publishers

The Five Essential Elements of
Application
Performance
Monitoring

Don Jones

sponsore d by

QUEST
SOFTWARE"

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Chapter 2: Tracking and Monitoring the User TranSactionoooeeeneessssssssssessenenns 17
How Application Performance Monitoring Got Away from US........cccoenereenreeneeseessesseessesseenes 17
Remembering When IT Was Easy: Monolithic Applicationsoeonenseeneesseeneesseessesseenes 17
When IT Started to Get Hard: Two- and Three-Tier Applicationscoeeneerneeeseenenns 19
Now IT Is Difficult: Multi-Tier, Multi-Component, Distributed Applications.........cccuuuuu.. 20
PaN0) o) Vo= u (o) LRI T U U O OO 22
How User Transactions Traverse the Stack ... 23
0ld-School Monitoring, and Why It Doesn’t WOrK.......neeessessssssssssssessessens 24
The 5D Approach’s Goals for Monitoring User TranSactions........oeeeesseessesseessesseesseseees 25
Techniques for Monitoring User TranSaCtiONS........oeeemeeseesseesesssessesssessssssessssssessssssesssssssssees 26
High-Level TEChNIQUES ... sess st sssssssssssesssssssssans 27
Transaction-Centric Event Correlation and ANalysiS.....msesssssnes 28
Transaction TAGZING ... bbb 28
Implementation Details ... 29
AGENT-BASEA ...ttt R 29
=) L (=] 30

An Example of User Transaction MONItOTINGcoueerereemeesessessesseesssssessssssesesssesssesssssssssssssssssesns 32
000D 000 0 Vgl U o T8\ PP 35

Realtime i

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Copyright Statement

© 2010 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable for
technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

Realtime i

mailto:info@realtimepublishers.com

The Five Essential Elements of Application Performance Monitoring Don Jones

[Editor’s Note: This book was downloaded from Realtime Nexus—The Digital Library for IT
Professionals. All leading technology books from Realtime Publishers can be found at

http://nexus.realtimepublishers.com.]

Chapter 2: Tracking and Monitoring the
User Transaction

Once you've accepted that the end user experience (EUE) is the ultimate top-level metric of
your application’s performance, how will you actually monitor it? More importantly, when
the EUE isn’t where you need it to be, how can you start finding the root cause of the
problem?

The answer to both of these questions is the user transaction. I should probably take a
minute to ensure we're on the same page with the term transaction. In the software
development world, transaction usually means some group of operations that must be
completed together or not completed at all. For example, in a financial application, you
have to be sure to debit and credit the two sides of a ledger at the same time; if you only do
one or the other, everything’s messed up. A user transaction has a vaguely similar sort of
meaning: It’s a collection of discrete steps that a user undertakes to complete some higher-
level task. The classic example is an e-commerce shopping cart, which not only involves
numerous steps for the user but also typically includes numerous back-end steps: saving a
shopping cart, processing a credit card, generating an order entry, creating an invoice, and
so forth. User transactions typically impact multiple components in your application, and
they are the top-level unit of work that results in the EUE that you monitor.

Monitoring the user transaction can be incredibly complicated simply because our

applications have, over the years, evolved into pretty complex systems. In fact, monitoring
application performance used to be a lot easier.

How Application Performance Monitoring Got Away from Us

So when did things go awry? When did our applications become so complex? When did
monitoring become so difficult? When did we have to start worrying about a discrete EUE
metric? The answers to these questions—as well as some of the solutions for better
application performance monitoring (APM)—lies in the way our applications have evolved.

Remembering When IT Was Easy: Monolithic Applications

Figure 2.1 shows how the first applications worked: They ran on a single computer, were
entirely self-contained, and typically interacted with one user at a time.

-

Deskiop PG

Figure 2.1: Monolithic applications.

Realtime 17

http://nexus.realtimepublishers.com/

The Five Essential Elements of Application Performance Monitoring Don Jones
I

That self-contained part is the real key: Everything the application needed to function
existed in a single place, in a single big chunk of code, and couldn’t be broken down into any
smaller components. The first applications like this ran on mainframes, but most of us still
have a few applications like this today. Simple applications like Windows Paint or
Calculator are examples, but many businesses continue to use self-contained line of
business applications.

