Pezllitonle
puibligners

deDefimnwe Guide 16

Building Code

Quality

Don Jones

Chapter 3
|

Chapter 3: Coding Analysis and Peer REVIEWSooiininenssnssnseesesesssssssssssssssssssessesssssssssssssss 42
Understanding Peer ReVIEW Of COAE......meierecseeesseesesseessessesseessssssessssssessssssesssssessssssesasees 43
COAE ANALYSIS OVETVIEW ..ecereureereeereeeeeeesseeeessesssessesssesssssessessessssssssssssssesssssse e sssessssssssss st ssssssssssssssssssnsanes 46

ClaSS COUPLIING ..ccvurruiruiereeresrssss s sssssess s ss s s bbb s 47
Depth Of INNEITtANCE. ... 48
CyclomatiC COMPIEXITY ..cuureueeureeeesrereesseesseeeessesssssesesssesssessssssessesssssssessssssessssssasssesssssss s sssssssasesssanes 49
LINES Of COE..c ittt s s bbb 49
MaintaiNability INAEX ... ses s st st snes 50
Code Analysis Policy in Visual StUAIOccounnenenienesesssssssssssssssesssssssssssssssssssssssssssssssssssssssens 51
Performance and Security Analysis Topics and Techniques........cconeneeereneenneeneeseessesseenes 53
Reacting to Analytical Metrics and GUIAANCEoccvevereennrrsieseesssesssssssssessessssssesssessssssesssesans 58
Establish COA@ Priority....neesssssisssssssssssssssssssessnes 59
Establish Metrics GUIAEINES.......oueuriereereereeeesreeeessessesseesseseessesssessesssessesssesssssssssssssssssssssssssssssssanes 59
Address and Monitor TroubleSOme MetriCScoeeesesesssesssssesssssssessessssssssssssssees 60
Test Suite Development GUIAANCE ... esesesssssessssss s essssssssssssssssssssens 61
CONEIOl Of SCOPE CIEEP ..ureeeerrerersresesessessesses s sssss s ssss st s s s sssssssssssssssssnsnes 62
ANALYSIS COMPLETE ...t seeretees et ees s s ss bbb s bbb e 62

Realtime 1 CIFochs

Chapter 3

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 3

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 3: Coding Analysis and Peer
Reviews

All the coding standards in the world, combined with all the testing in the world, cannot
provide the same level of code quality that you can achieve when you add in automated
code analysis and peer code reviews. Consider this: Developers are people. Quite often
they’'re smart people, and they’re often smart people under pressure from deadlines. If you
remember the 1980s television show “MacGyver,” you know what smart people do under
pressure: they improvise. Merely making sure that code compiles and runs properly
doesn’t mean improvisation didn’t occur—you can have some pretty ugly-looking code that
will pass those two tests. Consider this pseudo-code:

Function RestartServers(X) {
ForEach (S in X) {
If (S.Name contains any of ("DC","SQL","EXCH")) {
Return Null
}
S.Connect().Reboot()
}
}

This code might violate a few standards. For one, it has multiple exit points—it can exit by
falling to the end of the function and through the Return statement in the middle. Variable
naming is shoddy—what do “S” and “X” represent? Multiple operations—a Connect and
Reboot—are being conducted on a single line of code. All of these are generally held as bad
practices by some professional developers, but the code would compile and execute just
fine.

Code analysis and a peer review, however, might catch these problems. Fixing them would
result in less-complex code, easier-to-maintain code, and so forth—all of which leads to
higher-quality code.

. 4?2 MICRO
Realtime CIFGEDS
yublishers e, _

http://nexus.realtimepublishers.com/

Chapter 3
-

Understanding Peer Review of Code

Peer review can be a sensitive subject. Not many developers like to have someone looking
over their shoulder and critiquing their art (remember that coding is as much art as
science, and developers can be as sensitive and temperamental as artists). Unlike a
painting, however, code is functional art, and can benefit from a second look by another
developer. Peer reviews offer a number of benefits, which should be communicated to
developers:

¢ Junior developers can learn from their own mistakes, and mini-mentoring sessions
can be incorporated into the review

e Everyone can gain more practice in observing coding standards; in fact, by having
each developer act as a reviewer, you'll find that they start observing coding
standards more consistently in their own code

e Peerreviews can be a team-building opportunity, rather than a competitive event,
when managed properly

The key is to make sure everyone knows that the peer review is an opportunity to put the
collective code into the best possible condition—not to “pick on” any one person. The code
is “owned” by the entire team (managers can emphasize that by rotating developers
through different portions of the code on a regular basis), not by one developer; a peer
review is a chance to make that common property the best it can be.

Peer reviews are, unfortunately, easy to skip. They take time, and time is often something
development teams are perpetually short on. Management may not understand the value of
peer review, and may not want to allocate time to it. That’s a point of education: Industry
statistics are very clear that peer-reviewed code is almost universally of higher quality than
code that isn’t peer reviewed. If management wants code that can outlast the career of a
single developer—in other words, more maintainable, standardized code—then peer
reviews are a must.

Start by adopting a set of guidelines for peer reviews. The National Oceanic and
Atmospheric Administration (NOAA), for example, uses the site at
http://www.nws.noaa.gov/oh/hrl/developers.html to document their programming
standards and conventions, and to document checklists for peer reviews. These checklists
help ensure that peer reviews don’t descend into personal attacks, and help keep the
review focused on value-added activities. Figure 3.1 shows a portion of a general peer
review checklist; you can see that it is very to-the-point and focused on coding standards.

. 43 MICRO
1€ I:IFEIE:LIE

—

Real

http://www.nws.noaa.gov/oh/hrl/developers.html

Chapter 3

OHD General Programming Standards and Guidelines Peer Review Checklist

Reviewer's Name: | Peer Review Date:
Project Name: Project 11

Enter if applicable
Developer's Name: Project Lead:
Review Files &
Source eede
Code Approved

This checklist is to be used to assess source code during & peer review. [tems which represent the code being reviewed should be
checked off.

Refer to the OHL General Frogramming Standards and Guidelines document for more complete descriptions and examples of the
items listed below.

1. Internal Documentation

Comment block exists &t the beginning of the source file containing &t least the
following information: original author’s name, file creation date, development group, and a brief statement of the
purpose of the software in the file.

Each subrouting or function in the file is preceded by & comment block which provides the following information:
routing name, original author’s name,
routine’s creation date, purpose of the routine, a list of the calling arguments
(their types and what they do), a list of required files and/or database tables, the routine’s return value, error codes and
exceptions processed by the routine, and & modification history indicating when &nd by whom changes were made.

