publishers

Solutions for

Automating
IT Job Scheduling

Greg Shields

Removing complexity

Shortening time to implementation

Business Benefits
Realized Through
ActiveBatche Enterprise
Workload Automation

Integrate
Workflows Across Applications,
Platforms, Databases

Eliminate
Scheduling Wait Time

Improve
IT Service Levels

T’_:7_/7
ncmenalcn" . Server Utilization Rates

ENTERPRISE SCHEDULING Implement

Centralized View and Management
of Jobs and Workflows

Increase
Effectiveness of Overall Business Processes

Reduce
Errors from Manual Operations
Cost of IT Operations

Payback Period:
4.6 Months

Integrating Your Business Applications Across Distributed Computing Environments
ActiveBatch® Enterprise Job Scheduling and Workload Automation, from Advanced Systems Concepts,
removes the complexity from integrating business applications, databases, and mainframes. Focused

on shortening the time to implementation and improving service levels by eliminating custom scripting
via its Integrated Jobs Library, ActiveBatch automates job scheduling across diverse distributed computing

environments, creating a centralized view of operations at the project, organizational or enterprise level.

Learn More at www.ActiveBatch.com

A|S | Abvanced SysTEMS

C|I) Concerrs, Inc.

http://www.advsyscon.com
http://www.advsyscon.com
http://www.advsyscon.com/products/activebatch/job_scheduling.asp
http://www.advsyscon.com/tei/total_economic_impact_whitepaper.asp

Solutions for Automating IT Job Scheduling Greg Shields
__|

Chapter 3: What Makes an IT Workflow? A Technical Deconstruction..........eeeneenes 31
A Workflow Is an IT Activity, QUantified.......sssssssssssssssssses 31

06 101000 g o) (00O OO 32
Monitorable and MeasSUIable........ et s s sssasssnsanes 33
Repeatable and REUSADIE ... sessessssss s sssssssssssssssssssssssssssssssssssssnes 34
Y1010 = o) U= OO 35

A Ground-Up IT WOrkflow CONStIUCLION......oieueereerersieserssesssesssesssesssesssesssssssesssesssesssssssssssessssssssess 36
Job Libraries and the Value of TIIZEET'Scuinneeineiesssees 44
An IT Workflow “Tells the Computer What t0 D0”cmnnennennnnessssessessssssssssssesseaes 45

Realtime i

publishers

Solutions for Automating IT Job Scheduling Greg Shields
__|

Copyright Statement

© 2011 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS I1S” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime ii

mailto:info@realtimepublishers.com

Solutions for Automating IT Job Scheduling Greg Shields

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 3: What Makes an IT Workflow? A
Technical Deconstruction

Computers are useful because they’ll perform an activity over and over without fail. The art is
in telling them exactly what to do.

[hope that reading Chapter 2 was as enjoyable as writing it. Although I'll admit I took a
little literary license in telling its stories, I did so to highlight the use cases where IT job
scheduling makes perfect sense. Coordinating administrator activities, consolidating tasks,
generalizing workflows, gathering data, orchestrating its transfer, triggering, and security
are all important facets of regular data center administration. Yet too often these facets are
administered using approaches that don’t scale, introduce the potential for error, or can’t
be linked with other activities. The ultimate desire in each of Chapter 2’s stories was the
creation of workflow. That workflow absolutely involved each story’s actors; but, more
importantly, it involved the appropriate handling of those actors’ data.

In many ways, workflows, jobs, and plans represent different facets of the same desire:
Telling a computer what to do. You can consider them the logical representations of the
“little automation packages” I referenced in the first two chapters. Although I spent much of
those chapters explaining why they’re good for your data center and how they’ll benefit
your distributed applications, | haven’t yet shown you what they might look like.

That’s what you'll see in this chapter. In it, you’ll get an understanding of how a workflow
quantifies an IT activity. You'll also walk through a set of mockups from a model IT job
scheduling solution. Those mockups and the story that goes with them is intended to
solidify your understanding of how an IT job scheduling solution might look once deployed.

But for now, let’s stay at a high level for just a bit more. In doing so, I want to explain how
workflows bring quantification to IT activities.