Believe it or not, monitoring the EUE was actually easier with these kinds of applications,
and we did is instinctively. “My application is slow,” a user would complain. No problem—a
developer could fire up the application on their own, and they’d be getting exactly the same
experience as the user because the developer was using the exact same code in the exact
same way.

Eventually, though, we needed our applications to share information. Some of the earliest
ways for doing this were-file based databases that lived on a network file server and were
accessed by otherwise-monolithic applications. In early examples, the database didn’t
consist of any code at all; the only thing keeping the application from being entirely self-
contained was the network that it had to use in order to get to its data files. Figure 2.2
shows this minor evolution.

File Berver

Figure 2.2: Application accessing data from a file server.

Even these applications were relatively easy to troubleshoot from a performance
perspective. There were really only three things to look at: the application code, the
network performance (which, back then, was always slow), and the number of people
contending for the data on the file server. You could easily eliminate one or two of those
factors and narrow down performance problems pretty quickly. In fact, this is where our
entire concept of application performance troubleshooting came into being: Eliminate as
many factors as possible and see if what's left is performing well, then start adding factors
back in until you see the performance problem. Many folks today still try to troubleshoot
their applications that way, but there’s a problem: Our applications are a bit more complex
than that, now.

Realtime 18

The Five Essential Elements of Application Performance Monitoring Don Jones
I

When IT Started to Get Hard: Two- and Three-Tier Applications

We started to realize that one of the big problems with the shared-file database model is
that you could only support a few people in an application. Once too many people started
contending for access to the same file, performance went from “slow” to “awful” pretty
quickly.

Big businesses, in fact, tended to stick with single-tier applications running on mainframes
and accessed from terminals or terminal emulators. A surprising number of businesses still
use this model for major line of business applications. The technology industry, however,
started looking at a solution: Rather than having each user’s application try to open a data
file, why not create a single application whose job was to manage the data file? It could
accept query and change requests from applications, and make those queries and changes
on the application’s behalf. The relational database management system (RDBMS) was
born, as was client-server computing—shown in Figure 2.3.

+

-

=

Dalabase Server

Figure 2.3: Client-server application.

Now, we could have a lot more people using the application at once—but troubleshooting
performance became markedly more difficult. No longer was all of our code running in one
place; now we had to worry about the client application’s performance as well as the
RDBMS’ performance—as well as the network, the database server’s disk subsystem, and
so on. Still, it wasn’t entirely impractical to eliminate one or two factors to test
performance. Did the RDBMS respond quickly to ad-hoc queries made from a developer’s
toolset? If so, the problem was probably in the client application or the network. This is
exactly where APM started to get away from us, though, and the problem was compounded
when we had another bright idea: n-tier computing.

Realtime 19

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Now IT Is Difficult: Multi-Tier, Multi-Component, Distributed Applications

Under the client-server model, we realized that our client applications tended to be pretty
heavy. They incorporated most of our business logic, and really did the bulk of the work for
the application. Updating these applications was a pain, however, because we had to touch
every user’s computer. We decided to add another layer to the application—and sometimes
many layers—that would just handle things like business logic, data validation, and so on.
That would distribute some of the workload from the client applications as well as move
some of the workload back a level from the database server, which was a very difficult tier
to scale. Figure 2.4 shows what an n-tier application looks like.

Middle-Tier

Daka Secver

Figure 2.4: An example n-tier application.

We actually helped improve application performance with this architecture, at least in most
cases. Now, rather than having every user hitting the RDBMS directly, groups of users
would communicate with middle-tier application servers, and those would talk to the
RDBMS. We were basically solving the same problem we’d had with the old file-based
databases by adding layers to the application that would help distribute the workload.

Unfortunately, we didn’t make ourselves immune to performance problems, and now we
had a lot of factors in play. When someone said, “The application is slow,” there were
simply too many places to look, and it was becoming harder and harder to test individual
components with any accuracy. The client application, its network connection to the
application server, the application server itself, the code running on that server, the
connection to the RDMBS, that server—there were a lot of balls in motion.

