
Windows Installer
 Technology
for System Administrators

Darwin Sanoy and Jeremy Moskowitz

tm

rea l t imepubl i shers .com

The Definitive Guide Totm

Chapter 3

Chapter 3: Windows Installer Internals ...45

Application Management Meta Data ...45

MSI File Format...46

Three Streams ..46

The Database..46

“Open” File Format..48

How Packages Describe Software Applications and Installation Procedures48

Software Application Information ...49

Identification in Windows Installer ...49

Component Structure and Attributes ...50

Component Name ..51

Component Codes..52

Keypaths ..52

Entry Points and Advertisements...53

Typical Components ..55

Features ..56

Package Execution Information...57

Standard Actions..57

Custom Actions..58

Sequences...59

Properties ...60

Notable Properties..62

Self-Healing Overview ..62

Summary of Package Structure Concepts..63

Customizing Packages ...65

Managed Application Settings...67

Creating Transforms for Application Settings...68

Using Transforms...69

Administrative Installs ...70

Building and Using Administrative Installs...71

Installing from an Administrative Share..72

Serving Applications..73

Security and Policies..74

i

Chapter 3

Windows Installer Policies ..74

Elevated Privileges Implementation ..75

Managed Applications ...76

Always Install with Elevated Privileges (AlwaysInstallElevated) Policy76

AlwaysInstallElevated Hacking...77

Disable Windows Installer (DisableMSI) Policy...77

Cache Transforms in Secure Location on Workstation (TransformsSecure)78

Other Security-Oriented Policies ...78

Non-Security Policies ..78

Excess Recovery Options ..78

Logging Policy...79

Software Restriction Policies...80

Certificate Rules...80

Hash Rules ...80

Path Rules ..81

Zone Rules ...81

Combining Rules ...81

Summary ..81

ii

Chapter 3

Copyright Statement
© 2002 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

iii

mailto:info@realtimepublishers.com

Chapter 3

Chapter 3: Windows Installer Internals

by Darwin Sanoy

Why does an administrator need to be concerned with the internals of Windows Installer?
When Windows Installer works correctly, it provides you with some sophisticated
features that save you time and enhance your users’ productivity. However, when things
go wrong, finding the problem will depend heavily on your understanding of how the
internals of packages work. This idea is applied equally to debugging vendor supplied
packages as well as ones from your own internal packaging operations or in-house
developers. A good framework for understanding Windows Installer internals will also
give you the foundation for building good packages.

� The Windows Installer SDK and its tools will be referenced throughout this chapter. If you do
not have access to the Microsoft Platform SDK, you can visit the SDK online using the
shortcut URL http://WindowsInstallerTraining.com/msisdk. This URL has been set up
because the URLs for MSDN online are long, cryptic, and frequently move (as the MSI SDK
recently did!).

 You can also install the SDK over the Web if you want to get the tools and the documentation
in Help file format. Visit http://www.microsoft.com/msdownload/platformsdk/sdkupdate/ and
click Windows Installer SDK on the left navigation bar.

Application Management Meta Data
As we’ve already seen and discussed, the Windows Installer technology has many
valuable new features such as self healing, improved uninstalls, and customization
capabilities. A key element to enabling these new features is recording and referencing
information that tracks how software applications should be installed. This information
can be thought of as application management meta data, that is, data that references or
describes other data.

There are two distinct storage areas for management meta data about Windows Installer
packages. The first of these locations is in an MSI package file. The internal database in
this file stores all the information required to install a software application. The second
location in which Windows Installer package data is stored is the Windows Installer
(MSI) repository on each computer. The Windows Installer repository is made up of a
database within the registry and some cached files on the hard disk.

The Windows Installer repository gives Windows Installer intelligence when performing
installations on demand and when self-healing. This information describes to Windows
Installer which files, registry keys, and other configuration changes must be installed for
an application to work correctly.