A Workflow Is an IT Activity, Quantified

A workflow has been described as a sequence of connected steps. More importantly, a
workflow represents an abstraction of real work. It is a model that defines how data gets
processed, where it goes, and what actions need to be accomplished with that data
throughout its life cycle.

You can find workflows everywhere in business, and not all are technical in nature. Think
about the last time you took a day off from work. You know that taking that day off requires
first submitting a request. That request requires approval. Once approved, you notify
teammates and coworkers of your impending unavailability. In the world of paid time off,
you can’t just miss a day without following that process.

Realtime 31

http://nexus.realtimepublishers.com/

Solutions for Automating IT Job Scheduling Greg Shields
__|

And yet sometimes people do just miss days. Perhaps they were very sick, or got stuck on
the side of the road far from cell phone service. In any of these cases, the workflow breaks
down because the process isn’t followed. What results is confusion about the person’s
whereabouts, and extra effort in figuring out what they were responsible for accomplishing
during their absence.

You can compare this “people” workflow to the “data” workflows in an IT system. Data in
an IT system needs to be handled appropriately. Actions on it must be scheduled with
precision. Data must be transferred between systems in a timely manner. Failure states in
processing need to be understood and handled. The result in any situation is a system
where data and actions can be planned on.

To that end, let’s explore further the IT plan first introduced back in Chapter 1. Figure 3.1
gives you a reproduction of the graphic you saw back in that chapter. There, you can see
how three jobs have been gathered together to create Plan 7 - Send Data Somewhere.

Database Connection String

Invoke at 3:00PM
Invoke when New Data Arrives
Invoke when Processor Use > 30%

Job 27 — Job 19 — Job 42 —
Connect to DB "| Extract Data FTP Data

Plan 7 ~ Send Data Somewhere

FTP Site

Select Query

Figure 3.1: An example IT plan.

[won'’t explain again what this plan intends to do; the activities should be self-explanatory.
More important is the recognition that this example shows how an IT workflow quantifies
an activity along a set of axes: capturability, monitorability and measurability, repeatability
and reusability, and finally security. Let’s explore each.

Capturable

[find myself often repeating the statement, “Always remember, computers are
deterministic!” Given the same input and processing instructions, they will always produce
the same result. Yet even with this assertion, why do they sometimes not produce the result
we'’re looking for?

That problem often centers on how well the established workflow captures the
environment’s potential states. A well-designed workflow (and the solution used to create
it) must have the ability to capture a system'’s states and subsequently do something based
on what it sees.

Realtime 32

Solutions for Automating IT Job Scheduling Greg Shields
__|

I recently heard a story that perfectly highlights this need for capturability. In that story, a
company ran numerous mission-critical databases across more than one database
platform. Most of these databases were part of homegrown applications that the company
had created over time.

Backing up these databases was a regular chore for the IT department. Although the
company’s backup solution could indeed complete backups with little administrator input,
the configuration of many databases required manual steps for backups to complete
correctly. Due to simple human error, those manual steps sometimes weren’t completed
correctly. With more than 25 databases to manipulate, that human error became the
biggest risk in the system. Fixing the problem was accomplished by implementing a
solution that could capture the manual portions of the activity into an IT job.

Such capture is only possible when an IT job scheduling solution is richly instrumented.
That solution must include the necessary vision into backup solutions, database solutions,
and even custom codebases. Vision into every system component means knowing when the
task needs accomplishing.

Monitorable and Measurable

You can’t capture something unless you can monitor and measure it. Just as important as
visibility into a system is visibility into the workflow surrounding that system. An effective
IT job scheduling solution must be able to instrument its own activities so that the job itself
can recover from any failure states.

This is of particular importance because most IT jobs don’t operate interactively. Once
created, tested, and set into production, a typical IT job is expected to accomplish its tasks
without further assistance. This autonomy means that well-designed jobs must include
monitoring and measurement components to know when data or actions are different from
expected values.