Realtime 20

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
___|

And we continued to add layers and components. In some cases, we did so to solve a known
performance problem and to further distribute our growing workload. In other cases, new
layers helped componentized specific functionality or business logic, making it easier to
maintain or re-use. Figure 2.5 shows the result: multi-tier applications consisting of
multiple components running across multiple physical and virtual computers—sometimes
across clusters of computers. Users interact differently with different tiers; customers
might access a Web site in their computer’s Web browser, while partner companies might
connect directly to certain middle-tier components.

Logic Tier Data Tier

B

Shopping Cart Catalog Products

Partners

Payment Processing

1 Orders (Cluster)

Application Tier

Web - Catalog {Custer) Web - Cart (Cluster)

Figure 2.5: Modern, multi-tier distributed application.

Performance problems? Want to eliminate a factor or two to see if that helps? Forget it. Our
applications have moved far beyond our ability to troubleshoot them using that old
technique. In fact, there are so many ways to interact with an application that we can’t even
get a feel for the EUE using the old “try it yourself and see how it runs” technique. The
applications have simply become too complex, too distributed, and too interdependent.
APM is now officially difficult.

In order to regain control, we need to step back and start developing new ways of thinking
about our applications.

Realtime 21

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Applications as a Stack

A more modern way of visualizing an application is to think of it as a collection of services,
each provided by a different application tier or component. We also have to recognize that
an individual tier or component might well provide the same services to other, independent
applications. For example, a component that provides real-time shipping estimates to a
shopping cart application might also provide shipping information to our distribution
center, or even to partner companies who are shipping items directly to our customers. Our
applications thus form a stack of these components, and we have to be continually aware
that any given application is not necessarily the only consumer of those services—in other
words, sometimes performance problems may be originating from other applications that
are placing a load on some of the services our application depends upon. Figure 2.6 is a
common type of logical application architecture diagram that illustrates an application
stack.

| Content Management

External
Meta Data Interfaces
Database Web
Templating
Common
Services
Life-Cycle Management

Transformation & Formathng Content Streamlng Pluggable Storage Back-ends | Web Services

i S
Persistence Manager Centralized Meta- LETEID Content
(Generic Query Manager) Data (Constraints) State & Flow Syndication

Type Mapping Validation M‘ Asynchronous

OO0 Query Builders - - Mail Queue
| Callbacks | | Form Building | | Continuations |
] Authentication
JDBC Wrappers Template engine 0“"%;:5:;3'"9"

Resources

: Abstraction

Repository
Configuration | | Scheduler | | loC Factories | | Life-cycle | Ceneral Furposs

Utility Classes

Figure 2.6: Logical application architecture.

Realtime 22

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

These diagrams can become very complex and detailed, matching the complexity of the
application itself. In some cases, the application may even rely on external components and
services, such as a Web service that performs currency exchange rate queries. The basic
technique of application performance troubleshooting—looking at each component’s
standalone performance—still holds true; however, for applications this complex, it’s
virtually impossible to do that without specialized tools, and without understanding how
user transactions move across this stack.

How User Transactions Traverse the Stack

One reason that these complex applications are so difficult to monitor and troubleshoot is
that it can be difficult to ascertain exactly which bits are involved in any given user
transaction. For example, a user logging on to a Web site may engage dozens of individual
components, each of which contributes a performance impact to the overall EUE. Figure 2.7
illustrates how the various components may interact to complete a single user transaction.

Corl

Extamel
Interfaces

Databass

Commor
Services

Life-Cycle Managenmert

Formratting | Centert Strezaming || Pluggazle 51

Wab Servicas

Contant

Prsifenoe NManagor
IGanarll Quary Maragar

Centralized Meta-
Cata (Canstralnee)

Syndicationr

Twoe Macong Valication Azynchronous

— Mal Queaus
e Bulding Continuations

T W curarconmrer || eienication
Template engine -

Tastig

Resources
Absiraction
Rapasitory
[Contiguretion Scheduler || oG Fecwies || Liecycle Gﬁ:‘ﬂj‘d’:;gg:e

Figure 2.7: Various components interact for each user transaction.

