Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 3
|

Chapter 3: Costs of Quality, Barriers to Quality, Benefits of QUalityc..cmnenesnennensenneennes 47
Quality COStS—EIther Way ..o sssns 47
The COSt Of NO QUALILY ..ccuiereeeeereeeceseereteesseteesseseessessesses s sssesse s s s s s ss s s s nsanes 48
BUES o 48

=) (0] 00T Vo Lo PP 49

LU EY=) ol 28 13 1< Loy 2 OSSPSR 49
Incorrect or INCOMPIEte QULPUL ... s 50

G 0 4 U= o U (PP 51
SECUTTLY cuvvueereererssesssssssssesses s s s s R e 51
Flexibility (Other Languages, ACCESSIDIlITY ..o seesesseesseseessesssesseessesnns 52

The COSt Of QUALILY ..ooeureeerriesseersecrer s 52
Where QUALITY IS LOST ..t sssssessans 53
I REQUITEIMEIIES ... ceeeeeeeeseeeeesseseessesssessesssesssessesssesss s s s s b e bbb bt 53
AMmDbigUOUS REQUITEMENTS.....ccuiuirienerseersersessessssss s s sssesssesssssssssssssssssnes 53
Non-Functional REQUITEMENTS........cnenineeeeseeisesssssssssssssesesssssssssssssssssessessssssssssssssssns 53
Details of HOW @ SyStem INtEractsmmeenrnenenesssessssssssssssssssssssssssssssssssssssssesssssssssssssas 54
USET EITOT CONAITIONS ..euiveieurieneereesseeseesseesessesssessesssesssessesssessssssssssessssssessesssesssesssssssssssssssssssssssesssssnes 55

4B D TE] 4 o T 55
Network Latencies and Bandwidth CONStraintsoeeeneeneneesseseesesssesseesseeseenns 55

Y0 1 =131 2O OO PSP 56
Heterogeneous Platform ReQUITEMENTScoceirmeesreenesseesssrsssssesssssssssssssssssssssssssssssssssnas 56
SECUTILY CONSITAINTS ..ccuvceeereereireieesesessessesses s sessssss s st st s s ssesssssessessessssssans 57

IN DEVEIOPIMENT ...t ses s s s 57

Code that Assumes a Particular Set of User Interactions that Do Not Meet End User

Needs OF EXPECLAtIONScvenineeesessessesssssssss s sssessssssssssssssssans 57
Code that Does Not Handle Error Conditions Well ... 58
Code that Does Not Consider Boundary Conditions.......eeeesessesssesssessesnns 58

. i MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 3
|

Code that Consumes Resources and Results in Scalability Problems.........cccccoovenrunennee 58
Code that Has SECUTItY FIAWS ... ssnns 59
Code that Does Not Conform to Standards for Internationalizationcceeeeeseeeneene. 59
Code that Does Not Meet Expectations for the Information to be Delivered............... 59
0T TS 1 P 60
Not Testing Business-Critical ProCESSES......uenmeereeneesesseessesesssessessssssessesssssssssessssssseens 60
Not Testing for USADIlityeerirrissessseessssrsessessessesssssssssans 60
Not Testing for Performance and Scalability ... 60
Not Testing Error CONAItIONSeeeereererreesereessereessessessesssesssessesssesssessssssessssssesssesssssssssssssesssesns 61
NOt TeStING Broadly ... eeeereeeeeseeseeseesseeeesseesesseessssssssesssesessssssse s ssss s ssss s sasssssssssssssans 61
Barriers t0 QUALILY ... ssss s s bbb 61
2 721 0 () P 62
TIGNE BUAGEES ceueeeeureeeeteeseteesse st secs s s es s s e s b e 62
Don’t Have Understanding of Quality Best PractiCesoenenenneneeneesseessesseeneenns 62
Lack of Business Involvement or ACCOUNTADIlItYccocrvenerrenmernnemrenesssinessseseessesssssesssssseenne 62
Lack of Business Process KNOWIEdge.......cooueerreereenmeereeneeeesseesesseesseesessesssessessesssesssessssssenns 63
Collaboration Is Difficult Between Practitioner Silosoeneneenneneeneenseeseeseeseenns 63
BUSINESS BAITIETS ... s 63
Lack of Time to Spend Working with IT on New Application Initiativescccueneenn. 64
Lack of Money to Invest in Better Quality PractiCes.......oeoeneeneenseeseesseeseessessesseesneenas 64
Expect QUAlity t0 Be TRETE ...t sssssssssssssesssssssesans 65
Benefits Of QUALILY ..o ssssssssesssssse s ssss st s s ssss s ss s ssss s ssessssssssssssssssnssnes 65
A 2= 4T LT 65
LOWET HEIP DESK COSES ouiuiurerreemreenresseesseesessesssessesssesssssesssessssssesssesssans 65
Free Up the Best Resources for New Frontier Projects.......eenn: 65
Eliminate Unnecessary Infrastructure INVEStMENLScmeoeenemmennesnmemesnessssssesssessessseens 66
BUSINESS BENETIES ...cuvceeeieceeeeretseessesecs s et s sse s s b s s 66

T ii MICRO
Ht"(llumt‘ ClFochs

Chapter 3
|

Higher Revenues and Market Shareensnseeessssssssssssssssessessesssssssssssssnns 66
Increased CUStOMET LOYAILY ...ccereeeeereeecrseeeeeeesseseessessesseessesssessesssssesssesssessssssesssesssssssssssssssssenns 66
Improved Regulatory and Industry COmpliance........oeenenreeneeneensesseessesseessesseeseessesseeens 66
LOWeET OPErating COSES ... sssssssssssssssss s ssssssssssssssssenns 67
Summary: Approaches t0 QUAlitYc.oererreemereesereessensesseessessessesssesseessessessessssssssssssssessssssessssaes 67
Download Additional eBooks from Realtime NeXUS!.......coneneenmerneeneeseesseesesseesseesessesssesnas 67

o

Realtime CiFoeis

publishers

Chapter 3

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T iv MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 3

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 3: Costs of Quality, Barriers to
Quality, Benefits of Quality

“Okay,” you might be saying, “after two chapters of harping on quality—I'm sold. What'll it
cost me?” An excellent question, because quality does indeed cost. In fact, it’s easy for
companies to get so focused on quality—or particular aspects of it—that they run their
development costs up past the point where the quality pays for itself. In other words,
contrary as it may seem, you can have too much quality.