2. Programming Standards

Consistent indentation of &t least 3 spaces is used to distinguish conditional or control blocks of code. TABS NOT
USED FOR INDENTATION.

Inline comments are frequently used and adequately describe the code.
Structured programming techniques are adhered to.
Subroutines, functions, and methods are reasonzbly sized.

The routines in each source file shall have a common purpose or have interrelated functionality. Methods in a class
suppaort its functionality.

The name of the file, script or class represents its function.

Function and method names contain a verb, that is, they indicate an action.

Figure 3.1: General peer review checklist.

Figure 3.2 illustrates a checklist that is specific to C programming and which contains style
and coding conventions only applicable to a C project. This combination of a “general” and
“language-specific” checklist is useful for environments that maintain code in multiple
languages.

. 44 .
Realtime CIFochs

Chapter 3
|

TTTo G E UL T oot Tod T TGO PIOToTy Poy HIs T oo TRDoT P IO ¥ Gl TRDTe TIGTIoeT . LIl ¥ Ol TRO T TR TreY TTIhreTT T

variable names in the function definitions.

Functions used only in the source module they are created in are preceded by the “static” keyvword. They do not have
prototyvpes in header files.

The return types of functions are explicitly stated.
Standard C Library routines are used where appropriate.

1.4 Portability
Non-portable code is avoided.

The code does not assume that data are stored in a particular way with respect to word boundaries in memory.

2. ¢ Programming Guidelines

1.1 File Organization

The names of C source files which belong to a commeon library or an executable have a commeon prefix.

1.2 Comments
Block comments, one-line comments and inline comments are used appropriately.

A blank line is placed before and after a block comment or & one-line comment to separate it from the surrounding source codd

1.3 Variable Declaration, Initialization, and Qualifiers
Loop index variable names are short.

Pointer variables are named in & consistent fashion.

1.4 User Defined Types
Enumerations are used to group logically-related constants.
Macros are used judiciously.
Parentheses are used in macros to ensure correct evaluation order.

Structures are used to reduce the number of function calling arguments.

1.5 Pointers and Dynamic Memory

Pointers are used a&s arguments to functions in plece of passing by value large user-defined types or structures.

1.6 Functions

Figure 3.2: Language-specific checklist.

Typically, it’s not practical for every line of code in an application to be peer reviewed.
Instead, select a sampling of subroutines to review, and ask that the developer being
reviewed take any suggestions and apply them to all of the code—not just the reviewed
code.

Note

This is where code metrics can come in handy. By selecting more complex
portions of code, as identified by a code metrics analysis, you'll be reviewing
the code with the highest potential risk—that is, the code that can stand to
benefit most from the extra attention of a peer review.

. 45 P
Realtime CIFochs

publishers Leading t

Chapter 3
-

Peer review suggestions should be identified as belonging to one of three categories:

e (Cosmetic—Items primarily related to coding style

e Minor—Items that might relate to the efficiency of the software but do not impact
its functionality

¢ Major—Items that relate to the functionality of the software

Although all these items should, ideally, be addressed, categorizing them in this fashion
helps prioritize them in case management needs to make a tough call on quality versus
other factors, like time and cost. Perhaps most importantly, each comment should be
accompanied by a suggested solution. It’s never enough to just point out a problem! Point
out a solution as well. Doing so helps turn the peer review from a potential personal attack
into a team-building exercise that emphasizes the shared ownership of the code.

Code Analysis Overview

In the previous chapter, I briefly mentioned the code metrics analysis tool that is provided
with some editions of Visual Studio 2008 (specifically, the higher-priced Team System
editions). Although there are third-party Visual Studio add-ins that provide deeper and
broader metrics, Team System'’s tool provides a good starting point for understanding the
value of such a tool. Also, code analysis generally encompasses more than just the basic
metrics provided by this tool.

Note

Most of the Visual Studio-specific features discussed in this chapter are
available only in the Team editions of the product, and some of them require
interaction with a Visual Studio Team Foundation Server. Third-party
products provide similar feature capabilities that might be compatible with
other editions of Visual Studio, whether you’re using Team System or not.

Code analysis consists of statistical analysis as well as other rules; those other rules may
address naming, localization, portability, security, usage, and other coding conventions
(which we discussed in the previous chapter). The idea is that code analysis is a fairly
automated process, whereas peer review is a more manual process that involves another
human being looking at a developer’s code.

Note

Some of the statistics I'll discuss in the next few sections were introduced in
the first chapter of this book. Many of them come from tools provided by
Microsoft as part of Visual Studio Team Edition; because some of these
statistics are only exposed by that tool and by a few other third-party tools,
they may not be “standardized” to the point where every environment will
use them. However, they’re still valuable to review and understand because
in many cases they parallel more commonly-used statistics.

46 |:|M||:R|:|‘“"
nNCalulllc FOCUS

Chapter 3
|

Class Coupling

One of the items included in Visual Studio Team System’s Code Metrics analysis is class
coupling. This indicates the total number of dependencies that one item has on other types.
It excludes primitives and built-in types (such as String or Object). The higher the class
coupling number, the greater the likelihood that changes in other types will cause ripple
effects through the analyzed item. A lower value at the type level indicates candidates for
potential reuse. At http://blogs.msdn.com/fxcop/archive/2007/10/03 /new-for-visual-
studio-2008-code-metrics.aspx, Microsoft provides a helpful illustration of how class
coupling works; this is reproduced in Figure 3.3.

Coupling arstomer (= . Coupling
1 Class
(Country (¥
Class 0
(Account [¥) :
2 Class
- ' . [- (¥ 1
% Class L 1
(Order [¥ - :
2 Class
' | Currency (¥
A4 Class 1
(Transaction (¥
1 Class
| Supplier (¥
Class 1
(Product [¥ - r
1 Class

Figure 3.3: Class coupling diagram.

In this diagram, the Order class depends upon the Currency class, which depends upon the
Country class. Country depends on nothing, so it has a coupling level of 0. Currency
depends on Country, so it has a dependency of 1. Order depends on Currency, which in turn
depends on Country, so it has a level of 2. The higher the level, the more at risk the class is
of breaking.

