative ROI; if the combination of development and QA is less
than the original value of the business requirements, the difference is your ROI. Figure 5.4
illustrates this idea in a simple chart.

ROI
_ QA
|

Business Value of Requirements

Figure 5.4: Calculating ROI by understanding the value of the business requirements.

[s this an oversimplified explanation of software development ROI? Certainly. But the point
is that many businesses trying to calculate ROI don’t actually know the value of the project
in the first place. Without business requirements, QA isn’t creating ROI, and QA can’t tell
you how good of a job they’re doing because there are no milestones, no benchmarks, and
no measurements that will make sense. The business has to drive the requirements, and
the business has to be able to put a value on those requirements. If the business gets a piece
of software that meets the requirements, what benefit does the business expect to see?

e Will the software increase sales by 200%?
e Will it eliminate the need to hire 20 more people?
e Will it enable a partnership that results in $20 million in additional revenue?

If the business can communicate a dollar value (ideally) or in some other way express the
benefit this project is expected to realize for the business, QA can communicate quality ROI:
Your return is whatever benefit you expected the project to achieve, less what it cost you to
achieve it.

. 80
Realtime CIFochs

Chapter 4
|

ROI at Home

Let’s put this into different terms: You decide to build a house. The new
house will be in a better neighborhood and will include a home office for
your spouse, who plans to launch a part-time side business. Your spouse will
also be home with the kids more often, and the kids will have access to a
better school—which you anticipate will help them get into a better college
and possibly even a scholarship. The house is going to cost $500,000 to build
(a nice round number), but you anticipate it bringing you a benefit of $1.5
million over 5 years in terms of lifestyle improvements and all that money
you’'ll save on college—thanks to those scholarships. A third of your
anticipated return is going to be taken up by the house itself. Now you have
to decide how much of your time you’re going to spend on the job site
inspecting the work in progress and keeping it on track.

You could just focus on the major items—Ilayout and so forth—and spend
relatively little time, say $100,000 worth of your life. You could also choose
to micromanage every little detail, which might take up $500,000 of your life.
Or you could aim somewhere in the middle, showing up twice a week to
review everything and initiate corrections where necessary—say, worth
$250,000 of your time.

That middle road brings your total investment to $750,000, and will
probably do a good job of ensuring you get your full $1.5 million in benefits—
for a net ROI of $750,000. The lesser approach means you’ll only invest
$600,000 total in the house, but spending less time on the job site might
mean more and bigger mistakes, which might drive up the cost of the house
or reduce the house’s benefit to you—meaning you wouldn’t achieve that full
benefit you anticipated. You could spend a lot more time, investing $1 million
total (your time plus the house), and you’ll definitely get your $1.5 million in
benefit—but the net return would be lower, at $500,000.

There’s no wrong answer when it comes to ROI and quality. In this example,
your home inspection time is the QA time on a software project, while the
cost of the house itself is the software development time; the $1.5 million is
your “business benefit.” But the only way you could calculate all of this is by
having a clear set of requirements—a home office, for example—that drove
the development, gave your QA efforts something to focus on, and let you
judge the proper balance for your QA efforts.

81 MICRO
I:IF'EII:L]E

Chapter 4
|

Incidentally, a strong, clear set of business requirements will also reduce cycles for
software developers. With a clear goal that everyone can work toward, software can be
developed more quickly, tested more accurately, and deployed in less time—simply
because everyone’s on the same page, there is less back-tracking, and everyone agrees on
what the result should look like and how the final product should behave. QA becomes less
of a bottleneck because QA and the developers both know what’s expected and what the
final product should look like. Developers can focus on that more strongly from the
beginning, and QA and developers start to have a less adversarial relationship and more of
a partnership.

A QA team without a clear set of requirements can test what they’re given only to see
whether it breaks—not to see if it's what the business needs. If the app turns out to not be
what the business needs, the business loses faith in QA’s ability to deliver a quality app—
but it’s not QA’s fault.

Here are your next steps to move on to the next level of quality maturity:

e Start using clear, strong business requirements to drive development and quality
assurance.

e Continue to grow your body of reusable test assets, ideally deriving them from your
business requirements.

e Begin automating your test cases by using testing automation tools. You should have
sufficiently mature test suites, at this point, to effectively use automated testing
tools, and automation will help make QA more efficient—meaning you’ll lower your
overall QA costs and have a more positive impact on ROI.

e Firmly align quality to business goals. Communicate quality in business terms,
relating quality back to defined business requirements.

e C(reate executive-level visibility into quality by rolling up business requirements
into broad categories and aligning quality metrics to those categories. Give upper
management insight into what quality is achieving in terms that they can
understand and relate back to the business benefit they expect the project to
achieve.

Quality as a Profession

You've got a QA team—possibly even more than one. Quality is a serious part of the
business, and multiple projects are underway at any given time. You're still seeing
inconsistent release quality, though, and you’re starting to feel that you've invested in a lot
of different quality tools that aren’t all being used consistently.

. 82 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 4
|

The Scenario

When an organization gets serious about quality, develops reusable test assets, starts to
automate their testing, and starts to really tie things back to a top-level set of business
requirements, they're treating quality as a profession. There’s a dedicated QA team, and
they may be involved in several projects or you may even have different QA teams.

A problem is that each team or project isn’t using the same tools consistently, and in many
cases, might be trying out completely different toolsets. That right there is a problem: If you
take your car to the shop, you expect to see each mechanic working from a more-or-less
identical toolbox so that they can achieve more-or-less identical results. With your QA
teams relying on different tools, or not using them in the same way, you should expect to
see inconsistent results.