Q0 Quary Bull

Realtime 23

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

The point here is that it can be incredibly tough—if not entirely impractical—to manually
chart the components that are engaged for a single given user transaction; doing so for a
set of commonly-performed transactions is often impossible. Yet without understanding
exactly which components are involved, it becomes completely impossible to test their
individual performance to see which one may be contributing to an unacceptable EUE. In
order to even begin troubleshooting, you have to know, not merely guess, exactly which bits
of the application are involved with a given operation.

Old-School Monitoring, and Why It Doesn’t Work

Traditional performance monitoring tends to focus on macro levels: We monitor the
database server, the Web server, the network, and perhaps the overall performance of an
application server. We tend to look at that performance information in an abstract fashion.
It's very common to see harried administrators staring at a console like the one shown in
Figure 2.8, which illustrates individual performance characteristics of a particular
application element, such as an application server or database server.

Node Details - Cur-3500 ORGP e
Ayuiaqe Respomse Time & Packet Loss 1 ik Average Respease Time & Packet Loss [Wiew Opaar =] AT e
WO
Cur-3500
dewengs Apipones Tiva § Pechaslor
T
W bgypores Toes W © Pobe Lon
[
-
B o
&
s Masp Thims Packul Lo =
CFI Laad & Bamary UsSication D1 weiLk &
£ 150m
§
& 10Em
=
T
s JOGE
W58 Purcardile: Rasparas Tome o 120 ma
CFU Load Hamony Used
Wads DEisil BGiT L Hin/Max Svsrage CPL Load Vigrw Dpliani =] IR AP
Eogay
Hzde dahe & Lo
Hace Siahus 190 t Cur-3500
e dr Pt lee o e ety Wb it e CPU Lo s
W Bl e 1010 oA
Dynarris L g TP il
Machira Ty = Cmeo Cabwlysd 2040 0 1M0%
- a0 |
Sywlom Haime Clur- 350 = |
Cisln) Pl (e (e) St S mwae e 5005 (080 . |
CHSO0], Sofpveirs | ORI 00 MG e gaon 1 %
b i o ol iy 1SRN T BELEASE SOFTWARE (gt) Copryright o) - .
1508 2007 by DG Fymems_ e Compiled Tus 1 1Fs0T : 50 % | =
AR by denire ¥ |
g %
Locsliemn [=Fs] = : |
el it] Al % |
Ll Bawsl MOy, i T, SO 10 N AN i % |
[] y . 3 Fry |
Sywinem T2 ST, RELERSE SOWFAMEE 121 % |
K Wi =1 R] 0% !
|
!

Piias P i

Figure 2.8: Monitoring individual performance characteristics.

Realtime 24

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

The problem is that this macro-level monitoring completely ignores what’s happening
throughout the application, especially as performance relates to particular transactions. In
other words, we can’t see how a given shopping cart checkout, or logon, or whatever other
user transaction we’re examining, contributes to specific performance conditions. We can
see that a server is busy or not busy, sure, but that doesn'’t tell us why a particular user
transaction is too slow. Using these traditional, macro-focused performance monitoring
techniques, we can’t really find the root cause behind an unacceptable EUE.

The 5D Approach’s Goals for Monitoring User Transactions

The 5D approach doesn’t rely on these traditional, macro-level performance characteristics
because those don’t help drive to the root cause of an unacceptable EUE. I've already
written about the EUE being our ultimate top-level application performance metric, and
['ve explained that the EUE is—in a simple explanation—a measurement of how long it
takes an application to process a given user transaction. Emphasis on user transaction:
We're measuring things that our end users actually do with our application. That being the
case, the trick for solving performance problems isn’t to start looking at technology
components; the trick is to continue following that user transaction through the
application’s stack, measuring at each step how long application components are taking to
complete their portion of that user transaction.

In other words, rather than starting at the EUE and then jumping to the server level, we
should monitor that same EUE at a more detailed level. If the EUE is a measurement of how
long the entire transaction takes to complete, the next level down should be monitoring the
time it takes to complete each discrete portion of that transaction. In other words, as
suggested in Figure 2.9, we have to follow the user transaction as it hits each element of our
application, and measure the time the transaction spends within each element—indicated
by the blue blocks in the figure.