Take a building as an example, and let’s replace the word “quality” with “sturdy;” certainly
sturdiness is one thing that people feel points to a quality building. Can you have too much
sturdiness? Of course. Traditional residential construction typically uses wood framing, but
are there sturdier materials? Definitely. Metal 2 x 4 construction, poured concrete, and
other materials offer more strength and longer life, but they do so at a significantly higher
cost. So why doesn’t everyone simply go with these sturdier materials and techniques?
Because in most parts of the country, that extra sturdiness doesn’t actually add value to the
house. Sure, in a hurricane-prone area, you might be able to easily justify the cost of extra
sturdiness by weighing against the damage that hurricane winds will do to a less-sturdy
home; in that case, you're offsetting the higher construction costs with demonstrably less
damage and a longer structural life. Elsewhere in the country, however, the cost of that
extra sturdiness isn’t offset by anything, meaning your expense isn'’t, in the end, worth it.

So it is with software. It's easy to spend a lot of money on some aspect of quality—say, bug-
free, or high-performance—but to spend more money than a lower level of quality would
have cost you. Therefore, we need to talk about what quality costs—both the lack of
quality, and the cost of adding more quality. With that information, we can begin to weigh
those costs against one another and strike an appropriate balance.

Quality Costs—Either Way

Application quality doesn’t come in black and white. Instead, it comes in many, many
shades of gray. In other words, there’s no “total quality” level beyond which no further
quality can be achieved. You do, in fact, need to decide “how much quality” is right for you,
and to do so, you need to have a firm handle on what that quality will cost, and what it will
cost to forgo having that quality. In the next two sections, we’ll look at the cost of not
having quality, and the costs that adding quality imposes on a project; it'll be up to you to
determine the correct balance between them for your organization.

P 47 MICRO
H{:’dlumt‘ ClFochs

http://nexus.realtimepublishers.com/

Chapter 3
-

The Cost of No Quality

The only way to measure the cost of not having quality is to examine the symptoms of poor
quality, and chart the cost of dealing with those symptoms. To go back to the construction
analogy, this is essentially saying that the wind damage suffered by structure type A costs
$20,000 per storm to repair. That gives us a hard number against which to compare the
cost of a better type of structure—if it'll cost $100,000, then we can expect a payback in five
years, and can determine whether that is suitable for us.

In software terms, there are several major areas of poor quality that we can begin to
measure. Of course, a guide like this can’t offer hard dollar figures; those will vary
drastically across different organizations. What we can do here is look at the symptoms and
at ways of measuring them so that you can figure out the total dollar value within your
environment.

Bugs

As we've seen in previous chapters, bugs (“defects,” if you prefer the polite word) are one
of the first symptoms of poor quality that nearly anyone can point to. And they certainly do
cost: Major bugs will generate Help desk calls, require troubleshooting and remediation
time, require testing of those remediation steps, require deployment, and possibly require
additional end-user training. A single major bug can cost an organization tens of thousands
of dollars without really trying hard; smaller bugs, however, might simply be categorized as
“annoyances” that users can easily work around and that cost the organization very little to
live with and to eventually repair.

Any organization that develops software must be prepared to track defects; any tracking
system must allow for bugs to be categorized, and that categorization should reflect the
cost of the bug to the organization: critical bugs, for example, are ones encountered
frequently that are hampering business efforts. Minor bugs are mere annoyances that cost
little and can often be worked around or ignored. Any critical bug is going to have some
fixed cost points:

e Users will continue to report a bug to your Help desk or other support system;
they’ll also continue to report varying symptoms caused by the same bug; each one
costs time (and therefore money) to answer, record, and—in the case of new
symptoms of a bug—troubleshoot and classify

e (ritical bugs generally cause some loss of production, which equals a loss of money
e Bugs will take time for developers to troubleshoot, resolve, and test

e Releasing new software that resolves a bug will take time and, because no release
ever goes perfectly, there will be additional costs for problem resolution,
deployment management, and so forth

e The cost of regression testing, which is required to ensure that the “fix” doesn’t
break anything else

48 MICRO
Realtime |:||=|:||:us

Chapter 3

Assume each Help desk call costs about $20 to deal with—a conservative estimate
involving only first-tier support (Source: Gartner research in “Help the Help Desk” by John
Brandon). Also assume that each bug costs each user about $20 worth of lost
productivity—again, a pretty conservative estimate. Assume software developers are paid
$91,000 per year (fully loaded, including benefits), testers are paid similarly, and that a
critical bug can be resolved and tested by a total of two such individuals over the course of
a week. Assume that the bug affects only 1000 users, and that each user encounters the bug
an average of 5 times per week (both conservative numbers for a large organization).
Assuming that deployment of a fixed application goes smoothly and costs nothing, you're
still looking at more than $100,000 in costs ($20 per call multiplied by 1000 users at five
times per week) a week for that one bug; if you could have spent anything up to that
amount avoiding the bug in the first place, it would have been money well spent.

Performance

Performance is the one area most organizations will agree that they have significant room
to improve. It's hardly rare, for example, to call into a phone support system—whether an
airline, your bank, a travel agency, or your insurance company—and have a representative
tell you, “the computer is being slow today.” A lack of performance in applications seems to
be extremely common based solely on anecdotal evidence; what's the cost of this type of
poor quality? It can be difficult to measure in some organizations, but easy in others. A
travel agency earning a minimum $30 commission per phone call, for example, and
employing only 100 phone agents, could earn $24,000 more if each agent answered just
one extra call per hour. If each call averaged 10 minutes, you would need to make each call
just about 1.3 minutes faster—something you could probably achieve if the computer
wasn’t “being slow today.” Taken across an entire year, that’s nearly $9 million in
additional commissions, without having to add more phone agents (and their salaries) to
your bottom line. Think you could have spent something less than $9 million to improve
this aspect of your application’s quality? Probably. And yet many businesses don’t even
consider this type of quality when setting out to develop new software applications!

User Efficiency

User efficiency is related to performance; rather than the user waiting on the computer,
however, the computer is waiting on the user. User efficiency is most often impacted by the
application’s user interface (UI):

e [sitpresenting, and collecting, information in the same order that the information is
actually needed or available?

e Do users have to jump back and forth between screens or windows?

e Do they have to re-enter information?

49 MICRO
lai-_dllml&: |:||=|:||:us

http://www.processor.com/editorial/article.asp?article=articles%2Fp2807%2F30p07%2F30p07.asp

Chapter 3
-

Something as simple as keyboard shortcuts, properly used, can make an enormous
difference. A user who can simply hit “tab” to move from input field to input field can be as
much as 12% more productive than a user who must repeatedly take their hands from the
keyboard and use the mouse to reposition their cursor (Source: Microsoft Corporation
study on interface design and software usability, June 2005). If our travel agents from the
previous example are using the mouse a lot, then a fairly simple re-engineering of the
screen to use “tab” properly will result in that 12% savings might be worth $6 million over
the course of a year, simply because the user could move through the application faster,
complete calls faster, and move on to the next call faster.