. 47
Realtime ClFochs

publishers

http://blogs.msdn.com/fxcop/archive/2007/10/03/new-for-visual-studio-2008-code-metrics.aspx
http://blogs.msdn.com/fxcop/archive/2007/10/03/new-for-visual-studio-2008-code-metrics.aspx

Chapter 3
|

This should not imply that class dependencies are bad. Combining common code into a
single point of maintenance reduces copies of the same code throughout the project. It does
mean that the more complex the dependencies become, the more care developers must
take when working with them. Fortunately, modern tools simplify the process of tracking
these dependencies, identifying risks, and mitigating issues when changing one class will
affect others. Choosing tools that help prevent developers from making these mistakes can
keep the code safe and still allow the developers to implement the best coding practices.

Depth of Inheritance

Depth of inheritance is a measurement of how many underlying types or classes a given
class inherits from. In the .NET Framework, Object is an intrinsic type with a depth of 0;
anything inheriting from it has a depth of 1. Anything inheriting from that level would have
a depth of 2, and so forth. Much like class coupling, a higher number indicates a riskier
element because changes to underlying elements can cause cascading effects. Figure 3.4
illustrates.

Depth | Object ¥
0 Class
" :
| Component ®)
1 Class
—+ Object
5
| Contral (=) |
2 Clazs
=+ Component
| ListControl ¥ | | Label # |
3 Class Class
=+ Cantral =+ Cantrol
[ComboRox F | listRow (¥ [Linkl ahal %] |
4 Class Class Class
=+ ListControl =+ Label

=+ _istContral

Figure 3.4: Depth of inheritance.

Here, the ComboBox is a riskier class because it has an inheritance depth of 4. Changes to
Object, Component, Control, or ListControl may cause cascading effects that introduce bugs
or other problems into ComboBox.

Realtime
shers

48 MICRO
I:||=|:||::us

Chapter 3

Cyclomatic Complexity

At each level, cyclomatic complexity measures the total number of individual paths through
code. Essentially, you count the number of decision points, such as If constructs, and add 1.
Because tests should strive to test every possible code path, the cyclomatic complexity is a
rough measurement of the minimum number of different unit tests that will need to be
performed to thoroughly test the code. Lower numbers are obviously more desirable!
Figure 3.5 shows a block of C# code with the corresponding calculations for cyclomatic
complexity.

Complexity
1 ool Forsetonmandling (serdng] azgumeEncs)
i
F iF (aeguamants,Langeh == g}
L]
Foowilalg ()
TATOEN Falga)
3 Ior (dng 4 = Qp 1 4 GEgumEntg.Langehr 2447
i
4 if (argunancF[d] = TSR]
i
Foowilaln (i
vavaen Ealsar
5 if (grgunentcF[d] == TAAnoacTi
i
6,7 if (awgumsnvs.Langth » 1 &8 Fila.Ixdzoziargunancz]d + 1]3}

i
Dnguefllalang = gogumanks [d44])

PRTERIN Tadwa

Figure 3.5: Cyclomatic complexity.

Cyclomatic complexity is a much more standardized metric, and is something that most
non-Microsoft tools will calculate for you.

Lines of Code

An oft-overused metric that nonetheless has some value, lines of code (LoC) should not be
used to calculate developer productivity or programming progress because those activities
involve more than just hitting “Enter” in a code editor. Bill Gates famously suggested that
using LoC to calculate progress or productivity was like using weight to calculate the
progress of building an airplane. Sure, the airplane gets heavier as you go but that’s not
necessarily an indication of desirable progress. Commonly, LoC excludes white space,
comments, braces on empty lines, member declarations, and other non-functional lines of
code.

. 49 MICRO
Realtime CIFGEDS

Chapter 3
|

Maintainability Index

The maintainability index is an index number, commonly expressed from 0 to 100
(although different tools may use different ranges) indicating the overall maintainability of
that member of type. In Visual Studio Team System’s Code Metrics analysis, shown in
Figure 3.6, a 100 indicates a “100% maintainable” element, while a 0 indicates an element
that is going to be difficult, if not impossible, to maintain over the long term.

Code Metrics Results @
=] | Filter: None . I'.lin.| v||‘-]3x.| v| [1l
Hierarchy = Maintainability Index ~ Cyclomatic Complexity Depth of Inheritance Class Coupling Lines of Code
{8 BusinessLayer (Release) ‘o 38 545 1 9 565
El-{} BusinessLayer m 38 545 1 9 585
E|Vf5 Address =] 37 265 1 7 275
- 5% Address(int, string, string) =] 76 1 1] 4
25 Id.get() : int m 98 1 0 1
----- v LoadAddress(int) : Address FaN 18 102 7 108
----- @ Save() : void @ 7 159 3 160
----- 257 StreetAddressl.get() : string m 93 1 0 1
¢ 25 StreetAddress2.get() : string m 93 1 0 1
2% Custorner o EY 280 1 7 290
----- ﬁ] Address.get() : Address =] 98 1 1 1
----- 5% Customer(int, string, string)] 76 1 0 4
----- 25 FirstMame.get() : string a 98 1 0 1
----- 257 Td.get() : int m 93 1 0 1
----- 25 LastMame.get() : string =] 98 1 0 1
----- v LoadCustomer(int) : Customer @ g 146 [152
----- W Save(): void FaN 13 129 2 130
#-{f DataAccesslayer (Release) =] 95 6 1 2 6
{8 MainApplication (Release) =] a4 10 7 5 16

Figure 3.6: Code metrics with maintainability index.

The index itself is a rollup of other metrics, including the Halstead volume (which factors in
the number and use of operands and operators), cyclomatic complexity, and lines of code. I
have mixed feelings about metrics like this; while I think it’s useful to have a dashboard-
style “rollup,” this type of metric can also hide a lot of underlying statistics and issues that
really should be reviewed. Many third-party code analysis tools offer similar “rollup” views,
and sometimes offer the ability to easily drill down into problem areas to get more detail—
and that detail can help you prioritize and plan what you're going to do next. The point is to
remember that the dashboard-style view is intended as a high-level overview; you
shouldn’t make project management decisions based solely on this information.