It's easiest to understand this requirement by looking at the simple IT plan in Figure 3.1.
Such a workflow is only useful when its activities are measurable. More important,
measurement of a plan’s logic must occur at multiple points throughout the plan’s
execution. Figure 3.2 shows how this built-in validation can be tagged to each phase of the
plan’s execution. In it, you see how the hand-off between Job 27 and Job 19 requires
measuring the success of the first job. If Job 27 cannot successfully connect to the database,
then continuing the plan will be unsuccessful at best and damaging at worst. You don’t
want bad data being eventually sent via FTP to a remote location.

ilHa:;‘ 33

—

} ‘}:i'_‘al 1

Plan 7 — Validation Logic

Solutions for Automating IT Job Scheduling
__|

Greg Shields

Connection Job
Established? Success
Job 27 — Job 19 — o Job 42 — . Correct Data Plan
Connect to DB Extract Data o FTP Data o Delivered? Success
Plan 7 — Validation Logic
Data o Job
Collected? = Success

Plan 7 — Validation Logic
Figure 3.2: Validation logic ensures measurability.

Similar measurements must occur in the hand-off between Job 19 and Job 42 and again at
plan completion. A successful IT job scheduling solution will create the workbench where
validation logic like that shown in Figure 3.2 can be tagged throughout an IT plan. This
logic should not impact the execution of individual jobs, nor is it necessarily part of
whatever code runs beneath the job object. Effective solutions implement validation logic
in such a way to be transparent to the execution of the job itself.

Repeatable and Reusable

Transparency of measurement along with parameterization of job objects combine to
create a repeatable and reusable solution. You can imagine that creating a well-
instrumented IT plan like Figure 3.2 is going to take some effort. Once expended, that effort
gains extra value when it can be reused elsewhere.

Reusability comes into play not only within each IT job but also within each plan. Recall my
assertion back in Chapter 1 that an IT job is “an action to be executed.” This definition
means that the boundary of an IT job must remain with the execution of an action. Figure
3.3 shows a graphical representation of an Integrated Jobs Library. In that library, is a
collection of previously-created jobs: Job 17 updates a database row, Job 27 opens a
connection to a database, and so on.

Realtime 34

PULSsel
I

Solutions for Automating IT Job Scheduling Greg Shields

“We need to synchronize
Job 27 - Job 19— Job 42 -

. - two new databases”
Connect to DB Extract Data FTP Data

Plan 7 — Send Data Somewhere

Job 27 — JDD= Job 17 —

Connect to DB S Rl Update Row
Rows

Plan 15 — Update Database Row

Job 27 — Job 27 - Job 44 - &
Connect to DB Connect to DB Synchronize

Plan 22 — Synchronize Databases

“OK, let’s drag and

Integrated Jobs Library drop Plan 22”

Figure 3.3: Reusing IT jobs in a plan; reusing IT plans in a workflow.

Each of those discrete jobs can be assigned to a workflow for the purposes of
accomplishing some task. They can also be strung together in infinite combinations to
create a more-powerful IT plan. You can see an example of this in Figure 3.3. Notice how
Job 27 represents the beginning step of Plan 15; it also represents a middle step for Plan
22.

Once created, both jobs and plans reside in an IT job scheduling solution’s Integrated Jobs
Library. From there, created jobs can be reused repeatedly as similar tasks are required. In
Figure 3.3, two new databases require synchronization. Since a plan has already been
created to accomplish this task, reusing that plan elsewhere can be as simple as a drag-and-
drop. After dragging to create a new instance of the plan, the only remaining activities
involve populating that plan with new server characteristics.

Securable

Chapter 2 introduced the notion of job security. In the seventh story, you read how
individual jobs and entire plans can be assigned security controls to prevent misuse. That
level of security is indeed an important part of any IT system; however, Chapter 2 only
began the conversation.

Consider the situation where an IT plan updates data in a database. Correctly constructing
this IT plan requires parameterizing the plan to eliminate specific row values or items of
data to update. However, parameterizing the plan in this way introduces the possibility
that someone could accidentally (or maliciously) reassign the plan and update the wrong
data.

Realtime 35

Solutions for Automating IT Job Scheduling Greg Shields

This risk highlights why deep-level security is fundamentally important to an IT job
scheduling solution. You want controls in place to protect someone from invoking a plan
inappropriately. But you also want controls in place to protect certain instances of or
triggers for that plan to be executed. Each platform and application tied into your IT job
scheduling solution has its own security model, as does the job scheduling solution itself.
Mapping these two layers together is what enables a job scheduling solution to, for
example, apply Active Directory (AD) security principles to some application with a non-
Windows’ security model. Doing so enables you to lean on your existing AD infrastructure
for the purpose of assigning rights and privileges in other platforms and applications.
Figure 3.4 shows how such an extended access control list (ACL) might look, with triggers,
trigger characteristics, and even instances of such a plan being individually securable.