Realtime 25

The Five Essential Elements of Application Performance Monitoring Don Jones

Exterrmal
Intcriaces

(€)
[

Commor

F / T P " Services
Life-Cycle Managemeont Q
Transform Tatiag | Caontert Streaming || Pluggasl Back-encs Wab Servicas
5

S Managor Contrelizad Meta- Nleb Engine
[xata {Canstralnke) tate & Flow

Contant

ary Maragar) Qyndication

Tyoe Macong Y i Azynchronous
- Mal Quaua

g
- Authentication
Template engire O'J"‘.};ﬂ"n"’lnsr
1 =
Absiraciion
| Conligurgtion Scneduler || WwCFeciwries || Lifecycle Gﬁrﬂfg:&’gg?

Figure 2.9: Measuring the user transaction in each application element.

Rapository

We don’t worry about technological details like processor or memory utilization—not yet,
at least. In fact, we ignore the infrastructure somewhat and focus on the services that
infrastructure is providing in the form of application elements. The infrastructure still has a
play here, because we’re obviously also concerned about infrastructure-level services like
network communication, but the idea is to trace the user transaction through each active
component and figure out how much time each one is contributing to the EUE. We're still
focused on the EUE, just at a more detailed level. So how do we actually do it?

Techniques for Monitoring User Transactions

You're definitely not going to be monitoring user transactions manually; you're either
going to have to build or—far more likely—buy tools that can do it for you. Currently, these
tools rely on two broad techniques, and two broad implementations, to perform user
transaction monitoring.

As an example, let’s work with a more simplistic user transaction: downloading a single
image from a Web server. Understand that this isn’t a real-world example of a common
business user transaction, but it will serve as an easy-to-discuss example. As Figure 2.10
shows, this transaction consists of multiple technological steps, just as a more realistic
business user transaction would.

Realtime 26

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

HTTP request

=]

*II.II.IIII.I.IIIIIII.II‘IIII b

=

(image file is 6KB)

Reply Frame 1

GET images/euromap.gif Reply frame 2

TCP ACK

Reply frame 4

Reply frame 5 (done)

TCP ACK

i
(=]
L=
¥

Figure 2.10: A simple user transaction—downloading an image from a Web server.

Note

This is definitely a simplistic example: Downloading a single image is less
complicated than a more real-world user transaction, like completing a
shopping cart, which would involve multiple steps on the user’s part.
However, this example serves to illustrate that any given user transaction
consists of multiple technological steps—such as the conversations between
Web server and browser—necessary to complete whatever the user was
doing. This example does focus on a user transaction: It is something a user
would do, and it is something that a user would have performance opinions
about.

The EUE in this example is the time it takes for the entire download to complete—say, 3
seconds as illustrated here. Once that EUE starts to pass our threshold for “good
performance” (3 seconds seems like a long time for a single image), we have to dive a little
deeper and start tracing that transaction.

High-Level Techniques

There are two main techniques used to monitor performance at a user transaction level:
event correlation and analysis, and transaction tagging. Some tools will use one or the
other, while other tools may rely on both for different aspects of their job.

Realtime 27

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Transaction-Centric Event Correlation and Analysis

Essentially, correlation involves a sort of meta-monitor that monitors your entire
application as a single user transaction is being performed, and correlates the performance
that it sees from various components. This is more than just gathering performance data
and centralizing it into a single view; there’s also a time factor, with the idea being that all
of the performance at a particular moment in time will correspond to one or more user
transactions that are being conducted at that moment in time. In other words, if there are x
user transactions in progress, the total observed performance at that same moment in time
is the performance attributable to those transactions. Rather than just looking at
performance in an abstract fashion, we're looking at performance that relates to a specific
set of tasks that the application is attempting to complete.

Just that high-level description may sound complex, but the reality is much more involved.
For example, a tool may be able to tell you that, “the middle-tier application server only
exceeds threshold x when the database server’s response time exceeds y, and when the
transaction involved includes more than z items in an order.” This is useful because you're
not just looking at, say, the application server, nor are you looking at performance in an
abstract sense that is disconnected from the application’s workload. Instead, you're looking
at cross-application performance for a given workload.

