
The Essentials Series: Modern Malware
Threats and Countermeasures

Tools and Techniques for
Eliminating Modern Malware

by Greg Shields

sponsored by

i

Tools and Techniques for Eliminating Modern Malware..1

Signature Limitations...1

Behavioral-Based Detection ..2

Multiple Approaches Are Necessary ...3

Kernel-Level Protection...3

Surgical Remediation...3

Pre-Boot Scanning ...3

Executable-Layer Firewalls ...4

Today’s Anti-Malware Tools Must Be Sophisticated ...4

ii

Copyright Statement
© 2008 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

1

Tools and Techniques for Eliminating Modern Malware

The first article in this series talked about the classifications of malware seen in today’s modern
landscape. There, we discussed the economics of malware and how those financial forces are
driving the underground malware industry towards more efficient and effective use of malware
for dollar gain. Following on, the second article discussed the advanced behaviors seen in those
sophisticated malware packages, focusing on a few high-impact techniques that malware authors
use today to hide the presence of their wares while they accomplish their mission.

In this, the final part of this series, the focus is on getting rid of these ever-evolving little buggers
all across the business IT environment. With extortion and financial gain a primary motivator for
malware creators, you need to keep malware away from your IT environment more than ever
before.

Signature Limitations
There is a problem with the traditional model for locating malware on a candidate computer.
This model has historically relied on a signature-based approach for locating the breadcrumbs of
malware’s presence on an infected system. Signature-based solutions have been moderately
successful in the past due to their fast ability to compare known malware characteristics—files,
registry keys, or code snippets patched into files. But in the war between the malware developers
and those on the anti-malware side, a number of significant software architecture improvements
have been developed by the bad guys that make signature-based detections less effective than
before.

As discussed in the second article in this series, a new software architecture found in many
sophisticated malware packages is the addition of randomization to their compiling, installation,
and sometimes even their regular processing. These randomization features change the way the
malware “looks” over time. Much like a biological virus adapts to the attacks brought on by its
host, the process of morphing malware’s core code changes the characteristics that are used to
categorize and identify it. When malware no longer “looks” like what a signature says it should,
the signature no longer works for identification.

This failure associated with the signature-based approach illustrates a critical weakness in its
core workflow. In order for a signature to work, a developer needs to find a copy of the new
malware. They then need to reverse-engineer that software code to find the pieces that can be
uniquely identified. Once uniqueness elements are indentified, the developer then needs to codify
the results into a signature that is later distributed to servers and clients.

The weakness in this process has to do with the effort and timing required to get from initial
detection through reverse engineering to signature distribution. This signature-based
identification is highly work-intensive for an anti-malware industry that is exceptionally time-
dependent. In an environment in which malware authors are constantly changing their tactics and
code is morphing into new and unrecognizable forms, anti-malware companies find themselves
with more work and less time.

2

Behavioral-Based Detection
What’s interesting about all forms of malware—no matter their vector of infection, payload, or
signature—is that virtually all forms of malware tend to aim towards achieving one of a limited
set of goals. Financial gain is the primary goal of today’s malware; additional goals tend to be
one or more of the following:

• Data destruction—The wholesale removal of data on a system

• Data disclosure—This can include personal/financial data, username/password data, or
configuration data for espionage purposes

• Redirection—Changing the behavior of a system or application to perform some other
function, such as switching a user to an alternative Web site

• Surveillance—Spying on the activities of a user, usually to reach one of the previously
mentioned goals

Thus, because the mechanisms for malware installation and processing are many while the goals
are few, a different architecture for malware identification may be superior. Behavioral-based
detection is that alternative architecture.

Consider the anti-malware clients that may already be installed onto servers and desktops in your
environment. They are currently configured to repeatedly scan the system and running processes
for the presence of software that looks like known malware. Signature updates are a daily—and
sometimes hourly—occurrence to keep up-to-date. Now consider a reconfiguration of that
software to instead look for any processing whatsoever on systems where that processing
attempts to accomplish one of the behaviors identified previously.

In this situation, it can be significantly easier to code an anti-malware client that is always
looking for certain types of behaviors. No matter how often or how much malware morphs in an
attempt to evade detection, any time it attempts to accomplish its mission, that nefarious activity
will be sensed by the client and prevented. It is similarly possible for clients to track the source
of the inappropriate activity and begin remediation activities such as removal. Because the
offending process can be more easily identified, removal can be more quickly completed. Should
the correct removal procedures not be present on the system to initiate the removal, the computer
remains partially protected while the bad behavior remains inhibited by the client.