It's really tough to imagine something like a better Ul design resulting in that kind of
monetary savings or gain. But user efficiency is a well-known factor in other industries,
including the home-building analogy we began the chapter with. The rule of thumb for
kitchen design, for example, is that the refrigerator, sink, and stove be arranged in a
triangle whose sides are not longer than 26 feet in total (this was developed by the Small
Homes Council of the School of Architecture at the University of Illinois in the 1950s); by
breaking this model, you might cause a homeowner to spend an extra 10 minutes
preparing a meal. On a meal requiring one hour to prepare, that’s a 16% loss, and over the
course of a year, that’s more than 60 hours wasted—more than a full work week or a week
of paid vacation!

Even minor gains in user efficiency, particularly on repetitive tasks, can result in
tremendous savings. For every 10 employees who can realize a mere 10% gain in
productivity, you can avoid hiring, or re-task, another employee in that same position (a
10% savings multiplied by 10 employees equals a 100% total savings, which is equal to one
full employee). That can really add up.

Incorrect or Incomplete Output

Another more visible area of poor quality is in applications that produce output that is
incomplete or incorrect. Incorrect reports, for example, can lead directly to bad business
decisions. For example, suppose an application is incorrectly underreporting the amount of
discounts offered to customers, causing the business to decide they can afford to offer even
more discounts—creating a direct negative impact to the company’s bottom line.
Incomplete output can be less obviously dangerous, but in an insidious way, can cost even
more as employees spend precious time hunting around to assemble the data they need. If
a report simply lacks one piece of data that is readily available within the application, it
might have cost an additional hour during the design process, an hour during development,
and a few hours during testing, to have included that report in the first place—at a cost of
maybe $250 or so in salaries (assuming five individuals paid $100,000 each and require an
additional hour apiece to design, develop, and test the more-complete report) for the
people involved. Yet that incomplete report, if used weekly, might cost two managers an
extra 10 minutes in productivity—potentially $860 or so per year (assuming two salaries
of $100,000 each).

50 MICRO
Realtime |:||=|:||:us

Chapter 3
-

Maintenance

Maintenance, like performance, is another area application designers and developers
frequently ignore: They’re concerned with putting out an application that works, not
necessarily one that can be subsequently maintained over the months and years that
follow. Yet applications that are not designed to be maintained are often difficult to
maintain, and the costs of this poor quality can be terrifically difficult to measure. Is the
application storing data that is subject to regulatory or industry compliance or privacy
rules? If so, the lack of archiving capability, for example, might result in hundreds of
thousands of dollars in fines. Is the application easy to back up and restore? If not, a failure
might result in millions of dollars in lost data. And yet most of the technologies that support
modern applications, including relational database management systems, make it easy to
design and develop such features. Including scheduled archiving capabilities in an
application based on Microsoft SQL Server, for example, might require an additional 250
man-hours—Iless than $32,000 if the application is being developed by a consulting firm
charging $125 per hour. If that archiving functionality protects the company from four
minor European Union (EU) privacy infractions, it will have paid for itself (the 1998 Data
Protection Act specifies a minor-infraction fine equivalent to approximately $8500 per
occurrence, including instances where data is improperly retained by companies).

Maintenance can also be related to user efficiency. If an administrator being paid $60,000
per year can save one hour per week on application maintenance (either by making
maintenance tasks more efficient or automated), the company saves about $1500 per
year—well within the realm of what it might have cost to design automated or more
efficient maintenance into the application in the first place.

Security

Security is an obvious result of quality, and poor security the obvious result of poor quality.
What does poor security cost? Unfortunately, in many organizations, nothing; [say
“unfortunately” because if there was a clear, consistent cost to poor security, then poor
security wouldn’t exist. Many organizations, however, have never been affected by a
security problem, and have never encountered the tremendous costs associated with it.
Think of security as a kind of insurance: It'll cost you something to buy it, and you might
never need it. But if you do need it, the insurance is vastly less expensive than the
alternative.

. 51 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 3
-

Poor security can result in data being disclosed to the wrong people, either to internal
users or, worse, to external entities who might be able to misuse the data. Improperly
disclosed data might result in direct financial loss, such as fines (in the case of government-
protected data, for example, such as patient data in healthcare organizations), or it might
result in indirect loss, such as the loss when a competitor gains access to proprietary
intellectual property. It might result in significant long-term loss. For example, suppose
your company develops a new technique for manufacturing widgets that will result in a $5
million yearly savings, enabling you to slightly undercut your competitor while maintaining
your margin. This improvement cost you $10 million to develop, and you expect a complete
return on that investment in 3 years. Prior to securing a patent on the process, however, it's
accidentally disclosed due to a lack of application security, and your competitor gets hold of
it. That kind of disclosure can lead to the patent never being awarded, you and your
competitor again being on equal footing—and you eating that $10 million investment. All
for want of a little security. This isn’t even an extreme example; anecdotal evidence
suggests that many companies “leak” a significant percentage of their revenue through
relatively minor security problems in their enterprise applications.

Flexibility (Other Languages, Accessibility)

Suitability for the business’ needs is perhaps the best generic definition of software quality,
and flexibility can certainly contribute to the application’s suitability. Is the application
accessible to all employees, even those who might not have full use of a mouse or the
keyboard, or who might have minor visual impairments such as color blindness? Can the
application be easily localized into other languages so that the company’s international
users can operate it in their native language? Building these capabilities into an application
isn’t exceedingly minor, but it isn’t exceedingly difficult, either; modern software
development tools and frameworks include these capabilities if designers and developers
choose to use them. Retrofitting an application to have these capabilities, however, can be
incredibly difficult—some estimates suggest that retrofitting can consume as much as 40%
of the time it took to develop and test the application originally (Source: 2005 study of Web
application development times by the World Wide Web Consortium; see

http://www.w3.org/International/questions/qa-i18n for an introduction to the topic).

The Cost of Quality

If you're able to define the costs of poor quality, what will having great quality cost you?
Paying for quality typically means paying salaries because improving quality is nearly
always a matter of spending more time in key areas. The size of a project, of course, directly
impacts the salaries involved: A small project with a single designer and a half-dozen
developers will, obviously, have fewer salaries than a major project with 50 developers and
a small team of designers. All these professionals are, of course, paid at different levels, and
will each spend a varying amount of their time on the project before moving on to
something else. The right software development tools can help improve quality while
reducing salary requirements.

Thus, to properly calculate the cost of quality, it’s perhaps most useful to look at the areas
where quality is typically lost. You can then see where in the development process more
time is needed, and begin to assess the cost of quality more accurately.