Permissions | Allow | Deny | 4|
Full Control O

Read O

Fead Properties O

Fiead Variables | —
Wwirite] O
Modify |
Delete M O

Use O |
Manage O
Trigger 7| O
Trigger w/ Queue O
Trigger w/ Parameter O
Trigger w/ Credential O
Instance Control O
Change Permissions O

Take Ownership O =

Figure 3.4: Applying deep security to a job or plan.

A Ground-Up IT Workflow Construction

At its core, an IT workflow is still a piece of code. Some kinds of code a solution’s vendor
will create and include within a job scheduling solution. These represent the built-in job
objects in your solution’s Integrated Jobs Library. Other code must be custom-created by
the administrators who use that solution. No vendor can create objects for every situation,
so sometimes you'll be authoring your own. Notwithstanding who creates the code, at the
end of the day, it is that code that needs to be scheduled for execution.

With this in mind, let’s walk through an extended example of constructing a workflow out
of individual parts. You can assume in this example that an IT job scheduling solution has
been implemented and will be used to author the workflow.

Realtime 36

Solutions for Automating IT Job Scheduling Greg Shields

A diagram of that workflow is shown in Figure 3.5. In it, each block represents an activity to
be scheduled. Its story goes like this: Data in a system needs to be monitored for changes.
As changes occur, an IT plan must be invoked to gather the changes, run scripts against the
data, and move it around through file copy and FTP transfers. While all these processes

occur, individual jobs within the workflow must trigger each other for execution as well as
monitor for service availability.

Query Web
Services

v

Select Oracle
Data

v

T
Process . Q
Script A Monitor Service
\] Y
File Copy Data FTP Data

v

Monitor for File
Presence

v

Process
Script A

Figure 3.5: An example workflow.

You should immediately notice that scheduling is an important component of this
workflow. That scheduling isn’t accomplished through some clock-on-the-wall approach. It
is instead based on monitoring the states present within the system (presence of files, WMI
queries, log file changes, and so on), and firing subsequent actions based on changes in
those states. This intra-workflow triggering is the foundation of IT job scheduling. Without it,
scheduling jobs is little more than a function of time and date. A workflow like this requires

a much faster response, one that moves from step to step based on the results of the just-
completed step. You only get that through triggering.

Realtime 37

Solutions for Automating IT Job Scheduling Greg Shields
__|

Explaining Figure 3.5’s workflow begins at its second step with the creation of an Oracle
PL/SQL job object. This job object is necessary to run a query against the workflow’s Oracle
database. This object and its underlying query string should already be a component of
your IT job scheduling solution. As a result, creating that job probably starts by clicking and
dragging a representative SQL block (an example of which is shown in Figure 3.6) from a
palette of options into the plan designer’s workspace.

v Steps
v i [V] & SQLBlock X
Name Value
Content select count(*) from Abat.JobSchedulers
DataSource ${DATA_SOURCE}
Credentials /QA/Objects/UserAccounts/Windows/DatabaseAccount
&L v

Figure 3.6: Oracle PL/SQL object.

Once added to the workspace, specifics about this job object’s use will then be added into
the SQL block’s properties screen. In Figure 3.6, you see how a SELECT statement is created
to connect to an Oracle database and gather data. You should also notice how a variable—
($DATA_SOURCE)—is used in this case to maintain the reusability of the job object.

Constructing that Oracle object is only the first step. By definition, there is no logic in it to
define when it should be invoked. Accomplishing this requires creating one or more
conditional statements. In this case, the workflow desires to query a Web service to see
when data has changed. When it has, the Oracle SELECT statement is invoked. Figure 3.7
shows an example screen where such a Web services binding might be created. This
binding identifies the methods that the Web service exposes, and is the first step in creating
the necessary conditional logic.