Figure 3.7 shows a similar dashboard-style view from Micro Focus DevPartner, which also
works with Visual Studio. This view aims to provide information that’s a bit more
actionable by management; while it also lists a complexity statistic, it includes
“understanding” and “bad fix” measurements as well. Code modules with a “high to
untestable” understanding, for example, are a problem: they’re overly-complex, may not be
able to be tested thoroughly, and represent a very real risk in terms of code quality. The
“bad fix” number is especially significant because it represents the probability that some
future fix to the code will actually introduce a new problem simply because of the code’s
complexity; high numbers such as 40% means the code may well be impossible to maintain
into the future, and that calls for immediate management action to decide what to do—
now.

p 50 MICRO
Ht"(llumt‘ ClFochs

Chapter 3
|

- DevPartner Code Review - X
H @ H |+ [+ |7 igw by -
B ...=A BNTMETwin4pp i Summary |Problems | Maming »Metrics | Call Graph 4 b
EI'"lE AddressClass l/]/ }/ l
E-#] Address.cs ST] 03
i ijjress Method File I Praject [Complexity © [Bad Fix % | Understanding [Lines=|
_v c IIEISSt Dist W GetTimeZone Address.cs AddressClass 51 40 High to untestable 47
o eaney 4% LoadConfigSettings fmBNTHE TwinippMainvb BNTNETWindpp 18 10 Moderate %
2 Cih =
1‘31“ Eit; ¥ ReadSOLFile frenlternD etall. vb BMTMNE TWindpp 14 10 Moderate 108
V GelTimeZone & emdl] pdateL?st_CIic:‘k frmBrowseIte!'ns.vb BNTNETW’?nApp 13 10 Moderate 103
lfl' PostalCode 2" frn0rder nquiry_a.ctivated frnOrderl nguirg. vb BMTMET'indpp 1 10 Moderate 150
-7 PostalCode 4" LoadltemList frmOrder.vb EMTMNETWindpp 10 5 Simple to moderate T
[0 State 4 Checkawail frmOrder.vb BMNTNETWindpp 9 5 Simple to moderate 78
1‘31“ State & fnE ditltem_Activated frmE ditltern. vb BMTNETWintpp 3 5 Simple to moderate m
]j‘ Street || &9 validateltemnfo frmE ditltem.vb EMTHE T indpp 9 5 Simple to moderate EQ
)]fr Street || 2% Checkéwailability frnOrder.vb BMTMET'indpp 9 5 Simple to moderate 73
1% BNTNETwinipp ¥V alidateSupplirnfo frmE ditSupplier. vb BMTMETWindpp 9 5 Simple to moderate 55
EI{_}E CustomerClass :|| "% ReportOrders frmReports.vb BMTHMETWindpp 9 5 Simple to moderate il
E""-':BJ Cgstomer.vb :| | &%V alidateCustomerlnfo frmE ditCustorner.vb BMTNETWintpp 3 5 Simple to moderate 58
1‘21“ Custamer D 4* fimSettings_Load frmSettings. vb BMTNET®Windpp 8 5 Simple to moderate 4H
~ 1 CustomerD :|| 3% UpdateSupplietList frmitemD etail vb BNTNETwinipp 8 5 Simple to moderate 5
Emailtdd i
‘fr Ema!IAdd[ess & * cmdExecute_Click frmReportCustomerRemote vb BMTNETWindpp B 5 Simple to moderate ED
el Nmal e 2 fimBrowseCustomers_Activated frmBrowseCustomers.vb BMTNETWintpp B 5 Simple to moderate 77
g N:Q: 4" GetHiveRegistykey Fegistry.vb BMTNETWintpp E 5 Simple to moderate 12
V Mew & emdk_Click frmLogin.vb BMTHNE T indpp 5 5 Simple to moderate 80
2@ New 2" cmdRunReport_Click, frmReportOrders.vb BMTNET'indpp) 5 Simple to moderate 23
P Password 4% InsentOrder frmQrder.vb BMTHETWindpp & 5 Simple to moderate B2
1‘31“ Paseward b ¥ cmdClose_Click fimReportCustomerRemate.vb BNTNETWinépp B 5 Simple to moderate 25
EI{_}E ShoppingCartClass & frmBrowseShippers_Activated frmBrowseShippers.vb EMTHET%indpp & 5 Simple to moderate 64
E":BJ ShoppingCart. vb & emd0K_Click frmE ditltem. vb EMTMETWintpp & 5 Simple to moderate e
=i Addltem & fimBrowseSuppliers_Activated frmBrowseSuppliers.vb BMTMET'indpp 5 5 Simple to moderate 75
- =k CalculateCartTotal 2 cdUpdateList_Click frmOrder.vb EMTMNETWindpp 5 5 Simple to moderate 96 =
e D | 1y |t e i caacally o bkl O o A e T i s il PR ITRIE T fe b e c c F oS CVVE PN PR Py oy ar
= | w Deleteltern . ‘T] _’I_I

Figure 3.7: DevPartner code analysis metrics.

Code Analysis Policy in Visual Studio

Visual Studio supports a feature called Code Analysis Check-In Policies. Essentially, these
are rule sets implemented by Visual Studio and its Team Foundation Server, which analyze
all code checked into the Team Foundation Server’s source code repository. These rules are
designed to help ensure that only higher-quality code is checked into the repository, and
when code fails to meet a rule, the developer receives feedback that helps guide corrective
actions.

Figure 3.8 illustrates part of this feature. You can see that the source control Check-In
Policy includes a specific policy called Code Analysis that is comprised of numerous rule
sets which are enforced on check-in.

. 51
Realtime CIFocts

Chapter 3

r

Source Control Settings - CA Demo

Pl X

Paolicy Type

Check-out Settings | Check-in Policy | Check-in Notes

Description

Ensures that code analysis is run with a defined set of rules.

Code Analysis Policy Editor

[Enforce check-in to only contain files that are part of current solution
Enforce C/C++ Code Analysis (fanalyze)
Enforce Code Analysis For Managed Code

Rule settings for Managed Code Analysis:

[+

Design Rules
Globalization Rules
Interoperability Rules
Maintainability Rules
Mobility Rules
Marning Rules
Performance Rules
Portability Rules
Reliability Rules
Security Rules

Usage Rules

HEHEBEEERBKBGEEH

Rules Enabled During Code Analysis

Treat Warni...

T

OOO0ooEEEEAaq

OK l l Cancel

Figure 3.8: Code Analysis check-in policy.

The Team Foundation Server policy can also be migrated to individual projects, which
allows smaller projects to use the rule sets without having to check the code into the
change control system. Local (non-Team) projects can also have their own distinct rule

sets.

Figure 3.9 shows the feedback offered to developers when something fails a check-in
policy. They’re told which projects have problems. The integration between the Team
Foundation Server and Visual Studio is actually interesting. Basically, developers can
attempt to build their solution against a rule set. Any failures are described in detail within
the IDE. If a developer fixes the problems and successfully builds the project against the
rule set, it can be checked into Team Foundation Server under the same rule set.