52 MICRO
Realtime |:||=|:||:us

http://www.w3.org/International/questions/qa-i18n

Chapter 3
|

Where Quality Is Lost

Sadly, quality is rarely lost through deliberate mis-action—that is, nobody’s ever rooting
for poor quality. Instead, the opportunity for quality is most often lost through inaction;
simple neglect, a lack of awareness, or an honest lack of experience.

In Requirements

As we've explored in the previous two chapters, the requirements phase of an application
is where the biggest opportunities for quality are generally overlooked. The requirements
phase is the business’ one and only chance to specify exactly what the business needs the
application to achieve; nearly every major quality fault can be traced back to a set of
requirements that simply didn’t specify that factor of quality.

Ambiguous Requirements

Are your requirements specific? Or, to be more precise, are they specific from a business
level? 1 find that legislation is a remarkably good analogy for ambiguous requirements. One
state, for example, might pass a law that states “...minors under the age of twenty-one shall
not be permitted to sit at a bar where alcoholic beverages are served.” It's understood that
the idea is to keep children from drinking, but the law says nothing about children who
might be seated elsewhere, and that ambiguous wording might lead to someone breaking
the spirit of the law being excused because they hadn’t violated the letter of the law. The
law should have simply stated the requirement: “Minors aren’t allowed to drink.” Let the
implementation of that requirement be driven by a clearly stated intent.

This is true in software requirements, too. Don’t state that “Uls must be efficient” because
“efficient” is a relative term that can be measured differently by different people. You might
feel that an “efficient” Ul requires less than 5 minutes to complete; a developer might feel
than 6 minutes is “efficient,” and the difference might be millions of dollars in productivity.
If the business is looking to realize a benefit, state the desired benefit directly: “The Ul must
permit a user who has 6 months’ sales experience to complete the input form in 5 minutes
or less.”

Non-Functional Requirements

Non-functional requirements—things that don’t directly contribute to the application’s
function, but are nonetheless important from a quality perspective—are frequently
overlooked in requirements. What are the application’s desired performance metrics?
What languages will it need to be used in? Must it be accessible to employees who can’t use
a mouse, or who are color blind? None of these can be assumed; anything that is desired by
the business must be clearly stated.

p 53 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
-

Performance is often something difficult to state, but it’s so important to create a
performance goal that, honestly, it should be a primary consideration when creating the
requirements. How long should various operations take to complete from beginning to
end? Once a user hits “OK” on a dialog box, how long is the application allowed to take
before displaying a response? These performance goals must be reasonable: Nothing is
instantaneous, and wishing for it won’t make it happen. And performance goals should
clearly state the environment for which they’re written. For example, your requirements
document might simply state that:

Performance goals are stated with the assumption that 1000 agents are using the
system simultaneously from both of our offices, and that each agent is using a
computer running Microsoft Windows Vista, having at least 2GB of memory and a
1.5GHz or faster single-core processor, and connected via a 100Mbps Ethernet
adapter to our existing network infrastructure.

This requirement is unambiguous, and it helps ensure that any testing down the line will
reflect this real-world scenario—rather than testing being done on the developers’ brand-
new state-of-the-art computers on a separate, high-speed network with no other users. You
also know that you can expect performance to degrade once more than 1000 agents are
using the system, and once your numbers start to reach that level, you’ll be able to decide
what to do about it.

Understand that performance definitely costs. For example, rather than relying on native
database drivers, a designer might decide that, in order to meet performance goals, the
application will need higher-performance drivers from a third party. The designer might
even want to evaluate several options for drivers, and perhaps even build a small pilot
application to directly test drivers’ performance. All this costs, so you need to understand
the potential savings so that you can balance those costs.

Details of How a System Interacts
It's easy to state high-level business goals—“This application will accept sales orders”—
and to leave unstated the details of the underlying interactions:

This application will accept sales orders via manual user input. Orders will be
entered into a local database, and will be sent in hourly batches to external order-
processing partners in pre-defined XML formats. Accepted orders will be placed into
an existing third-party data archive and into a new data warehouse database for
reporting purposes. Orders will also enter the system from order-entry partners
using a variety of file formats (including CSV, XML and others yet to be defined);
these orders must enter the system and be treated identically to manually input
orders.

This level of detail provides far more information about what the application must be able
to do. Designers now know that they need to allow for future data formats, for example,
and that the user-input application isn’t the only means by which orders enter the system’s
flow. This is crucial information because it drives a number of high-level design decisions
that will ultimately have enormous impact on the final application’s quality.

54 MICRO
Realtime |:||=|:||:us

Chapter 3
|

User Error Conditions
What should the application do when something goes wrong? It’s very, very rare for
application requirements to detail this—but they should:

e Should errors be logged?
e Should errors be displayed to the user?

e What level of detail will help developers and Help desk agents troubleshoot and
ultimately solve the error?

e Isthe error clear enough that users can resolve it on their own?

e Should the error direct the user to self-service assistance, such as an online
knowledge base?

Further, what potential errors will users make that can be anticipated? Can those errors be
resolved internally?

A good example of this is the spelling-suggestion used by the Google search engine. Search
for “softwar security” and Google will perform the search, but ask, “Did you mean: software
security?” The designers anticipated that users might make spelling errors, and defined an
error condition within the software to suggest alternative searches based on suggestions
from a spelling dictionary. This highlights the error to the user, allows them to continue
working on their own, and provides a path to resolve the error without involving support
resources.

In Design

Design is where the business’ requirements are translated into technical directions that
developers and testers can follow to produce the final application. You should be crystal
clear on one thing: The design will not achieve any level of quality that is not specified in the
requirements. That said, it’s possible for designers to overlook elements that contribute to
poor quality, and the next few sections will highlight some of them.

Network Latencies and Bandwidth Constraints

Designers can easily fall into the “perfect world” view, where they forget about real-world
constraints such as available network bandwidth and latencies. In many cases, the
designers feel they have little control over these elements, and that they’re justified in
ignoring them. In fact, the designer should review existing network conditions and specify
a design that guides developers into working within those conditions. For example, the
designer might specify a maximum amount of data that can be retrieved in a single call to a
database, or might specify that developers plan the application to recover from repeated
network timeouts due to high latency. Designers can be driven to consider these
constraints by specifying the constraints and real-world conditions in the requirements.

g 55 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
-

Scalability

Designers can lose track, or often be unaware, of how the application is expected to grow.
An application that works well for one user—say, an application founded on a file-based
database such as Microsoft Access—might stop working completely when faced with a few
hundred users. Designers need to consider not only the current user workload but also the
projected user workload for the future—and they should get those projections directly
from the requirements. Using the requirements, the designer should be able to specify
technologies and techniques for both programming and testing to ensure the desired level
of scalability. The test design is especially crucial. You can’t always take performance
measurements from 10 users and multiply to predict performance for 1000 users;
computer performance doesn’t work like that, and the designer needs to create tests that
will allow the application’s performance to be accurately tested for the expected load.