3

Multiple Approaches Are Necessary
Not stated to this point is the necessity of multiple approaches towards resolving identification
and removal requirements. Although the behavior-based approach may be superior for
identifying and preventing bad behavior from occurring on the client, the signature-based
approach may be better for actually identifying and removing the specific malware class and
instance. Anti-malware products that incorporate multiple approaches will by default have more
“vision” into the inner workings of servers and desktops than those with single approaches alone.

A few additional technologies that tack on to both of these approaches are similarly necessary for
the environment that wants to get the most “bang” out of their anti-malware client dollar.
Consider the following additional new methodologies that can take the identification and
removal processes even further.

Kernel-Level Protection
From a software-layer perspective, the closer that anti-malware products can get to the kernel,
the more likely they will have the ability to identify malware activity as it occurs on the system.
When malware (rootkits being a perfect example) manages to shim itself between any anti-
malware engine and the kernel, it is difficult or impossible for the anti-malware scanning engine
to locate that bad code. Conversely, when anti-malware software operates at a layer directly atop
the kernel, it retains the ability to see all inputs and outputs as they pass. Obviously, with the
changes to the kernel with the release of Windows Vista and Windows Server 2008, this level of
driver development must occur with the inclusion of Microsoft itself.

Surgical Remediation
If a malware removal tool you’ve attempted to use has ever resulted in the crash of the infected
system, you’re familiar with the need for highly tailored removal capabilities once malware has
been found. When the removal process goes too far in what it eliminates from the system, to the
point where the system is no longer stable, the removal system or the scripts used to instruct it
are ineffective. Surgical remediation allows an anti-malware removal system to remove not only
the files and registry keys where malware code has infiltrated but also the specific patches to
system files. The result here is an IT environment that can easily survive an infection incident
with little risk to desktop and server operations.

Pre-Boot Scanning
Rootkits are particularly difficult due to the way they infiltrate themselves into the file system
and subsequently cloak their presence. One resolution with finding installed rootkits on systems
when all other options fail is to look at that file system from two different perspectives. The first
perspective is from the file system itself. The second is from a dismounted instance of the file
system. When the file system is dismounted, the mechanisms described in article two of this
series cannot function to enable the cloaking effect. By looking at the differences in results from
each of these two scans, any difference found must be a set of code that has attempted to cloak
itself. Using pre-boot scanning on what is effectively a dismounted file system enables the
second of these two needed scans.

4

Executable-Layer Firewalls
Lastly, the Windows OS by default has no logic to determine what processes should and should
not be executed on the system. Thus, any process that attempts to gain processor attention for
execution will be run. Needed in many environments is a type of executable-based firewall on
the system itself. This firewall enables administrators to identify the processes that should be run
on systems. Processes that don’t belong in the environment are forbidden from running. This on-
system “firewall” helps prevent certain types of malware from executing on system when they
aren’t part of the white list of accepted programs. It also serves the secondary purpose of
preventing legitimate but inappropriate and potentially risky applications from being run on
company hardware such as file swapping applications, games, or other applications that can lead
to a down-the-road infection.

Today’s Anti-Malware Tools Must Be Sophisticated
The reason for this need of sophistication has been stated over and over in this article series:
Malware itself is growing ever more sophisticated every day. For IT environments that have had
success in the past using traditional troubleshooting tools, the naked eye, and the “fix it after it
breaks” approach, new tools must be brought into place that prevent problems before they
happen.

The anti-malware tools of yesterday, installed and run only after an event occurs, are no longer
the best practice for proactive IT environments. Necessary are always-on alternatives that
leverage multiple mechanisms for finding malware in all its categories and behaviors for the
protection of the IT environment as a whole.

	Tools and Techniques for Eliminating Modern Malware
	Signature Limitations
	Behavioral-Based Detection
	Multiple Approaches Are Necessary
	Kernel-Level Protection
	Surgical Remediation
	Pre-Boot Scanning
	Executable-Layer Firewalls

	Today’s Anti-Malware Tools Must Be Sophisticated