Realtime 38

P W 1E7]
I

Solutions for Automating IT Job Scheduling

Properties of New Service Library on rtm7

Greg Shields

Display Name

lz This method retrieves a current stock quote. Use a license key of 0 fofi
V| GetQuickQuote This method retrieves just a stock price. Use a license key of O for test
| GetQuoteDataSet This methed retrieves the stock information and retums it in a dataset.

Dﬁcrh!

o]

Figure 3.7: Web services connection.

Our example now includes conditional logic for monitoring the Web service for data
changes. It also includes connection logic for gathering data from the Oracle database. The
next step in the workflow requires processing that data through the use of a script block.
Such a script block might be entered into an IT job scheduling solution using a wizard

similar to Figure 3.8.

B Job Properties

Job Type Ij Script

Script Contents: Script Extension without any periods IVbS l

set oStep = CreatelObject("AbatScripting.Step")

const ITERATIONS = 10

lastCheckpoint = oStep.Checkpoint

if {lascCheck = "") then lastCheckpoint = 0

for 1 = lastCheckpoint to ITERATIONS
oStep.Checkpoint = i

oStep. Report
wsoript.sleep 1000

K|

Edit using Default Text Editor Edit using Extension's Default Editor

oStep.Description = clngi{i * 100 / ITERATIONS) & “&"

-
re

i

Parameters |

Completion Status Bule

Success |U

[~ UseSearch Sting Setup | Searchin I[.an's Log File]

Figure 3.8: A scripting job.

Realtime 39

publishers

Solutions for Automating IT Job Scheduling Greg Shields
__|

In this mockup, a job object is created to bound a script. Scripting jobs are exceptionally
malleable in that they can contain any code that is understood by the IT job scheduling
solution and target application. In the case of Figure 3.9, the code is VBScript, although any
supported code could be used.

The script’s code is entered into the script block, along with other parameters like those
seen in Figure 3.9: Those parameters are associated with the code itself, completion status,
script extensions, and so on. Once created, the script becomes a job object just like the
others in this workflow.

Note

As you can imagine, using custom code introduces the possibility for error
into any IT plan. Your IT job scheduling solution will include scripting
guidelines, but it should also include instrumentation to validate script
variables and handle and alert on errors as they occur.

Job Type I‘CS Filesystem j
Operation Parameters | On Failure |
&2 Copy File ${app_path}\copya.tzt ${app_pathlicopyb.tst Continue

Figure 3.9: File copy job.

The next step in constructing the workflow is twofold. Figure 3.5’s branching pattern
illustrates the need to transfer the script’s results to two locations using two different
mechanisms. The first, seen in Figure 3.9, might be through a file copy job object.

Such an object is likely to be a built-in object within an IT job scheduling solution’s
Integrated Jobs Library. Thus, adding that job object to the plan may require little more
than dragging it into the workspace just like with the SQL object. Once added, parameters
associated with the file transfer are then added along with actions should a failure occur.
Note again here how a variable is used in the file copy object’s parameters to maintain
reusability.

File copy jobs typically perform file transfers between similar operating systems (0Ss),
such as Microsoft Windows. But getting data off a Windows system and onto a Linux or
UNIX system requires bridging protocols. That’s why FTP jobs exist. Figure 3.10 shows how
an FTP job object might look being dragged into the workspace. In Figure 3.10, an FTP
(technically, an SFTP) job has been created. Added as parameters to that job are the FTP
commands required to transfer the data as well as server names and credentials.

Realtime 40

Solutions for Automating IT Job Scheduling Greg Shields

Job Type (&5 FTP/SFTP -
Server Itestmachine Browse... | Port # |21 _l;
Credentials I/T:ainu'rgkcoum LIJ New... I
Protocol ~ |SSH |

Commands: |cd d:\test
(NOTE: get file ba
separate quit
commands ||

with

newlines)

Figure 3.10: FTP job.

Note

Securing these credentials is also important to security. No regulated
business or its auditors will look kindly on storing authentication credentials
within an FTP command string. Thus, an effective IT job scheduling solution
should provide a secured credentials store for such jobs. That store
maintains credential security while allowing their reuse across multiple FTP
jobs.

I mentioned earlier that monitoring and measurement were key components of good IT
plan creation. If you're not monitoring your environment, you won'’t be prepared for
unexpected states. One way to do that monitoring can be through a trigger. [show a
portion of such a trigger in Figure 3.11.