Understand the potential cost of that, though. It's not usually possible to accurately test an
application that is intended to have 10,000 simultaneous users, for example, without
having thousands of testing machines—hardly practical. In order to guarantee that level of
scalability, a designer might take an entirely different direction with the application’s
entire architecture, creating an application designed for a thousand users—which can be
practically load-tested—and then running multiple instances of that application in parallel,
potentially on segregated networks. That type of design is much more scalable, and it's
possible to ensure a level of scalability; however, that type of design might be much more
expensive than less-easily load-tested designs. Be sure you're specifying—and designing
for—realistic, practical levels of scalability.

Heterogeneous Platform Requirements

Does your design specify that the application be able to run across heterogeneous
platforms? Will it need to communicate with both Microsoft SQL Server and Oracle
databases? Will it need to run on Windows and Mac computers? Will it accept data from the
Internet, where nearly any type of computer might be sending the data?

In the age of the Internet where all computers can communicate with ease, we often take it
for granted that all computers can communicate with ease; such isn’t always the case. The
Internet specified cross-platform capabilities from the outset; if your requirements don’t do
so, designers might select technologies and techniques that aren’t as cross-platform as you
ultimately require.

But be careful: Platform-specific techniques and technologies are often easier and cheaper
to work with. If your application will only need to communicate between machines running
Windows, then designers are right to select for Windows-specific technologies because
doing so makes developers’ and testers’ jobs easier—and therefore less expensive. Forcing
cross-platform operation may force a decision to use something more complicated, and
therefore more expensive.

56 MICRO
Realtime |:||=|:||:us

Chapter 3
|

Security Constraints

Designers will not always consider security beyond the very basics, if even that. Your
requirements need to specify the operating conditions and security requirements in some
detail so that designers can specify appropriate measures. Will the application be
accessible to the public? If so, the designer might need to take significant steps to protect
against attacks originating on public networks—and those steps might add significant time
and cost to the application. Is the application’s data subject to specific security
requirements? If so, the designer may need to adopt a more complex—and expensive-to-
develop-and-test—security model to meet those requirements.

With a good set of requirements, the designer should be able to be very specific about what
the developers should do. The design should include a synopsis of the business
requirements, and then go into a great level of detail about how the application’s security
will work. This design must include security interactions across all components of the
application, including back-end and middle-tier components, and ideally each portion of
the design should explain how that portion contributes to the original business
requirement.

In Development

With a good design, it’s tough for developers to go wrong, but not impossible. A key is to
ensure that developers have access to the original business requirements—which should
always be the arbiters of any conflict or compromise—and that the design specify the ways
in which the particular design meets the business requirements.

With a proper design, and with developers who follow that design, nearly all the following
can be avoided. However, these are particular areas to pay attention to because they’re
details that are either often left to developers or areas where developers are most likely to
diverge from the design intentions and statements.

Code that Assumes a Particular Set of User Interactions that Do Not Meet End User Needs or
Expectations

Developers rarely come from the side of the business where their applications will actually
be used; as a result, applications frequently work the way the developer thinks it should,
and not the way the user thinks it should. Take a simple order-entry application: The
developer thinks of this as an order, as a customer, and as a set of items within the order.
This is a data-centric view of the universe, and it might lead to an application where the
user selects a customer, enters order details, and then selects items to be added to the
order. Sensible enough, perhaps, but maybe not realistic. The sales user might instead want
to start by capturing the items to be ordered so that they can engage in add-on sales and
upselling, and by getting the information that is at the top of the customer’s mind—what
the customer wants to buy. Selecting the customer and entering order information might
be last on their list as necessary chores to be completed, but that might bore the customer
and reduce the sales opportunity.

p 57 MICRO
H{:’dlumt‘ ClFochs

Chapter 3

A good design will provide detailed workflow diagrams and possibly even Ul mock-ups to
guide developers; it's rare, however, to find a design that doesn’t leave the developer with
some assumptions to make—and developers will assume that everyone using the
application will think like them.

Code that Does Not Handle Error Conditions Well

Because designs rarely specify how to deal with errors, developers are often left to their
own devices. Ambiguous error messages such as, “Error 52” are typically the best you can
hope for; more commonly, developers won't try to anticipate errors and applications will
crash, create inconsistent data entries, or do other undesirable things. This is an area
where experienced development managers and senior developers can really earn their pay:
reviewing code and spotting potential error conditions and ensuring that they’re handled
properly—according to the design, or at least according to best practices. Automated tools
can also help spot certain types of error conditions and help developers ensure that those
conditions are handled gracefully within the code.

Code that Does Not Consider Boundary Conditions

A boundary condition is an unexpected condition resulting from data exceeding some
predefined limit. If a user enters a 10-digit invoice number, for example, but the system
only supports up to 8 digits, what will happen? A buffer overflow is perhaps the most
dramatic example of a boundary condition: An application sets aside 8 characters in
memory for the invoice. Inmediately following that are 8 characters for the order total. A
user enters 10 digits for the invoice, and the program—without performing boundary
checks—stores those 10 digits to memory, passing the 8-character boundary and writing
the last two invoice digits into the first two characters of the order total—potentially
wreaking havoc.

This is one area where best practices, code-quality tools, and careful testing saves the day.
A design might specify that the application reject invoice numbers longer than 8
characters—that is, after all, a potential user error condition; but it’s often difficult for
designers to be that specific with every piece of data entered. Instead, static code scanners
can often detect at least the potential for this type of problem, and best practices tell
developers that all input should be boundary-checked before storing it; managers and
testers can help in ensuring those best practices are followed.

Code that Consumes Resources and Results in Scalability Problems

Developers are often fortunate enough to work on fast computers and have access to the
latest technologies; unfortunately, that means they’re often not considerate of the
computing resources where their applications will actually run. Although it’s up to the
designer to specify technologies that can scale to the level specified in the requirements, it’s
up to developers to properly implement those technologies in ways that minimize resource
consumption. Once again, best practices, smart management, and development tools can be
invaluable in helping to do so.

p 58 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
|

Code that Has Security Flaws

Although boundary checks can help prevent certain types of security flaws, other kinds of
security problems still exist, many of which rely more specifically on logical flaws in the
code. For example, an application’s internal security mechanism might assign users a
numeric access level; the code might also assume that anyone with a level of 9 or greater
has access to anything. Later in the development cycle, access levels 10, 11, and 12 are
added—but the original assumption of 9 being the “super user” isn’t addressed in the code,
resulting in a security flaw. The programming constructs that result in this type of flaw are
common, and this type of mistake is an easy one to make. Thorough code review and even
more thorough testing are your best bets for catching this type of problem, as are best
practices that advocate more restrictive approaches to security.