The meta data stored in the MSI repository contains a pointer back to the original MSI
file. This pointer is generally used to retrieve source files. The data contained in the
repository (such as installed product codes, upgrade codes, and so on) is not retrieved
from the MSI file; it is stored directly in the repository on client computers.

45

http://windowsinstallertraining.com/msisdk
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

Chapter 3

MSI File Format
Most of the files used by MSI utilize a special Microsoft file technology called COM
Structured Storage. This storage technology basically creates multiple spaces, called
streams, within a file. You can think of these streams as files within files, not unlike a
Visio diagram embedded in a Word document.

� COM Structured Storage does not use Alternative Data Streams. Alternative Data Streams
are a file–system–level technology available on NTFS systems that allows multiple data
storage areas in the same physical file.

Three Streams
An MSI file usually has three streams: one for summary information, one for the MSI
database, and one for storing the installation files. (Installation files can also be stored
externally.) Other streams (such as the AdminProperties stream) might be created by
various Windows Installer activities, but these three are the main three to start with. The
many other file formats utilized by Windows Installer are generally variants on the MSI
file format, such as

• .MST—Transform file

• .MSP—Patch file

• .CUB—Validation file

� Msiinfo.exe is a Windows Installer SDK tool that allows the summary information stream to be
queried and updated from the command line.

The Database
The Windows Installer database stream contains the fundamental information required to
perform the installation of the software application. Only items inside the database can be
customized using transforms. Transforms are essentially database overlays that are used
at installation time.

The Windows Installer database is normalized. In database language, this means that to
represent any given entity (say all the information to install a file) there may be several
linked tables involved.

� Although you will periodically need to view a table, a complete understanding of every
nuance of the relationships between these tables should not be necessary if you are
investing in good Windows Installer authoring tools.

46

Chapter 3

There are two important types of information that are contained within the database:

• Information about the software application to be installed. This information
includes which files, registry keys, and shortcuts should be installed. It also
includes information about how the developer organized the package within the
Windows Installer rules. Following the Windows Installer rules for package
structures results in the software application being represented as Features and
Components, which we will be discussing in a bit.

• Information about the actual execution of the package. Figure 3.1 illustrates that
the package execution logic is stored in the database along with the tables
describing the software application. Windows Installer was not designed as a
monolithic script processing engine that can only have a list of files and registry
keys fed to it. Instead, many of the subroutines within Windows Installer are
configurable by the package developer. A package developer can configure
whether the subroutine is called at all and what order it is called in, and the
developer can apply if-then statements to these subroutines to have them run only
if certain conditions are true.

� When the term software application is used throughout this book, it refers specifically to the
actual files and registry keys built by developers that a Windows Installer package is
designed to deploy.

It is important to understand that most of the package processing logic is in the database
because this allows it to be customized. As would be expected, an administrator can
customize which files and registry keys are copied during a package, however, the
administrator can also customize the original package logic built-in by the vendor. This
capability provides an unprecedented level of customization of vendor-provided software.

) Windows Installer actually has a small subset of SQL within it. It is used for package
processing, and can be used to retrieve and write data to and from the database tables. To
learn more, consult the Windows Installer SDK document “Examples of Database Queries
Using SQL and Script.” A Windows Installer SDK script called wirunsql.vbs allows you to
easily run arbitrary SQL commands on an MSI file.

Figure 3.1: MSI database tables.

47

Chapter 3

“Open” File Format
One of the greatest strengths to the MSI file format is that it is “open.” This does not
mean that the MSI format is tied to the increasingly popular open systems movement;
rather there is a specific standard for the format, and it uses existing, well-documented
Microsoft file structures. Microsoft provides the APIs to read, open, and change these
files. Because no particular tool vendor owns or controls the format, many tools can read
and write the same MSI files. Additionally, a package created by a software application
vendor is able to be opened by any IT professional. This openness allows administrators
to customize vendor packages and gives vendors the flexibility to allow customization.