Realtime

publishers

52 MICRO
.:IF_CII:LI_E

Chapter 3

Pending Changes - Policy Warnings @
=% CheckIn

T.Iu N\ TF10139: The following check-in policies have not been satisfied
Q Description

D The code analysis settings for one or more projects are not compatible with code analysis policy. Double-click this message for more information.

Code Analysis Policy Failure Details |@7§3|

The projects in the following list have one of the following issues: either the code analysis settings are
not compatible with the code analysis policy for this team project or the projects have not been
successfully built with those settings. To correct this, from the Analyze menu, select "Code Analysis
Settings for Solution”, choose how you want to update the settings, and then rebuild with those
settings.

BusinessLayer
DataAccessLayer
MainApplication

Figure 3.9: Can’t check in non-compliant code.

Note that third parties can extend this functionality or replace it with their own
functionality in order to provide more varied rules and more complex code analysis.

Performance and Security Analysis Topics and Techniques

Visual Studio Team System’s bundled tools for analyzing code performance and security
are somewhat less mature than the basic code metrics features, and this is an area where a
robust third-party add-in market has flourished for years. Team System does include a
Performance Wizard, which is a profiling tool. The Wizard runs in two modes, as illustrated
in Figure 3.10: Instrumentation and Sampling. The Wizard is a fairly basic performance tool
that extends Visual Studio’s capabilities; third-party tools, which have been on the market
for longer, in most cases, extend Visual Studio in a similar fashion and often provide more
detailed performance information.

. 53
Realtime

publishers

Chapter 3
|

WindowsFormsApplication1-1 Property Pages

- izeneral — Profiling collection
- Launch
r- i
e i + Sampling
- Binary " Instrumentation
- Inskrurnentation
- CPU Counters — MET memary prafiling collection
W!nduws Eyeris V¥ Callect .MET cbiject allacation information
- Windows Counters
- Advanced ¥ also collect WET objeck lifetime information

— Data Collection Conkrol

¥ Launch Data rollection Contral

Figure 3.10: The Visual Studio Performance Wizard.

You typically begin by sampling your entire application, searching for performance spikes.
Once you find them, you investigate specific spikes by using instrumentation. Figure 3.11
shows the performance report from a very simplistic application, indicating that almost
98% of the application’s performance was taken by the String.Concat() method.

Current Yiw: Summary AR RSRE
Performance Report Summary
Functions Allocating Most Memory

Mame Bytas %
Sy skem. String, Concot{sring, string) 11.284.760 97,9
Sysheti, String. Cbor CharfrayStartLengthichae(], ink32, ink 32) 36,508 0,32
Syskem, String, GebStringFor SringBuldenstring, it 32, nt 32,ink 12) 13,616 0,12
Sysham, X, Xl TecctReader mpl. Indt Streamdrputclass Syshem. Url, string, class System. 10, Straam, it 8] L int 32, class Systers, 12,400 0,11
Syshem. Drawineg. leon, choe(elass Systam. Type, shring) 10.146 0,09

Types With Most Memory Allocated

Mame Bytes %
Syshem, String 11,363,210 98,64
Syshkem Byta(] 20,461 0,18
Sysbem. Colections, Hashtable bucket(] 13,224 0,11
Syshemn. Cha[] 9,622 0,08
System. Cbject[] £.548 0,06

Types With Most Instances

Hame Instances %
Siyshem, SEring 2,354 40,%0
System. Collections, Generic Lisk 1 22 3,83
System, feflection, Cerfuraylist” 1 215 3,69
System. RuntimeTypsHande(] 150 2,57
Syshem. Object 147 2,52

Figure 3.11: An example performance report.

. 54
Realtime ClFochs

| \II' I ‘Il] 5 | 'III' l‘l 3 Le: the Evolution

Chapter 3

From that report, you could right-click that method and see the code that is actually calling
it. This functionality is designed to help you track down lower-performance code
throughout the project. As Figure 3.12 shows, Visual Studio Team Edition actually helps
identify lower-performance calls in a call tree by using a “flame” icon.

Current Yiews: Call Trea = [1_. o Bl i s S £
i) Moize Reduction ic enabled for this siew. Conbquie

Function Marme | Inchusive Allocations | Exchusive Allocations | Inchugive Bytes |
=} WindowsFormsApplication] ,exe 5.809 1] 11.514.559
= WindowsFormsApphcation] . Progran. Main() 5.809 1 11.514.559
+ - WindowsFormsApplication] .Form1..cbor() L7999 i} 126.603
=] - Syshem, Windows. Forms, Application, Runidass Sysbem. Windows.f 3.867 53 11.383.178
- WindovesFormsApplication] Form] , Dispose{boal} 1578 1] T0.430
=% WindowsFormsApplcationi .Formi.Formi _Load{object,ck 1.521 i} 11.265.580

™ |5~:.-*s£em.‘5trk‘.q.€nncat|:sl:rrq.stmg‘.l

Figure 3.12: Hot-path tracking in Visual Studio.

Visual Studio Team System’s code analysis tool, which I discussed earlier in this chapter,
also has rule sets for security. Many organizations rely on third-party code analysis tools
that offer broader feature sets for code security; in some cases, you can obtain third-party
security analysis tools that have been built to help support specific legislative and industry
initiatives, such as the Payment Card Industry Data Security Standard (PCI DSS).

So does Team System give you everything you need? For smaller projects, possibly.
However, its performance and code analysis tools are still fairly first-generation, and it’s
worth your time to evaluate the third-party tools out there because they can often provide
much more detailed information. In addition, they integrate with Visual Studio in the same
way that Team System’s tools do, so you're not making your workflow any more
complicated. Companies such as Micro Focus, Red Gate, and others offer tools that typically
surpass Team System in terms of features.

For example, consider the differences between Team System’s performance reports and
those provided by Micro Focus’ product, which also integrates with Visual Studio
(including the more commonly-used and less-expensive Standard and Professional
editions). Figure 3.13 shows how the tool can break down the amount of time spent
executing individual methods within the application, making it easy to spot those methods
that are occupying the most time, and focusing some effort to improve their performance.