In addition, the designer can help developers avoid these errors by more clearly specifying
the security architecture, and by—when possible—relying on security mechanisms
inherited from other technologies. For example, rather than building their own security
model into a data-access application, designers might rely on the more robust security
already offered by the back-end database system, and simply specify that the application be
prepared to deal with “access denied” and other related errors that might be returned by
the back-end.

Code that Does Not Conform to Standards for Internationalization

We've already discussed how retrofitting an application for localization can be far more
expensive than building localization in to begin with; if you make the decision to build a
internationalized application (that is, one that can be localized into different languages),
you also need to make sure developers follow the necessary practices throughout the
application—icons, error messages, and nearly anything else that a user might lay eyes on
needs to be programmed in a way that permits later localization. It’s easy for developers to
stick in “temporary” error messages as they’re developing and unit testing, and to later
forget to pull those messages and replace them with the proper, internationalized code.
Code review, testing, and programming tools can help make it easier for developers to do
the right thing and to catch instances where they don’t.

Code that Does Not Meet Expectations for the Information to be Delivered

Screens that don’t show enough information or reports that don’t contain the right
information are often perceived as coding problems; however, in reality, they can
frequently be traced to poorly defined requirements. If your application’s requirements are
well-defined, then testing for those requirements will reveal instances where developers
didn’t adhere to the design or where the design didn’t live up to the specified requirements.

p 59 MICRO
Ht"(llumt‘ ClFochs

Chapter 3
|

In Testing

Most organizations feel that testing is where quality begins. In fact, it’s certainly where you
can see poor quality most visibly arrested, but it’s really just the last opportunity for quality
out of a long software development life cycle. It’s an important last opportunity, though,
and many organizations don’t maximize that opportunity.

Testing is often performed by a QA department, and there’s a reason it’s called Quality
Assurance and not something like “Quality Implementation.” On its best day, QA—that is,
testing, specifically—can only catch quality flaws. It can’t actually improve quality; flaws
must be turned back over to developers, who repair the flaw. Testing cannot add quality,
but poor testing practices can detract from quality by failing to catch flaws.

Not Testing Business-Critical Processes

If the business requirements are what drive the application’s design and development, it
should drive the testing, too. Regard the requirements document as a checklist against
which the entire application should be tested. Test the application as a real user would use
it, using realistic data (both good and bad), under realistic conditions (even if simulated),
and for a realistic number of cycles (don’t enter one order when a real user would enter 50
orders per day). Unit testing and other levels of testing are great and necessary, but the
ultimate measurement of quality is testing the entire business processes that the
application was intended to implement.

Not Testing for Usability

Is the application easy to use? Does it meet its usability requirements? Again, the
requirements drive the vehicle, and without good requirements, it’s very difficult to say
whether the application is “usable.”

Make sure usability testing focuses on real-world usability, too, not just theoretical
usability. Sure, users might agree with the “theoretical” workflow for 80% of the time, but
the application needs to remain usable for the other 20% of the situations, too. Observe
users, assemble realistic test data and usage scenarios, and make sure—again—that
everything matches back to what the original requirements specified.

Not Testing for Performance and Scalability

Are you tired of hearing that the application’s requirements should specify performance
and scalability goals? If so, gopod—you’re getting the message. As with everything else in the
requirements, testing is the last chance to verify that the requirements have been met, and
nowhere is this more difficult than in dealing with performance and scalability.

Automated testing tools can help “load test” applications, but these load tests are very
rarely identical to actual production application load; production loads are random and
“peaky,” meaning they’re almost never as evenly distributed as the load a load-testing tool
might create. For example, a load-testing tool might reveal that your back-end database
performs well with up to 5000 users; under production conditions, however, you might see
poor performance when the load suddenly peaks to 5000 from a much lower level, rather
than being evenly applied all along.

. 60 MICRO
H{:’dlumt‘ CIFochs

Chapter 3
|

The goal is to consider all the factors of a production environment and try to simulate them
as closely as possible in testing. You should also “stress test” by applying unreasonable (and
unrealistic) loads to the application as a whole, and to its various components, so that you
have upper-limit metrics on performance. All these different types of performance testing
can help spot flaws in the application; all the testing metrics should also be retained to help
ongoing production health and performance monitoring of the application.

Not Testing Error Conditions

Error testing is often regarded as testers “trying to break it,” and testers often get a certain
amount of glee in reporting bugs back to developers. That’s fine, and it’s a necessary part of
testing, but error testing isn’t just “trying to break it.” Error testing should also include
methodical attempts to feed the application bad data, take the application down every
possible combination of workflow paths, and so forth—testing to make sure that what will
become common occurrences in the real world are tested, caught, and fixed during the
testing phase.

Not Testing Broadly

It's easy—especially with automated testing tools—to get caught up in testing just a few
specific things, especially if those things are being problematic and revealing a lot of bugs.
Testers live on bugs, and if they’'re producing a lot of them, they feel they’re really doing
their jobs—and they are, just not their whole jobs. The entire application needs to be
repeatedly tested. You test module A and find no problems, but find 10 problems in module
B. Are you done testing module A? No, because the fixes in module B may affect module A;
you need to focus on the entire application. That may be boring, which is why those
automated testing tools exist, but it has to be done to ensure quality.

Barriers to Quality

So why don’t we all just get serious about quality? What's stopping organizations from
having amazing levels of quality in every application? There are two distinct areas: barriers
within the IT organization itself, and barriers that come from the broader business. It’s
truly important to recognize that these barriers exist to some degree in nearly every
organization in the world, or that these reasons at least have the potential to exist within
any organization. These are the things you will have to fight to achieve quality, and you will
continue to fight them until the organization formally recognizes the impact of these things
on quality, and the benefits in removing these barriers and allowing quality to become a
part of the business’ daily life.

P 61 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
|

IT Barriers

The IT organization faces barriers that fall into two broad categories: resources and
knowledge. Both contribute to quality, although the resources category is somewhat easier
to see and fight—and it's why many IT organizations feel that resources (or lack thereof) in
some form are the total quality picture.

Tight Budgets

In business, resources equal money; tight budgets mean tight resources. This might take
the form of “not enough developers,” “not enough time to design the application properly,”
“not enough testers,” and so forth. In some cases, tools can be cheaper than human
resources, and tools can in some instances make up for a small lack of human resources.
Automated testing tools, for example, can help reduce the number of testing staff needed
while still helping to improve application quality. But automation can’t replace a skilled
application designer taking the time necessary to produce a quality design, so automation
is not the end-all, be-all of better quality.