0 Package developers can still insert custom functionality and proprietary approaches through
the use of custom actions and custom tables—an open file format does not force package
developers to expose everything they must do to ensure their software is installed and
properly licensed.

How Packages Describe Software Applications and Installation
Procedures
Windows Installer logically describes software application and installation procedures
with the relational database mentioned earlier. The following section attempts to describe
this schema in skeletal detail as a way of providing enough information to proceed on to
more advanced topics. Every package engineer and administrator will have widely
varying needs for more detailed study of this topic based on their individual experiences
and company requirements for package building and troubleshooting.

Your key to mastering Windows Installer is to understand its language. The essence of
this language is the framework provided by Windows Installers management meta data.
The concepts you learn in this section will continually crop up in the following areas:

• Windows event logs

• Windows Installer logs

• Authoring tools

• The Windows Installer SDK

• Application deployment kits (such as the Office 2000 Custom Installation
Wizard)

• Windows Installer command lines

• Group Policy

48

Chapter 3

Software Application Information
Some of the tables in an MSI file store data about how the software application is
structured. There are tables that deal with files, registry entries, INI file entries and
shortcuts. Windows Installer also introduces a schema that describes the internals of the
software application to Windows Installer. This schema defines two main logical entities
known as Features and Components. Features and Components are the fundamental
constructs that organize all the configuration details of a software application that is
installed by the package.

0 The handy term component has been severely overused in the technology industry. When
used in the context of Windows Installer, the term Component has a very specific meaning.
The term COM Component refers to compiled executable software that is registered in the
Windows registry so that it can be located by many different programs. To confuse matters
more, most COM Components will have a dedicated Windows Installer Component to define
them in Windows Installer.

Previous setup technologies did not have a way for the OS to know the details of how
elements of software relate. (For more information about the benefits of Windows
Installer compared with early application management technology, see the sidebar
“Application Management Before Windows Installer.”) The developer might know that
three registry keys, four DLLs, and two INI settings are required for the database view
feature to work, but there has not been a way to encode this management meta data in the
packaging technology or the OS to facilitate intelligent application management.

Application Management Before Windows Installer

Long before Windows Installer, several innovative companies built intelligent application
management technology for Windows that included self-healing and other benefits.
Understandably, these technologies are expensive and heavily proprietary—sometimes taking a
framework approach that requires usage of proprietary distribution mechanisms to take
advantage of the packaging engines. Windows Installer has advantages over these approaches
in that: it is free, it decouples distribution from packaging (which allows flexibility when building
deployment solutions from different technologies), it generally makes packages more resilient for
use in many deployment scenarios, and it is owned by Microsoft (which means all newer versions
of Windows ship with Windows Installer).

Identification in Windows Installer
For many administrators, this section might be your first encounter with a programming
concept known as a Globally Unique Identifier. GUIDs pre-date Windows Installer and
have been used in many areas of programming as a result of their ability to create unique
identities. You may have seen them in the registry in the CLSID subkey or
HKEY_CLASSES_ROOT.

49

Chapter 3

� GUIDs are used throughout Windows Installer to identify most elements of a software
package. A GUID is a 128-bit integer (“2 to the power of 128” possible values). GUIDs allow
unique identities to be assigned to objects by many independent developers without a
requirement for central coordination.

 To understand how GUIDs work, think of 10,000 administrators using a packaging tool to
generate 100 product codes each. None of the 1,000,000 products codes would be the same.
GUID generation uses a special algorithm with many different seed values to ensure an
extremely low probability of identical GUIDs being generated.