. 55
Realtime CIFochs

Chapter 3
|

@D BNTNETWinapp - Microsoft Yisual Studio == x|

File Edit ‘iew Project Build Debug Data Todls WMware Test DewPartmer Analyze Window Help

~E-F S ¥ B R - ‘- B - EL | b Debug = Mixed Platforms - | @ ":I;;Jj:ﬁ}t"ﬂﬂ';

W . . - . L . . e L =
L= K | & | |j, |§|_| @ -] M @ &\ ﬁz; DQ o | F Performance or coverage a o K 3 =
BNTNETWinAppSnap_BAD.dpprf]’ Start Page o [
=
E-EE] Al { Modules: 66 Methods: 5,932) Method List | Source [frnBrowsel tems: vh]l Session Summal_ul %
-8 DTW101504M01 - 4652 (BNTNET Wi/ . =
223 Source (6.021%) Compare Sessions o
= BNTNETW'”AFP'EXE(“'S?SQ Basis session: C:\Pragram Files\Compuware\BHNTNET|BMTHE Twindppibint BMTHE TWinApp_GO0D, dpprf _I _|
% BNTNETWinApD. FrmBrov: 2
4 BNTNETWindpp. FrmBHNTN % in Method % with Children Average Awerage with Children o
-9 BNTNETWinApp.FrmLogin =
% BNTMETWinApp. Frm3elec E E
g MyFaorms, [unknown], (0 E E E =
%% ThreadSafechjectProvide B R e i e R E s inn ! E E E %
- BNTMETWinApp Registry, Method %in | %with %o in ~|=—
g BNTMETWINARD. My MyPr Mame Method | Children | Called Image Puverage (ms) —l
4% BNTMET'WinApp. FrmBrow: BNTNETWinApp.frmBrowseltems.cndUpdateList_Click{By¥al ev... 2.151 21.118 2 44.092 141.586 173.3
- %g BNTHET'Windpp. FrnBMTH - basis value 3.292 11.412 2 42.400 138.322 171.4.
% BNTMETWinApp. FrmLogin = difference - - 0 - 3.263 1.9
qg BNTHET Windpp. Frimseler = percent change -1%0 10%0 0% 2%0 2% 1
3¢ BNTNETWindpp.modBHTr BMTHNETWinApp. FrmBrowseltems. . cbor{void) 0,292 2,542 1 5.985 35,435
N B BMTNET'WinApp. FrmBNTME TWinAppMain. InitislizeCompaonent{woid) 0,227 5,497 1 4,647 29,846
%% BNTNETWindpp.Registry, | g Tywingpp, FrmBrowseltems frmBrowsaltems, Activated(Byval sende. . 0,176 4,483 1 3.608 23,174
-] msvems0d.di { 0.984%) BNTNETWinApp frmLogin. InitializeComponent(vaid) 0.175 1,485 1 3502 23,068
- LoginClass.dl { 0.159%) ENTHET'Win&pp FrmLogin, crmdCk_Click{ByYal eventSender As Object, ByY... 0,155 7.317 1 3173 20,376
-1 BNTHETCOM.dIl { 0.000%) MyFarms,get_frrBMNTHETWinAppMaingoid) 0.077 20,401 1 1.569 10.074
(- B System [93.979%) ENTNET'WinApp. FrmErowseltems. InitislizeComponent(void) 0.054 2.153 1 1.117 7172
=] Top 20 Source Methods ThreadSafeCbjectProvideriOf T).get_GetInstance{void) 0.042 0.474 1 0.861 5.530
[E] Top 20 Methods BMNTMNET'WinApp.FrmSelectItem, bxtIternMo_Enter(ByYal eventSender As O... 0.041 2,116 1 0.841 5.400
BMTNET'WinApp.frmSelectItem. chor{waid) 0.037 0.227 1 0.761 4.890
Top 20 Called Source Methods BNTNETWinapp. FrmLogin.FrnLogin_Load(Byval sventSender As Object, B... 0.020 0.157 1 0.408 2.620
~[EE] Top 20 Called Methods BNTHET'Win&pp, FrmSelectTkem. InitializeComponent(void) 0.013 0.183 1 0,373 2,393
BMTNET'WinApp.Registry. RegGetD'WardiByval iHive As Ink32, ByYal sPath. .. 0.018 0.049 16 0.367 0.147
EMTNET'WinApp.frmLogin. frmLogin_activated{Byval sender As Object, By... 0.017 0.059 2 0.342 1.099
BMTNET'WinApp. My MyPraject. get_Forms{void) 0.016 0,494 1 0,327 2,099
MyForms . Create_Instance_ (OF T){Byval Instance As T) 0.011 20,294 1 0.223 1.432
BMTMNET'WinApp.Registry. Regaetstring{ByRef iHive As Int3z2, ByRef sPath... 0.011 0.022 4 0.218 0.350
BMTNET'WinApp. FrmBMTME TWinAppiain.LoadConfigSettings(vaid) 0.010 0.048 1 0.212 1.362
BMTNET'WinApp. frmSelectItem, cmdBrowseltems_ClickiByWal eventSender ... 0.010 52,732 1 0.210 1.350
BMTMNET'WinApp. FrmBNTHE TWinAppiain.mnuEditltern_Click(ByYal eventSe... 0.009 55,987 1 0.184 1.183
BMTNET'WinApp. FrmBrowseltems. get_bvwltemLlist{vaid) 0.008 0.005 633 0.173 0.002
EMTNET'WinApp. fFrmBNTHE TWinAppiain. frmBMTHE TWinAppMain_Resize(B. .. 0,005 0.265 9 0,155 0,111
BMTNET'WinApp, FrmBMNTHE TWWinAppMain, set_mnuExit{Menultem) 0,004 0.005 1 0,080 0.514 =
« | sl | -

Ready

Figure 3.13: Performance by method.

Figure 3.14 shows an even more detailed look, where performance is charted per line of
code. This is an easy way to spot areas that should be targeted for improvement. I've
worked on projects where the underlying problem turned out to be the database drivers
we were using; there was almost no way for us to break into the drivers themselves, but
the type of report in Figure 3.14 let us see that we were spending an unusual amount of
time on a single line of code that was executing a relatively basic database query - the fact
that we couldn’t break that line of code down any more led us to suspect something “under
the hood” as the cause of the problem.

. 56
Realtime i
LS |-.