The IT organization needs to have a frank and open dialogue with management about the
real costs of building a quality application, and a solid understanding of the costs of not
building a quality application. To overcome the budget barrier, business management must
be able to commit to a given level of quality, be able to communicate that level of quality,
and be able to measure the quality actually being delivered.

Don’t Have Understanding of Quality Best Practices

Inexperienced development teams often lack a good understanding of quality best
practices. It takes time, for example, to code in boundary checks for every input—and
frankly, it’s boring coding. Why do it? Sure, everyone knows it’s a “best practice,” but what’s
the cost in not following them? New developers may even lack fundamental knowledge of
what best practices are. In all cases, the key to removing this barrier is education: classes
for beginning developers, reading materials, and automated coding tools that can help
developers spot areas where best practices belong, explain what those best practices are,
and help implement those best practices in code.

Lack of Business Involvement or Accountability

It's a little stunning, sometimes, to see how little the business involves itself with
application development that is intended to benefit the business. Let’s go back to the home-
building analogy. If you, the homeowner, aren’t in on blueprint design, and if you're not
showing up at the job site periodically, why in the world would you think to complain when
your house wasn'’t suitable for your family?

Yet businesses often have a turnkey attitude, handing off projects to IT with a demand only
that they be accomplished quickly and cheaply, and investing little management time in
ensuring that IT can actually do so. Typically, poorly defined requirements are the glaring
neon sign of an uninvolved business who doesn’t care what IT does so long as they
somehow get it right—without business leadership.

. 62 MICRO
H{:’dlumt‘ CIFochs

Chapter 3
|

This barrier is easily solved in theory: IT simply doesn’t begin projects that don’t have
clearly documented business requirements that communicate the end benefits the business
wants to realize. Smart CIOs and CTOs understand that they’ll be held accountable for what
IT does, and they make sure that the business is driving what IT does. Smart development
managers won’t begin a project until the business is willing to invest the time to create a
detailed set of business-level requirements.

Let’s be crystal clear—This is the single most important and challenging barrier that IT
faces. This is what makes or breaks quality. Every other IT-related challenge can be dealt
with internally—whether it involves juggling budgets, educating developers, or what-have-
you; unless the business is involved enough to produce requirements, the project will
ultimately produce poor-quality software. Period.

Lack of Business Process Knowledge

IT knows IT; it may think that it understands what the business does and how the business
operates, but that’s rarely the case. There are nuances and details to every business project
that are never captured in flowcharts and requirements documents. IT must recognize
their lack of business process knowledge and must instead seek that knowledge from the
people who will be using the application—not their four-times-removed manager but the
actual people who will be touching the buttons. Nuances are a key factor in quality, and
those nuances come only from on-the-job experience. By openly acknowledging their lack
of business process knowledge at a nuance level, IT can open conversations with business
process practitioners to ensure a quality application.

Collaboration Is Difficult Between Practitioner Silos

Another problem IT has is its own internal silos: developers like things one way, database
administrators like them another, and systems administrators prefer things a third way.
Typically, this inter-disciplinary tension is a good thing because it helps bring many
different viewpoints to the table; a good application designer and project manager can and
should be the arbiter between disciplines, favoring nothing except the quality of the final
application. The project manager in particular should always be thinking, “how does this
help further meet the original business requirements?” and resolving any disputes or
disagreements in favor of those business requirements.

Business Barriers

Businesses place plenty of their own barriers in front of quality, and recognizing these are
the first step toward eliminating them. Let’s look at a few of the common barriers, and
discuss where they come from and how they can be avoided.

P 63 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
-

Lack of Time to Spend Working with IT on New Application Initiatives

Requirements, requirements, requirements. Has it been said enough? Be completely clear
about one thing: IT cannot produce a requirements document by itself. It must come from the
business. The business is paying for this application, after all, and the business presumably
has some reason or reasons for doing so. Write those down. Write them down in a good
level of detail—and those are your requirements. But if the business isn’t willing to spend
the time working with IT to develop those requirements, the business would be best served
by not undertaking the development project at all.

Let’s forget new home construction for a moment and talk about kids. You send your child
to school, and they bring home a straight-D report card. Did you ever make it clear that “D”
wasn’t acceptable? No? Then don’t yell at the kid—they had no expectations, no
requirements, and so they did what they wanted to.

Bob: No Clear Requirement

One of the most public failures in the software industry was the mid-1990s
release of Microsoft “Bob,” an application that aimed to make Windows
easier to use for non-computer experts by offering a more familiar, real-
world set of analogies to computing tasks. “Bob” failed miserably, but not
because it had a lot of bugs, or was hard to use, or was too expensive, or
anything we might typically associate with “quality.” Instead, “Bob” simply
didn’t meet the needs of the audience. The people who were expected to pay
for “Bob” didn’t care about the things “Bob” did—it solved a problem that, for
them, wasn'’t really a problem. “Bob” is an excellent example of an IT
department—Microsoft, in this case—embarking on a problem that they had
been told about, which is that computers were too hard to use. But they
didn’t get a clear set of requirements from the people who told them that,
and so the final result—a computer company’s vision of how to make
computers easier to use—didn’t even remotely match the actual needs.

Business must invest the time to work with IT on new applications. There’s no option, and
any sane IT department will politely decline to proceed until the business has the time.

Lack of Money to Invest in Better Quality Practices

Quality, as we’ve said more than once in this chapter, costs. If the business can’t afford to
pay the price, the business can’t have the quality. Period. That said, most businesses feel
they can’t afford quality because in many respects, they can’t understand it, measure it, or
even measure what it costs not to have the quality; those are areas where IT can and must
help. By showing the business how to measure quality and how to attribute costs to a lack
of quality and by helping the business gain insight into quality throughout the IT
organization, the business may realize it does have the funds for quality, after all.

Chapter 3
|

Expect Quality to Be There

Business managers may not even think of quality, or if they do, they assume it comes from
having highly paid developers. As we’ve seen, that’s simply not true. It may therefore be
incumbent on the IT organization to demonstrate, numerically, where quality has to come
from, and what the costs of poor quality are. Point to past projects that had quality issues,
and explain in detail how various poor-quality elements came from a lack of business
involvement, education, or other means. Above all, help management understand that
quality doesn’t “just happen,” and that it’s a measurable, definable set of practices that can
be implemented and followed to produce quality—but that quality is as much a “product”
as the software application itself.

Benefits of Quality

Obviously, quality is good. Nobody reasonable will ever disagree with that statement. But
why is quality good? Because if there’s no reason for it to be good, there’s no reason to
pursue it and produce it. Knowing what to expect at the end of a high-quality project is
what drives you to make it a high-quality project in the first place; just as we’ve looked at
the barriers both IT and businesses place in front of quality, let’s now look at the payoff
both IT and the business can expect to achieve by removing those barriers.