Here are some of the package elements that GUIDs are used to identify in Windows
Inst e

iles

s

u

g command line, which uses the /f switch and product GUID to perform a re-
install:

MSIEXEC /f {869A369E-6BD5-42e1-B9E9-B3543A46D5F6}

rt
though a

Component can contain these items, it is not required to contain all of them.

all r:

• Package f

• Products

• Component

• Patch files

GUIDs are utilized directly during many Windows Installer activities. For instance, yo
might want to trigger a reinstall of an installed package and have the target computer
determine from where the original package file was sourced. You can do so using the
followin

Component Structure and Attributes
As Figure 3.2 illustrates, Windows Installer Components are the fundamental unit that
define the functionality of the software application. Components can have many types of
associated resources. Some resource types include files, registry keys, shortcuts, and INI
file settings. Some new attributes that are specific to Windows Installer can also be a pa
of a Component, including entry points, keypaths, and Component Codes. Al

50

Chapter 3

Figure 3.2: Windows Installer operates on lists of Components.

Components are the fundamental unit that Windows Installer manages. Any operation
such as installation, maintenance installation, self-healing, and uninstall result in a list of
Components that must be operated on to achieve the desired result. Components are also
reference counted to prevent uninstallation when more than one application is using a
shared piece of software. (For more information about reference counts, see the sidebar
“A Brief History of Reference Counts.”)

A Brief History of Reference Counts

Reference counts (refcounts) were introduced with Windows 95. All installation programs that
follow Microsoft’s installation guidelines increment a counter in the registry whenever a DLL is
installed to a shared location, such as the system directory.

For example, if four applications had installed abc.dll to the System32 directory, that DLL would
have a refcount of 4 in the registry. If one of the applications is uninstalled (again assuming
installation guidelines are followed), the uninstall program would simply change the refcount to 3
and leave the file in place because other applications are obviously using the DLL. If the refcount
for a file is 1, the uninstall program is free to remove the file because it can assume that the
program being uninstalled is the only program using the file. Occasionally, uninstall programs will
break other software because they remove shared registry keys required for a DLL to work
properly. Windows Installer improves on refcounts by putting them at the Component level.
Because a Component contains all the various system resources required for a DLL to operate
properly, these related resources will remain on the system if other software is still using the DLL.

Component Name
As Figure 3.3 shows, Components have a friendly name. This friendly name displays in
most authoring tools. The friendly name, however, is not how a Component is ultimately
identified. A Component is identified by its Component Code. Component names make
the processes of authoring and updating packages easier so that we do not have to
remember 128-bit hexadecimal integers.

51

Chapter 3

Figure 3.3: Component definition.

Component Codes
Component Codes (or Component IDs) are the identifying attribute for a Component.
Component Codes are GUIDs that uniquely identify a Component across the world. In
theory, a Component Code should be unique among all Components in the world.

	 For more detailed information about Component structure and identity rules, refer to the
Windows Installer SDK document titled “Organizing Applications Into Components” and its
sub-documents.

Keypaths
Through the concept of a Component, Windows Installer uses meta data to model a
functional unit of the application software it is describing. This Component definition is
placed in the repository of any machine on to which it is installed. However, if the
Component becomes broken, how does Windows Installer tell that the Component is not
installed as defined in the repository? This is where the keypath comes in.

For each Component that is installed on a computer, Windows Installer checks the
existence of a specially tagged resource (known as a keypath) within the Component to
determine whether the Component is healthy or in need of repair. If this tagged resource
is missing, the entire Component is re-installed. A keypath can be a directory, a file, a
registry key, or an ODBC data source.

The reason that Microsoft Word still works when winword.exe is deleted is because
winword.exe is the keypath of a Windows Installer Component. A computer with Office
XP installed would have a Component definition in its Windows Installer repository that
describes winword.exe. When a user attempts to use Microsoft Word, Windows Installer
checks to see that the keypath of this Component (winword.exe) exists. If it does not
exist, self-healing would be invoked to fix the problem. There are other details to how
self-healing works that will be covered later.