Chapter 3
|

77 BNTNETWiInApp - Microsoft ¥isual Studio o =l
File Edit Wiew Project Build Debug Data Tools YMware Test DewPartner Analyze ‘Window Help
-E-EH e BRE| 9055 | b pebug + Mixed Platforms - | [- L? 7y 3 o e
E_.;l'%: é, T | _|& Qslh'ei_l@ M'@"@?'lﬁ"@@' oe:-Jo i F‘erformanceDrco\u’erageav ?7@5 g é
BNTNETWinAppSnap_BAD.dpprf} Start Page] * X |
El All { Madules: 66 Methods: 5,932) | Methad List Source [frmBrowseltems.vb] | Session Summaryl g
E%g\'\;loiiszl\féé;fiz {BNTHET g Count % of Meth Melhud' _ % with Childien | | Time [ms Melhuds Source I =
= L y 36 : 1046 137718 2 rs3 = cim E £
R -2 Rl AR L 36 0.000 boo oD z=l &
% BNTHETWindpp. FrrnBNTH 216 0.135 0.028 3.745 15 While Mot rs3.EQF L -
%% BATHETWinApp.frmLogin 180 0.178 0.037 4 586 2 stritern = strSub _& "B CStr(z) g
4¢ ENTMETWinApp.frmSelec 180 4 461 09421 124.081 36 nodi = traltembist. Modes Add(strSut E
4g MyForms, [unknown], (O 180 0.149z2 0.041 5.044 11 nodX.Image = intCategoryMo g
4 ThreadsafeObjectProvid: 180 £5.199 13768 1812887 T nodX Selected = intCategoryMNo g
“% BNTMETWinApp.Registry 180 0.070 oo1s 1.939 i nodx . Sorted = False)
“¢ BNTNETWInADp.My.MyPr 180 0.189 0.040 5.248 8 rad Movelext()
Zg BMTMNETWinAPp. frmBrov: 180 0.001 0.000 0.029 0 z=z+1
BHTMETWinApp. frmBHTM 180 0.202 0043 5625 14 If Mot rs3. EQF Then rs3.Maovelext()
“g BNTNETWinApp.frmLogin 180 0.001 0.000 0.021 0 End While
:g gm:gminﬁpp-frm::ﬁ 72 0.000 0.000 0.010 0 End If
inApp. Mo
o :ﬂfvf:;m‘ﬁ“(”ggpsijgfw- 72 0.053 0011 1.468 B rs2 Movehext()
o) | =
- BNTHETCOM. Il { 0,000%) =
-] System (93,979%) S ﬁ!
-[=] Top 20 Source Methods
-[E] Top 20 Methnds 4 [BNTNETWinApp.frm... 93,340 % = BNTNETWinApp.frm ... 70.266 % SendMessageA
--[=] Top 20 Called Source Methods L] 3926 % i 10,184 % = 1.969 %
- [E=] Top 20 Called Methods
28.083 % 2.847 %
H = System.Windows.Fo... 1611 % ADODB.InternalFielc
0.300 % 56.146 %
1109 %
1.088 % VariantChangeTygp
44.509 %
1 | 5| KT ek
Ready N Tec e Mirumenfe Wil Do

Figure 3.14: Analyzing performance for individual lines of code.

Figure 3.15 shows another way of looking at performance: by code path. This lets you trace
your application’s execution paths through various modules and calls and see the
performance hit each one contributes to the application. In a highly-modularized
application (and many applications written using good object-oriented techniques are
highly modularized), this type of display can be invaluable in tracking down poor-
performing code that is called upon frequently—contributing an unusually larger negative
impact to the overall performance situation.

57
Realtime ClFochs

||.I"'.-I TS

Chapter 3

B0 BNTNETWinApp - Microsoft Yisual Studio =
File Edit Wiew Project Build Debug Data Tools YMware Test DewPartner Analyze Window Help
;ﬂ SE-EEHE | BRR9- -5 =L b Debug - Mixed Platforms - | @ - ‘a o ﬁ iad o | -
m s ¥ v|‘_' lem‘_' M- - B | j“'PerFormanceorcoverageav Frg; PonomE @ é
BNTNETWinAppSnap.dppxpI/Start Page * X |
DevPartner Performance Expert Back ta Summary g
Path analysis =
o
fjt FrmBNTMET ...inMain(void) frmorder.cm...s Eventargs) FrmOrder.run...mp Objs{vaid) frrmOrder.get ... Stringvoid) ;I =8
o) ! 32.217 % _}0.000 % —_
o Py
T [E— | e——— | e—— 4l
i w0
- a19 =4
1 Slowest methods along al =4
E called paths Frmrder.Dis... As Boolean) I_gn
= e fri0rder. . bis(vaid) & E
|'=| — Lagin.Ch..., String) — §
- frmRepo.. ms(vaid) — |
- Frmorder.. ing(void) Frmiorder. InsertOrder{vaid)
- frmBMTH.. enk{void)
|
_ N FrmBMTMNET .5 Eventargs) FrmLaogin.cm..s Eventargs) Login.CheckL .. tring, String)
[Tatal time in method | |RLIT % 1 |fA0.000 3 1
[—— | E—— I
% in S in
| method children | 8798
: . FrmBMTNET ...s Eventargs) .cctor(void)
g 2 LI
Method detail For : Login, CheckLogin(String, String)
Source |EaIISlacks
ICPU tirme including user children (ms) j For each line in Login. CheckLogin(String, String)
326,000 0.000
. |«
46: QleDbConnection®™ cnlogin = new OleDbConnection{ConnectString];
g L
cnLogin-=Cpen();
= JLI
>

Figure 3.15: Analyzing performance by code paths.

So do you need these types of third-party performance tools? Only if you're struggling with
performance, want to do something about it, and don’t want to spend a lot of time going
down dead ends in the search for a performance problem. The idea behind performance
tuning is to spot the root cause of the problem quickly, and that’s exactly what a good
performance-analysis tool should help you do.

Reacting to Analytical Metrics and Guidance

With your analysis complete, what do you do with the results? Ideally, you start to take a
look at your code with an eye toward risk and risk mitigation. You might also start looking
at potential design changes to help reduce code complexity and increase maintainability.
Code analysis is useless without a good follow-up reaction, so let’s take the next few
sections of this chapter to explore a list of action items.

. 58
Realtime ClFochs

publishers

Chapter 3
-

Establish Code Priority

Can you imagine building a house by putting up the walls first, then pouring the
foundation? It’s kind of backwards. Builders know that everything depends upon the
foundation, so they build that first—and inspect it, fix it if necessary, and so forth. Code
analysis can help you do the same thing with your code: Components that support many
dependencies should be created and unit-tested as thoroughly as practical first so that you
can get them absolutely correct before building other components on top of their
foundation.

Note

Development methodologies such as Agile, which focus on short time boxes,
are ideal for establishing code priority. You can have a complete
development cycle of just a few weeks that focuses on various foundation
components, then begin a new cycle that builds on top of those. This setup
gives a complete opportunity for design, testing, and so forth to those critical
foundation components.