Beware the Kingdom

Having different QA teams working with different tools, or using the same
tools in different ways, is a common sign of political problems within the
business. The situation often arises when separate development teams
spawn their own QA groups, establish their own methods, and acquire their
own tools, and then become intent on building their own little “kingdoms”
within the organization—and become dedicated to defending their kingdom,
its assets, and its processes, against all comers.

This is an issue that can only be solved through top-level management
intervention. Quality is quality; it should be implemented consistently
throughout the organization. Having multiple quality teams is of course
acceptable, especially in larger organizations, but they all need to use a
common set of processes, procedures, tools, and techniques; ideally, this
means they’ll all be organized into a “Software Quality” department that
exists in parallel to your software development department. Achieving this
level of organization may involve shuffling people around, merging groups,
and enforcing some cross-functional friendliness, but this effort is well worth
it.

The end result of this type of quality maturity is that some software releases have great
quality while others have lesser quality. Customers—the end users of this software—can’t
develop a reliable expectation for quality, and executive management typically has minimal
(if any) visibility into what makes quality work, and how it’s being achieved. Business units
can sense that IT is capable of greatness, but they don’t always get it; business leaders are
wary of new projects because they know they can trust IT to delivery quality—but not
always. ROl is still difficult to calculate, and business leaders may start to instinctively
micro-manage both software development and QA in an attempt to ferret out inconsistency
and create dependable quality.

83 MICRO
I:IFEII:LIE

Chapter 4

The Problem

The problem comes down to two main things: consistency and communication. Simply
stated, it can be tremendously complicated to fix because the problems typically stem from
political/cultural ones within the organization and not from any lack of capability or desire
to succeed.

The Solution

The solution, of course, is more difficult than merely stating the problem or even accepting
that the problem exists. There are a number of steps you'll need to take to further mature
the quality level in your organization. The main ones include:

Establish best practices. Document how the quality team works, including their
tools and processes. Draw flowcharts and create the “Quality Manual” for your
organization. Require every quality project to utilize this manual and follow its
procedures. Keep in mind that the manual isn’t written in stone, though; be open to
changes that improve quality processes. Each new project is a learning
opportunity—continue to fine-tune the manual with each completed project.

Align to the business. Continue to align testing results to business requirements.
No quality project should begin until the final requirements are clearly stated;
without those requirements, you can’t know what to test!

Automate. Rely more and more on automation for testing, tracking business
requirements, tracking defects, and so forth. Automation equals consistency, and
with the right tools, automation can remove the very human tendency to “innovate
on the fly.” Although automation tools can of course accommodate changes and
improvements, they tend to force those changes and improvements to occur in a
more ordered, managed fashion—meaning beneficial changes become a permanent
part of the process rather than a happy accident that can’t be later replicated.

Involve the business. The business leaders who create a software project’s initial
business requirements should also be involved in developing key quality metrics.
How will you look at the application and know whether it is high quality? Only the
people who anticipate a business benefit from the application can answer that
question, and by answering it, they inherently create an opportunity for both
consistency and for more straightforward management of ROI.

Improve visibility. Continue to focus on quality metrics that are meaningful to
company executives and use those metrics to drive everything about the quality
process. Ultimately, the company’s executives are the first and most important
customers of any software project: It is their business, after all, that the software
seeks to improve or enhance; they should be able to tell at a glance how well the
software is doing that.

Quality should ultimately become not a happy accident that can’t be predicted but rather a
consistent, predictable, repeatable science that works the same, reliable way across the
entire organization—not just on specific projects.

]

I
|

}'r_\

lime 84 |:|M||:R|:|‘“"
realtime FOCUS

Chapter 4

Quality as a Science

When quality becomes a science, business requirements drive everything, as Figure 5.5
shows. Business requirements set the stage for the software design, which drives
development; business requirements specify what will be tested, while the software design
drives how the testing will be physically achieved. The ultimate quality output—quality
reports—connect directly back to the business requirements, telling business leaders (and
software developers and designers) how well the application is meeting their
requirements. With that kind of information in hand, business leaders can more easily
calculate ROI, balancing the need for further quality against the anticipated business
benefits that the application is meant to deliver.

Business Software
-+ Req's ﬁ Design

Software
Dev

Y

Testng f QA

Test

Test Plans
Assets

l Quality
Yy Ty Ty Reports

Figure 5.5: Driving the entire process from business requirements.

With automation and reusable test assets, quality becomes repeatable, consistent, and
reliable. Everyone in the organization knows what to expect, and they can be assured that
final software releases will meet their needs because those needs are the primary focus of
design, development, and QA.

. 85 MICRO
Ht"(llumt‘ CIFochs

Chapter 4
|

Quality from the Beginning

In the next chapter, we'll start exploring ways to make quality a science, beginning with a
well-structured, business-focused requirements-definition phase. We’ll move on, in future
chapters, to the design phase, looking at fundamental areas where quality can be ensured,
and then moving through the development and testing cycles.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 86
Realtime ClFochs

publishers

http://nexus.realtimepublishers.com/

	Chapter 4: What’s Your Quality Level?
	The Quality Quiz
	Quality as a Hobby
	The Scenario
	The Problem
	The Solution

	Quality as an Effort
	The Scenario
	The Problem
	The Solution

	Quality as a Profession
	The Scenario
	The Problem
	The Solution

	Quality as a Science
	Quality from the Beginning
	Download Additional eBooks from Realtime Nexus!