IT Benefits

When quality is achieved, IT becomes more business-driven, more consistent, and more
proactive. Ultimately, these all benefit the business, but they have an immediate and more
noticeable impact at the IT organization level.

Lower Help Desk Costs

This is perhaps the easiest metric for software quality: Have the Help desk calls gone up or
down? Good software quality means users aren’t complaining about bugs, performance,
missing information, or anything else—meaning the Help desk spends less time dealing
with the software, which means IT costs immediately go down.

Free Up the Best Resources for New Frontier Projects

Poor quality software typically consumes the time of some of your best and brightest
people—the ones who can deal with troubleshooting a bad application in midstream, who
can fix it quickly, and who can test and deploy it reliably and rapidly. Wouldn’t you rather
have your best and brightest working on new, important projects that will have real impact
on the business? It's almost certain that they’d rather be working on new projects than
troubleshooting and repairing old ones; it’s difficult to imagine the business not realizing a
benefit in having your best people working on new projects to further the business’
capabilities. Good software means good people can move on to new projects, continuing to
improve the business rather than fighting fires and trying to keep the business afloat.

p 65 MICRO
Ht"(llumt‘ ClFochs

Chapter 3
|

Eliminate Unnecessary Infrastructure Investments

Poor quality software is a direct driver of unnecessary upgrades to networks, servers,
databases, disaster recovery systems, and more. An application with poor network
performance is practically impossible to re-architect and improve; it’s usually more
practical to simply upgrade the network to deal with the application’s actual real-world
requirements. But it would have been cheaper by far to build a good quality application
from the outset—an application that used the existing infrastructure rather than abusing it.

Business Benefits

When quality is achieved, the business saves money. It really is that simple: Quality is
something that costs, but the costs are typically traceable directly to end benefits. Or at
least the opposite is true: Good quality software keeps business from being bad.

Higher Revenues and Market Share

Most businesses can point to the lost revenue and, as a result, the lost market share due to
poor-quality software. Software that loses orders, takes to long to implement good
customer service, makes employees work harder instead of smarter, and so forth
contributes to lower revenues—and it’s all due to poor quality. It stands to reason, then,
that good quality software—applications that retain data, make data entry easier, connect
with customers more meaningfully, and so on—will help raise revenues.

Increased Customer Loyalty

Sometimes, businesses get the idea that they’re fighting to get money from customers. In
fact, customers typically like doing business with good organizations—ideally, doing so
makes customers’ lives easier in exchange for some money. What customers don't like, and
why businesses often feel like they're fighting customers, is businesses that make it tough
to do business.

If you call to book a flight with an airline, and it’s a hideous process—they take forever to
find the right flight, have to keep asking you for your credit card information, and take
hours to email a confirmation—are you likely to keep them at the top of your list for future
travel? No, they’ve lost your loyalty, and in many cases, the reasons can be traced to poor-
quality software. Software is intended to make it easier for businesses to do business; poor-
quality software makes doing business difficult, and makes retaining customers painful.

Improved Regulatory and Industry Compliance

Quality software has fewer defects that lead to information leaks and security breaches,
meaning businesses have an easier time meeting government- and industry-mandated
rules. Quality applications provide reporting and auditing tools as required, and the
business can treat compliance as a part of the business, not something that occurs on top of
the business.

P 66 MICRO
Ht"(llumt‘ ClFochs

Chapter 3
|

Lower Operating Costs

When quality becomes a science within the organization, operating costs simply go down.
Software has fewer defects and aligns with business needs, which nearly always revolve
around lowering costs by increasing productivity. Lower operating costs means better
margins, which means better profits, which means everyone’s happy because the
investment in quality paid off.

Summary: Approaches to Quality
So how do organizations approach quality? There are really four levels, which I categorize
as:

¢ Quality as a Hobby—Organizations without a quality team, who rely primarily on
user acceptance as their quality metric. They tend to view automation (such as
automated testing) as the key to better quality.

¢ Quality as an Effort—The organizations that have an established quality team, but
one with little experience. Usually there are some QA tools in use and defect
tracking is in use, but there is difficulty in establishing quality goals.

¢ Quality as a Profession—A mature QA team, possibly more than one, exists in the
organization. Different teams use different tools and techniques, and releases across
teams are of inconsistent quality. Executives have little insight into quality, and
quality is not typically aligned to business objectives.

e Quality as a Science—The ultimate level, where consistent quality across projects is
apparent, and where management has clear insight into quality levels, problems,
and processes.

In the next chapter, we’ll see where your organization fits into these levels, look at what
comprises each one, and lay out some practical, achievable action items that can lead you
from one level to the next.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 67 MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

	Chapter 3: Costs of Quality, Barriers to Quality, Benefits of Quality
	Quality Costs—Either Way
	The Cost of No Quality
	Bugs
	Performance
	User Efficiency
	Incorrect or Incomplete Output
	Maintenance
	Security
	Flexibility (Other Languages, Accessibility)

	The Cost of Quality

	Where Quality Is Lost
	In Requirements
	Ambiguous Requirements
	Non-Functional Requirements
	Details of How a System Interacts
	User Error Conditions

	In Design
	Network Latencies and Bandwidth Constraints
	Scalability
	Heterogeneous Platform Requirements
	Security Constraints

	In Development
	Code that Assumes a Particular Set of User Interactions that Do Not Meet End User Needs or Expectations
	Code that Does Not Handle Error Conditions Well
	Code that Does Not Consider Boundary Conditions
	Code that Consumes Resources and Results in Scalability Problems
	Code that Has Security Flaws
	Code that Does Not Conform to Standards for Internationalization
	Code that Does Not Meet Expectations for the Information to be Delivered

	In Testing
	Not Testing Business-Critical Processes
	Not Testing for Usability
	Not Testing for Performance and Scalability
	Not Testing Error Conditions
	Not Testing Broadly

	Barriers to Quality
	IT Barriers
	Tight Budgets
	Don’t Have Understanding of Quality Best Practices
	Lack of Business Involvement or Accountability
	Lack of Business Process Knowledge
	Collaboration Is Difficult Between Practitioner Silos

	Business Barriers
	Lack of Time to Spend Working with IT on New Application Initiatives
	Lack of Money to Invest in Better Quality Practices
	Expect Quality to Be There

	Benefits of Quality
	IT Benefits
	Lower Help Desk Costs
	Free Up the Best Resources for New Frontier Projects
	Eliminate Unnecessary Infrastructure Investments

	Business Benefits
	Higher Revenues and Market Share
	Increased Customer Loyalty
	Improved Regulatory and Industry Compliance
	Lower Operating Costs

	Summary: Approaches to Quality
	Download Additional eBooks from Realtime Nexus!