Of course, you can establish priority in this fashion only if code metrics are known to you in
advance of actually writing the code—meaning you would have to be aware of these
interdependencies during the design phase of your project. Once you're actually looking at
live metrics from code that is being, or has been, written, can those metrics in any way
shape your priorities?

Of course. Riskier modules may be scheduled for earlier testing or you might realign other
project priorities—such as developing test data—so that riskier modules can move to the
“front of the line” for testing. You may rearrange development priorities, perhaps opting to
build “test harness” modules so that riskier modules can be tested more thoroughly and
earlier, or you may reschedule development so that everything depending upon a
particularly risky module gets developed and tested earlier.

You might schedule additional code reviews of riskier modules as well, and potentially
have multiple peer reviews with an eye toward reducing complexity and catching bugs
earlier. Just knowing that a particular module of code is riskier gives you a tremendous
array of options for helping to mitigate that risk.

Establish Metrics Guidelines

Another thing you might consider is giving developers goals for their metrics. You want to
avoid arbitrary numbers, here, though. Simply stating that “no element may have an
inheritance depth of more than 6” is kind of arbitrary and might not actually bring you any
business value; it's easy to find intrinsic elements of the Framework itself with deeper
inheritance than that. You might, however, state that, “elements should have an inheritance
depth of less than 3 on top of intrinsic elements, and any element with deeper inheritance
will be subject to additional reviews.”

.__.
P
F

P 59 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 3
-

Note

The “3” in my example is actually completely arbitrary; it is used for the
purpose of illustration only, and not a best practice or recommendation.

The idea is to help developers (and designers) make smarter decisions when it comes to
mitigating risk. By helping to manage complex interdependencies between code, you can
help reduce the number of potential code defects and increase the code quality.

Note

This discussion is not in any way meant to suggest that code
interdependency is a bad thing; on the contrary, it’s the very basis of object-
oriented programming and can save tremendous amounts of time. The point
here is that you want to manage interdependencies. You want to recognize
that high levels of dependency create more complexity, which leads to more
difficult debugging and the risk of ripple effects from low-level changes. You
may want, from a business perspective, to establish guidelines that
communicate the amount of interdependency risks you're willing to tolerate,
and use those guidelines to drive “flatter,” rather than “deeper” designs.

A smarter and more complex guideline might further analyze dependencies such as
inheritance and assign “deeper” code to more experienced developers. That way, those
components upon which many other components rely will have been created by someone
with more experience, who can hopefully produce code that can be safely depended upon
and will need to change less frequently.

Address and Monitor Troublesome Metrics

When you're looking at a code metrics report with red icons—or low levels of
maintainability—that’s something you can address. Can the code be broken into several
components, each of which is less complex individually? Do you simply need to assign more
experienced developers to those more-complex components? Should you plan for more
time in unit testing and debugging?

Metrics are a way of identifying risky areas of code—not necessarily bad sections of code.
Complex projects may have components that are inherently less easy to maintain; that’s
fine, so long as you accept, from a business perspective, that risk and put plans in place to
mitigate it. Some ideas for general directions in dealing with troublesome metrics:

e Perform additional code reviews to determine whether the complexity can be
reduced

e Review the design to determine whether the number of interdependencies can be
reduced without compromising the project timeline or costs

e Reassign developers based on their experience in handling complex code so that
more experienced developers are handling or overseeing the more complex
components

60 MICRO
Realtime |:||=|:||:us

Chapter 3
|

¢ Plan time for additional testing and debugging for complex code

e Review complex code against coding standards—in some cases, a lack of standards
compliance is what leads to more complex code

e Review coding standards to make sure you're not unintentionally creating more
complex code through well-meaning but misguided coding conventions

The bottom line is that you need to do something, from a management perspective, to deal
with code that has above-average complexity.

Test Suite Development Guidance
Your code analysis should absolutely help drive your test suite plans—both for unit testing
and integration testing. Here are just a few ways you might go:

e Schedule riskier, more complex modules for earlier testing—potentially even
incomplete integration testing, if possible, just to get a head start on bugs.

e Develop test data for riskier modules first so that those modules can be tested
earlier and more thoroughly.

e Use cyclomatic complexity numbers to ensure that unit and integration tests are
thoroughly testing the software. You might even assign identifiers to each code path
within a module so that test plans can specifically test each identified path—this is
one way to be sure that you're testing everything.

e When changes are made to underlying components, you can look at inheritance
trees and other statistics so that you know what needs to be retested in an effort to
spot any negative ripple effects.

Note

Visual Studio Team System’s Code Metrics window does help display
inheritance trees and dependency trees because it has to calculate those
trees in order to determine class coupling and depth of inheritance metrics.
Third-party add-ins can also produce more detailed dependency reports,
which can help identify the chain of modules that need to be tested when a
heavily depended-upon module changes.

P 61 MICRO
H{:’dlumt‘ ClFochs

Chapter 3
|

Control of Scope Creep

Good code metrics can also help you respond to changing requirements—especially in
Agile-type methodologies where change is embraced. If a changing requirement will
require reprogramming in a critical, highly depended-upon module, you can use code
metrics to quickly identify the situation and make the appropriate estimates for additional
time and cost. Change requests for a less depended-upon module are always less costly to
implement simply because there is less need for additional integration testing or re-testing.
In some cases, a change request that involves a heavily depended-upon module may drive a
design change so that dependencies can be broken up and the overall cost of the change
reduced.

Analysis Complete

You've completed your code analysis and peer review. You know what areas of the code
you need to prioritize in terms of testing and risk mitigation, so what’s next?

What’s next is addressing coding errors, the subject of our next chapter. In it, we’ll cover
taxonomy of coding errors, many of which can have profound security and performance
impacts. We’ll also look at ways of avoiding and addressing those errors, using both
automated tools and manual effort, and we’ll look at specific techniques to detect and
correct errors.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 62 MICRO
Realtime CIFGEDS

http://nexus.realtimepublishers.com/

	Chapter 3: Coding Analysis and Peer Reviews
	Understanding Peer Review of Code
	Code Analysis Overview
	Class Coupling
	Depth of Inheritance
	Cyclomatic Complexity
	Lines of Code
	Maintainability Index

	Code Analysis Policy in Visual Studio
	Performance and Security Analysis Topics and Techniques
	Reacting to Analytical Metrics and Guidance
	Establish Code Priority
	Establish Metrics Guidelines
	Address and Monitor Troublesome Metrics
	Test Suite Development Guidance
	Control of Scope Creep

	Analysis Complete
	Download Additional eBooks from Realtime Nexus!