Following our image-downloading example, event correlation might look at separate
performance measurements like the time it takes a database server to query and retrieve
the image from a database, the processing power required of the Web server to process the
image download request, and so on.

Transaction Tagging

The other broad technique for tracing user transactions is called transaction tagging. The
basic idea here is to mark a particular user transaction so that it can be readily identified as
it moves through the application stack, and to then intercept each portion of the application
and measure the time it takes to complete that particular user transaction.

Without getting overly technical about how this is done, you can imagine using a tool that
creates a “synthetic” transaction with some specific, say, transaction ID number. The tool
then analyzes the amount of time each component requires to complete that transaction.
Sometimes, this is accomplished by using agent-based instrumentation that runs on the
same computers where your application’s components are executing; in other instances,
you may use network probes to capture inter-component traffic, allowing you to identify
transactions as they move from machine to machine, and to measure the time it takes each
machine to send the transaction on to the next one. In some cases, adding instrumentation
to an application component may actually require developers to insert specific “hooks;” in
other cases—especially with code running in managed code frameworks like Microsoft
NET or J2EE—agents may be able to hook into the framework’s runtime without any
modifications to your application code.

>altime 28

.__.
P
F aw

The Five Essential Elements of Application Performance Monitoring Don Jones
I

Continuing our image-download example, transaction tagging might ask for a very specific
image—one that a normal user wouldn’t normally request. Doing so would allow that
particular request to be traced granularly through the application stack. In fact, the
technique is not entirely different from the network trace that a network administrator
might perform, except that this trace is focused on application components rather than
infrastructure elements. The result might be displayed as a kind of thread analysis, such as
the one shown in Figure 2.11, that illustrates the amount of time needed to complete each
discrete step of the transaction.

| Secont
N Start Time D ation Bytes 0,06 0,07 0,08 0,09
| | | | |
Il [GET fpdsnetRemist asp HITR1.0] [
5 MS5CL Login Chent TDSYersion=7. 1, 5P1 Usars'de 1,084 |
1% MSSOL:BATCH SELECT * from Ram whera cabegan 0, 065200 1,306 | I
w MSSOLBATCH SELECT Supplier Supplierid, Supplid0, 066665361 0,002075689 a7 |
3 MSSOLBATCH SELECT Supplier, Supplierid, Supplid0,070064767 0.004715126 767 |
19 S50LBATCH SELECT Supplier Supplierid, Supplif0, 076080059 0,002 157203 1,022 |
40 (BATCH SELECT Supplier Supplierid, Supplid0. 079531067 0. 004828265 a7 |
41 (BATCH SELECT Supplier Supplierid, Supplid0. 085654177 0004714850 868 |
42 MSSOLIBATCH SELECT Suppligr Supplierid, Supplid0,094942783 0,005171330 611 |
43 MSS0L:BATCH SELECT Supplier, Supplierid, Supplid, 1 14724074 0, 004820728 721 |
44 MSSOLBATCH SELECT Supplier Supplierid, Supplid, 120831278 0.004955849 866 |
45 MSSOLEBATCH SELECT Supplier, Supplierid, Supplid0. 126913481 0.002051658 1,073 |
4 k£
rame Size I I E—
bytes) <100 <512 <1024 <1515 1515+

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Fri, 19 Dec 2003 23:06:06 GMT
X-Powered-By: ASP.NET
Comnection: keep-alive
X-AspNet-Version: 1.1.4322
Cache-Control: private

Content- Type: texthiml: charset=utf-8
Content-Length- 24195

Figure 2.11: Examining the performance of each discrete step in a transaction.

Implementation Details
Both correlation and tagging can be implemented in a couple of ways: agentless and agent-
based. Neither is inherently good or bad, and both deliver slightly different advantages.