(2

Event Trigger

Label |WMITrigger

¥ WMI Event Trigger

WQL string | SELECT = FROM __InstanceModificationEvent WITHIN 30 WHERE TargetInstance ISA
"Win32_Service™ and TargetInstance.Name = “TintSrv" and TargetInstance, State =
“Stopped”

Mamespace |ruut‘-,|:im~..'2 ﬂ Privileges... | Advanced...

Figure 3.11: WMI-based trigger.

This trigger is used to facilitate the Monitor Service element in the workflow. For it, a
Microsoft WMI query verifies the state of a service (in this case the TIntSrv or Telnet
service). Not shown in the figure, but an important part of the job creation, is the action the
trigger will accomplish when it discovers a stopped service. Assuming this sample
workflow requires use of the service being monitored, the action associated with Figure
3.11 will be to restart that service if it is down.

Realtime 1

publishers

Solutions for Automating IT Job Scheduling Greg Shields
__|

This example is important because it highlights the kinds of state-correcting actions an IT
job scheduling solution can automatically perform. If your workflow requires specific
servers and their services (or daemons) to be operational, building those corrective
measures directly into the workflow goes far into ensuring the continued operation of the
distributed business system.

Our sample workflow needs to process two scripts to manipulate its data. The first you saw
in Figure 3.8. I won’t show you a similar view of the second script. Instead, I'll show you a
constraint that might be applied (see Figure 3.12). Such a constraint can define when that
script needs to be executed.

File Constraint @

Label | JobAFile

File Specification below will be checked by the Execution Machine and will use the Job's execution
account credentials.

File Specification | ${app_path}\CaseStudy2.txt
(e.g. C:\windows*.log, \\server\share*.bat)
Check for fle (% Presence { Absence

[File must be available for exdusive access

[V File must be |> (Greater than) L] | 0 ﬁ bytes
I~ File should have been | =i =l

|0 :I Days ID :I Hrs IG :]Mins

Figure 3.12: File constraint.

Recall that intra-workflow scheduling needs to be more than just time-based. Time-based
schedulers are by nature insufficient because they can only process data at prescribed
times of the day. Doing so creates inappropriate delay for workflow processing. What you
really want is steps in a workflow to fire once a successful result from previous steps is
verified.

You could achieve this by running the workflow line by line. However, doing so doesn’t
necessarily base the execution of following steps off results from previous steps. That’s
why Figure 3.12’s file constraint is useful. Constraining an IT job’s execution to occur only
when a file is present allows that job to kick off only at the most appropriate time.

Our example workflow needs to process its second script after a file is copied. One can
assume then that the copied file will be present on the target system. Thus, adding a file
constraint to a job object means running the job only when the file is present and the
previous step is complete.

Realtime 42

publishei

Solutions for Automating IT Job Scheduling Greg Shields

Although not necessarily related to this example, a pair of additional constraints is worth
exploring. The first can be seen in Figure 3.13 where a job constraint has been placed on a
job. For those plans where you simply want one job to follow another after its successful
completion, job constraints can ensure that path is followed. Important to recognize here is
that, as configured, whatever job follows the one in Figure 3.13 will only begin if the
previous job is successful. Your IT job scheduling solution should include multiple options
for defining when jobs in a plan are allowed to begin.

Job Constraint @

Label | JobA

Job [CaseStudy2/JobA v

Type IOn Job Success LI

Instance [Exact Active LI within ID j Days |0 :Il Hrs IO jMins
| OK I Cancel

Figure 3.13: Job constraint.

The other half of this equation is in telling which job to trigger after a successful
completion. You can see an example of this in Figure 3.14. Here, a job (not identified in the
figure) can be instructed to trigger upon the success of the previous job. Using
combinations of constraints and triggers ensures that following steps in the workflow only
execute when the state of the system is appropriate.

Completion Trigaer E|
JobyPlan to trigger |,I'LDB,I'NE|:.':'|SSE-'I'I'I|:I|':.-' ﬂ
Trigger on:

{* Success
" Failure

" Exit codefs) |
" Abart

(o] 4 Cancel

Figure 3.14: Completion trigger.