52

Chapter 3

Among the uses of a keypath, three are very relevant to administrators:

• Self-healing detection

• Advertising/Install-on-Demand detection

• User profile fix-up detection (special case of self healing)

) Although not a formal term, user profile fix-up refers to a lesser known feature of Windows
Installer that lets installed packages properly set up a user profile when the user has not
previously used the application. This functionality works even when the user has previously
logged on to the computer.

 When a user starts an application, standard self-healing checks are performed. If the
package is structured correctly, Windows Installer will perceive the lack of user information
for the application as being “broken” (even though they never existed) and self-heal the user
portions of the package.

Entry Points and Advertisements
Ever wonder how Windows Installer knows to get involved with repairing or installing an
application? Entry points allow Windows Installer to proxy the startup of an application
and perform application management tasks before the user is allowed to access the
application. In other words, when you double-click the icon for a Windows Installer
packaged software application, it does not actually attempt to start the application
directly. The icon is a special icon that asks Windows Installer to find the software
application and start it. This is when Windows Installer can use the MSI repository
information, the installed application resources (files, registry keys, and so on), and the
original package file to perform the magic of self-healing and install on demand.

0 For entry points to work correctly in Windows NT 4.0, you must have a newer version of the
shell installed. To update the shell, install Internet Explorer (IE) 4.01, SP1 with the Active
Desktop or IE 5.x with the Windows Desktop Update. You can also update the shell when
deploying a customized Office XP installation. See the Office XP NT deployment Web site for
more details (http://www.microsoft.com/office/ork/xp/one/depd01.htm).

An entry point turns into an advertised interface when any Feature that its Component
belongs to is advertised or installed on a target computer system. When a Windows
Installer package is advertised, advertised interfaces make it appear as though the
application is installed and ready to use. When a Windows Installer package is installed,
advertised interfaces trigger Windows Installer for self-healing and user profile fix-up
checking. An entry point/advertised interface can be:

• A shortcut (special Windows Installer shortcut)

• A document extension (association)

• A MIME type (Internet document types)

• A Class ID (CLSID)—Programmatic identities used for sharing software within
and between various applications

53

http://www.microsoft.com/office/ork/xp/one/depd01.htm

Chapter 3

0 For Windows Installer functionality to work as expected, users must launch applications from
Windows Installer shortcuts. If users in your organization are accustomed to creating their
own shortcuts by right dragging and dropping application executables, these shortcuts will not
trigger self-healing or any other Windows Installer functionality. Unfortunately, it is not easy to
prevent users from doing this—it will be necessary to re-culture them through Help desk
interaction and other types of communication. Windows Installer shortcuts created by the
installation package (on the Start menu or desktop) can be copied to new locations. Windows
2000 (Win2K) and later allow right-dragging shortcuts right out of the Start menu. One
drawback is that they are not upgraded when the underlying package is upgraded, so they
may not work after a major upgrade to the software application.

Advertisement of document extensions, MIME types, and CLSIDs are all accomplished
by configuring the registry on the target computer; however, Windows Installer does not
internally store this information as registry keys. Advertising data is stored in special
tables and does not become registry entries until the package is installed on the target
computer.

) When first starting with Windows Installer, it can be easy to confuse advertised interfaces
with advertising an application to users. Even if you never plan to advertise applications
(make them appear as installed, but they actually install on first use), you will still need
advertised interfaces in your package if you require self-healing or user profile fix-up to work
properly.

The following list provides a summary of information we have covered about Component
structure and attributes:

• File resources—Components can contain file resources. If a file resource is the
keypath to the Component, it is known as the key file. If a file is not the keypath,
it is known as a companion file. There is no practical limit on the number of files
or file types that can be in a Component. There are, however, rules about
Component structure that define when certain types of files should have an
entirely dedicated Component.

• Registry resources—Registry resources are registry keys that are required by the
Component.

• Shortcut resources (entry point)—Shortcuts are defined within a Component and
must point to a file within the Component. Shortcuts can be advertised (entry
points) or standard Windows shortcuts.