Agent-Based

My definition of agent is some piece of software that is installed directly on the same
machines that execute your application code. Because of their location, agent-based
systems can often collect more detailed data. For example, an agent may be able to directly
hook a managed code runtime engine, such as a Java virtual machine (JVM) or the .NET
Framework’s Common Language Runtime (CLR). Agents can also be installed to monitor
lower-level operating system (OS) performance, such as monitoring individual application
threads, or sockets, or system reads and writes. This data is then transmitted to some
central monitoring application, which correlates the data. The trick is to have agents that
can natively “talk” to each major component of your application. As Figure 2.12 shows, that
can require a lot of variety on the part of the application monitoring solution’s vendor, but
it can give you an extraordinary amount of detailed insight.

Realtime 29

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

AR

|

N
I
I
I
e
mOCmw]
1

 mOi0mCa]

il
g ol
Fee il
AR, —— 1}
o [|
- SOmCaaC .
1 I -
wCuCmC 11
D, BN
SININE .~ Dep— R
e f Y
L T
F- — 1§
Fo ——
e —
ey e
= = -

b
mitiiie

il
ol
N
A
|
I
1
I
-
I 1
[1]
1
I
E——
|
—
-

rﬂ!lllll
B

)]

;h
&
o
4]

2
@
=
C
-
£u
¥}
(4]
)
4]
=3
41}
[yl

Figure 2.12: The major components of an application where agents might reside.

Note

Many of today’s enterprise-class platforms provide the hooks needed to
obtain performance information, which makes APM solution vendors’ jobs a
bit easier. They just need to write agents capable of using those hooks and
transmit the resulting data back to home base for correlation and analysis.

A downside of agents, of course, is that they have to be installed and maintained, and it’s
not impossible or unheard of for agents to impose their own performance overhead, which
means it may not be feasible to use them all the time. If you're considering a solution that
relies on agents, talk to the vendor and some of their other customers to get a feel for
whether the agent-based approach seems to work well for them. Well-written agents
shouldn’t diminish application performance.

Agentless

Agentless systems don’t require anything to be installed on your servers; instead, they
observe from without. These may take the form of a centralized monitoring application that
remotely observes server performance or a network appliance that monitors all traffic
passing between your application servers.

The obvious upside is that agentless systems are non-invasive; the downside is that they
can be expensive to deploy broadly, and they may never be able to capture the same
detailed level of information as an agent-based system.

Note

As I've written, some vendors may use a hybrid approach that offers agent-
based monitors for some elements of an application while relying on
agentless monitors for other elements.

Realtime 30

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

The downside of agentless systems is their lack of tight integration. For example, you might
have an application where the database server isn’t performing well. An agentless system
might be able to tell you that transactions are taking a long time to come out of the server,
but it won’t necessarily be able to tell you why. An agent that hooked into the database
server’s software, however, might reveal a high number of deadlocks or other database-
specific issues. The domain-specific knowledge available to an agent is simply higher than
the knowledge available to an external, generic observer.

Again for clarity, my definition of agentless is some monitoring component that does not
have to reside directly on the machines that execute your application code. It might well be
that an “agentless” system is comprised of agent software that is installed onto a standalone
machine or is even an appliance of some kind. Network probes are perhaps one of the more
common examples of agentless systems. These are often installed in-line on the network,
allowing them to “see” all network traffic—perhaps within the data center, or between the
data center and end users—and to report back to a central monitoring station with details.
Those details might include observations of tagged transactions, for example.

Still, these kinds of probes can often provide performance information that is otherwise
unavailable. For example, Figure 2.13 shows an application that relies on external
components, such as a payment processing service or a shipping rate service. As these
systems aren’t yours to control, a probe—which sits in-line and reports on all traffic
flowing to and from those systems—can be the only practical way of capturing
performance information about those services.

On-Premise Apnlication Companents

Amaled e O

TSRO0 s

Off-Fremise Application Components

Figure 2.13: Using probes to collect in-line data from external components.

Realtime 31

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
I

An Example of User Transaction Monitoring

Let’s walk through a more robust example of how user transaction monitoring can help
monitor, manage, and improve application performance. We'll start with a situation where
the EUE for a given task—say, looking up a customer order in the system—is taking an
unacceptably long period of time. We don’t know this because a user told us; we know it
because we’ve observed the performance using an automated EUE monitoring tool. That
tool has thrown up a warning and alerted us to a problem with the EUE (see Figure 2.14).