Although time-of-day scheduling is of comparatively minor use, it is still useful from time to
time. Figure 3.15 shows an example scheduler that can be used for identifying when jobs
should initiate. A good scheduler will include not only date- and time-based triggers but
also scheduling support for complex scheduling needs.

Realtime 43

publishers

Solutions for Automating IT Job Scheduling Greg Shields

| Enable Date/Time Trigger
One-Time Run |mmediately
" Defened Until | JI o

Recuring Interval |0 —| Days |1 — Hrs |0 —| Mins
I~
&+ Schedules:

1D Name Full Path | Associate...

(5 1020 TestSched /

Mew...

Figure 3.15: Time-based schedule.

Job Libraries and the Value of Triggers

Whatever IT job scheduling solution you choose needs to arrive with a suite of potential
triggers that define when jobs are fired. These triggers perform multiple functions. They
enable actions to be fired based on known states rather than requiring periodic “wake the
script up and verify” batch jobs. They provide a mechanism to simplify event handling on
external systems, a process that can be very complex when handled within a job object
itself. They also create the potential for new types of actions, enacting change based on
states that would otherwise be difficult to monitor within a script.

Consider the following possible triggers as a starting point for defining when you might
want actions fired in your data center. This list gets you going. I'll expand on it in the next
chapter, where I deliver a shopping list of capabilities you should look for in a solution:

e WMI Event Specifications (using WQL syntax)
e File event (across multiple platforms)

¢ Email event (across multiple email systems)

e Microsoft Message Queue event

e Web Services event

e Startup event

e SQL, Oracle, and other database event

e Virtual environment event

Realtime 44

PULSsel
I

Solutions for Automating IT Job Scheduling Greg Shields

Last, although the core of any IT job scheduling solution is indeed the code that enacts
changes on systems, the last thing you want to do is begin creating scripts if pre-created
objects are already available. This chapter has discussed how an Integrated Jobs Library
creates a palette of potential actions that you can add to your workspace. Figure 3.16
shows a representative sample of what one might look like. Pay careful attention to the
actions that are available right out of the box in your chosen solution. You may find that
leaning on your vendor for creating, testing, and validating objects greatly reduces your
effort and risk of failure.

El File System = Mainframe Job = Reporting
[#7] Archive 1_5_’] 705 E CrystalReport
2% CopyFile 2 Msmgq 4] SglserverReport

5 CopyFolder

Bl Createrolder t g MsmqReceive EI-System Administration
DeleteFile l-d MsmgSend % i&a::::;t:g
| r USE
l_.g E:IEEE:T: Ealichensiing ::‘ ResumeService
j...\.' M;(E:”e . - E-Mail 5] SearchEventLog
E Unarchive & FTP-SFIP-FTES o StartService
£ Flow Control ¥ Ping w'a StopService
) Exit Job E Power Management [TaskScheduler Job
1] For 4] CollectMachines 4] TaskScheduler

¥ For-Each-Ttem JI§ suspendMachine

Figure 3.16: Integrated Job Library.

An IT Workflow “Tells the Computer What to Do”

Telling computers what to do is indeed an art, one that's bounded in the science of logic.
Purchasing and implementing an IT job scheduling solution only nets you an empty palette
within which you can create your own automations. That empty palette does, however,
come with substantial capabilities for creating those instructions. This chapter has
attempted to show you ways in which that might occur.

There’s still one more story left to tell. That story deals with highlighting the capabilities
that you might want in setting up that palette. That’s the topic for the final chapter. In it, I'll
share a shopping list of capabilities that you might look for in an IT job scheduling solution.
Some of those features will probably make sense, while others might surprise you.

Realtime 45

PULSsel
I

Solutions for Automating IT Job Scheduling Greg Shields

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

|
Realtime 46

publishers

http://nexus.realtimepublishers.com/

	Chapter 3: What Makes an IT Workflow? A Technical Deconstruction
	A Workflow Is an IT Activity, Quantified
	Capturable
	Monitorable and Measurable
	Repeatable and Reusable
	Securable

	A Ground-Up IT Workflow Construction
	Job Libraries and the Value of Triggers
	An IT Workflow “Tells the Computer What to Do”
	Download Additional Books from Realtime Nexus!