• Document extension mappings and MIME types (entry points)—Document
extensions and MIME types are configured at the Component level and point to a
file within the Component.

54

Chapter 3

• Additional resources and attributes—Components can have many resources and
configuration items associated with them. Some of these include:

• Controlling and installing services

• Making INI file entries

• Creating directories

• Setting environment variables

• Configuring ODBC

Typical Components
When I first heard Components described, I thought they would be something like spell
check and contain 3 executables, 14 DLLs, 10 registry keys, and so on. It turns out that
this type of item (spell check, for example) would be a Feature that contains multiple
Components. One of the things that helped me understand Components was learning
what typical Components are like, as Table 3.1, Table 3.2, and Table 3.3 illustrate.

Component Item Typical Configuration

Keypath The code file.
File Resources Only the code file and any required data files.
Registry Resources COM Registration (CLSID) keys and data keys.
Advertisements Any registry entries, extension mappings,

CLSIDs, or ODBC data sources associated
with the file (if any).

Service Settings Any service control and installation items
associated with the code file.

Table 3.1: Executable Code Component (EXE, DLL, OCX).

In repackaged applications, most of the registry keys for an application may be contained
in a couple of Components (one for HKEY_CURRENT_USER and one for
HKEY_CURRENT_MACHINE) except if they are explicitly required for a component
to operate correctly. For packages received from a software vendor, most of the registry
keys may be with the primary application executable.

Component Item Typical Configuration

Keypath A registry key in the relevant hive that should
always be present if the Component is
installed.

File Resources None.
Registry Resources Registry keys for HKEY_LOCAL_MACHINE or

HKEY_CURRENT_USER.
Advertisements Any registry entries, extension mappings,

CLSIDs or ODBC data sources associated with
the file (if any).

Service Settings None.

Table 3.2: Registry key Component (HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER).

55

Chapter 3

Package developers have more flexibility in areas such as Components that contain
templates for the software application. If templates were critical to this application, each
one could be a dedicated component.

Component Item Typical Configuration

Keypath The template directory or a single template file.
File Resources All templates.
Registry Resources COM Registration (CLSID) keys and data keys.
Advertisements Any registry entries, extension mappings,

CLSIDs or ODBC data sources associated with
the file (if any).

Service Settings None.

Table 3.3: Templates Component (template files for software application).

Features
After you have a basic understanding of Components, Features are quite easy to
understand. Features are buckets (container objects) for Components. Features have very
few attributes assigned directly to them, they are actually the sum total of the
Components contained within them.

Although Features are simply buckets for Components, many of the configuration
capabilities of Windows Installer operate on Features. For instance, you can advertise a
Feature, but not Components. If you advertise a Feature and 3 advertised interfaces
appear, you know that among the Components that make up that feature, there are 3 entry
points defined. You can find out exactly which Components contain these items by
examining the Components that make up the Feature. Features have some unique
attributes. These include:

• Windows Installer configuration commands operate on Features (installing,
advertising, uninstalling, and so on)

• Self-healing, install-on-demand and user profile fix-up (discussed in an earlier
note) operate at the Feature level

• Features can contain other Features

• Features can be arranged in hierarchical relationships (by being contained by
other Features)

• Features contain Components

• Multiple Features can contain the same Component

• Features are NOT identified by GUIDs but rather by a Feature Identifier, which is
a text string

By contrast, Components do not have these attributes—they cannot contain Features or
other Components, they cannot be arranged in hierarchies, and they are not addressed
directly through the command line to accomplish installation and configuration activities.

56

Chapter 3

Earlier, we talked about how Windows Installer essentially operates on a list of
Components. We can modify this concept by understanding that we specify that list of
Components to Windows Installer by using convenient buckets called Features, as Figure
3.4 illustrates.

Figure 3.4: Windows Installer operates on lists of Components that are grouped by Features.