On-Premise Application Components

| ——
I
e

Uff-Fremise Application Components

Figure 2.14: Alerted to an EUE problem by a testing tool.

We immediately spring into action. As Figure 2.15 shows, we start looking at the data being
collected by agents installed on our applications’ servers and by a network probe that is
monitoring traffic to external services. We might even use our EUE testing tool to inject
synthetic test transactions into the application so that we can trace those specific
transactions and measure the component-level performance of the application.

Realtime 32

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones
___|

On-Premise Apolication Components

EUE Tester

Figure 2.15: Gathering information about the user transaction.

That collected performance data can be extremely granular. By trying a variety of
permutations in our synthetic test transactions, we might discover that the database server
passes its normal performance thresholds whenever we inject a transaction that involves a
specific category of products. Synthetic transactions and automated tools can discover this
fact very quickly because they’re able to try different transaction permutations more
rapidly than a real human being, and can gather information on multiple transactions being
conducted in parallel. By alerting us to the specific location and circumstances of the
problem, as Figure 2.1 shows6, we can begin the human-level task of figuring out what the
problem is.

| {Eﬂ‘al ti me 33

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

On-Premise Apolication Components

EUE Tester

Figure 2.16: Detecting the cause of the performance problem.

Our tools might even help us find the problem more quickly. For example, suppose that this
particular category of products was extremely heavy. Our tools might not realize that fact,
but they could tell us that the database server performance problem correlates to an
increased number of queries from our external shipping rate service (see Figure 2.17),
which is perhaps generating error records because the products we're trying to get a
shipping rate for exceed the shipping carrier’s limits. That would actually indicate a bug in
our code because we’re not handling that error record correctly. But by seeing the
correlation in poor performance between these various components, developers can start
trying the problematic user transaction on their own, analyzing the detailed data, and
finding their error.

| {Eﬂ‘al ti me 34

publishers

The Five Essential Elements of Application Performance Monitoring Don Jones

On-Premise Apolication Components

Deskiop PC

EUE Tester

MBS,

]

NENt Frotessing Shipping Raie Service

q
3

O¥f_Bromica Annlication Cammnente

Figure 2.17: Correlating problems between multiple application components.

Without this holistic view of the application, and without the ability to trace user
transactions, we could have spent a lot more time trying to solve the problem. For example,
the database itself might look like the problem, but there wouldn’t actually be any problem
with our data, so we might wonder why the database is slow. It’s not until we involve a tool
that can correlate actions across the entire application that we realize the database’s
problem is actually a cascade from an external service.

Coming Up Next...

It’s all well and good to talk about tracking the user transaction—but how, exactly, will you
do it? Your toolset first needs to understand what your application looks like, what
components are involved, and what processes are taking place. To achieve that
understanding, you’ll need to engage in discovering and modeling, a process designed to
produce a model, or map, of what your application looks like. That’s what we’ll cover in the
next chapter: modern tools and techniques for creating a model of your application.

Download Additional Books from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this book to
be informative, we encourage you to download more of our industry-leading technology
books and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

|
Realtime 35

publishers

http://nexus.realtimepublishers.com/

	Chapter 2: Tracking and Monitoring the User Transaction
	How Application Performance Monitoring Got Away from Us
	Remembering When IT Was Easy: Monolithic Applications
	When IT Started to Get Hard: Two- and Three-Tier Applications
	Now IT Is Difficult: Multi-Tier, Multi-Component, Distributed Applications

	Applications as a Stack
	How User Transactions Traverse the Stack
	Old-School Monitoring, and Why It Doesn’t Work
	The 5D Approach’s Goals for Monitoring User Transactions
	Techniques for Monitoring User Transactions
	High-Level Techniques
	Transaction-Centric Event Correlation and Analysis
	Transaction Tagging

	Implementation Details
	Agent-Based
	Agentless

	An Example of User Transaction Monitoring
	Coming Up Next…
	Download Additional Books from Realtime Nexus!