Most of the attributes assigned directly to Features are concerned with how these
Features are displayed in the Feature selection dialog box presented by Windows Installer
during an interactive install. Every package will have a root Feature that is always
installed.

Package Execution Information
Even though the package processing engine is built into the OS, much of the engine’s
functionality can be controlled from within a package file. This allows administrators to
customize the actual logic used to install packages, even when packages come from
software vendors or in-house programmers. Previous to Windows Installer, setup
program processing logic was inaccessible because it was compiled into binary
executable files (EXEs) and could not be altered.

Standard Actions
As mentioned earlier, Windows Installer is not a huge block of code that simply
processes a package. There are many subroutines within Windows Installer that are called
during package installation, configuration, and uninstall. These subroutines are partially
configurable through the Window Installer database in a package. These subroutines are
called Standard Actions. Standard Actions can be configured in three ways, they can

• Be included or not included

• Be reordered

• Have if-then statements (conditions) placed on them to control their execution

57

Chapter 3

Although Standard Actions are configurable in these ways, there are still many rules
about which Standard Actions should be included as well as ordering dependencies on
other Standard Actions. The SDK’s Standard Action reference should be studied before
attempting to reorder any of them.

	 For more information about rules for reordering Standard Actions, refer to the Windows
Installer SDK document titled “Standard Actions Reference” and all of its sub-documents. The
Window Installer SDK files also include a template for the default set of actions that would be
expected in a generic package. This file is called Sequence.msi and can be found in the MSI
SDK directory \Program Files\Microsoft SDK\Samples\SysMgmt\Msi\Database.

Custom Actions
Custom Actions allow package developers to extend Windows Installer with just about
any functionality they desire. Custom Actions have information available to them about
the running installation. Only certain types of items can be called as a Custom Action.
Some of the most relevant are:

• Calling DLLs

• Calling EXEs

• Calling a VBScript

• Calling a JScript

• Setting a property

VBScript tends to be the popular choice among administrators who need to create
Custom Actions primarily because VBScript can be used for many diverse administrative
scripting needs. In addition, VBScript is similar to other scripting languages
administrators might already use.

) Setup tool vendors also allow you to use their proprietary scripting languages as Custom
Actions. For example, Wise Package Studio allows compiled Wise Script to be used as a
Custom Action and InstallShield allows InstallScript to be used.

� Windows Installer 2.0 has new error logging features for scripted Custom Actions. Previous
versions simply reported that a scripted Custom Action had failed and gave the Custom
Action name. Windows Installer 2.0 (shipped with Windows XP and Win2K SP3 and is
downloadable) will log the actual error and the script line number where it occurred.

Like Standard Actions, Custom Actions can have their sequence controlled and
conditions placed on them.

58

Chapter 3

Sequences
We have been discussing how the order of Standard Actions and Custom Actions can be
controlled. Windows Installer also supports the ability to have multiple sets of ordered
actions. These ordered sets are called sequences. Sequences help organize installations.
There are two sequences involved in an interactive installation, as Figure 3.5 shows. The
Install UI sequence contains all the actions (including dialog boxes) required to gather
information from the user during an interactive installation. The Install Execute sequence
handles changes to the system such as copying files and updating registry entries. This
two-sequence approach is also used for silent installs—the entire Install UI sequence is
simply skipped when an installation is run completely silent.

0 Silent installations are utilized heavily in automated software deployment. Most administrator-
authored Custom Actions will need to be placed in the Install Execute sequence to ensure
that they are executed during silent installations.

Standard packages (built according to Microsoft templates and guidelines) also have four
other sequences. The Advertising UI and Advertising Execute sequences are used when a
package is advertised using MSIEXEC or Group Policy deployment. The Admin UI and
Admin Execute sequences are used when a package is used to build an administrative
install location.

Figure 3.5: Sequences and actions.

Uninstalls and maintenance installs are handled by the Install UI and Install Execute
sequences. When specific actions are only relevant to a specific install type, such as
uninstall, conditions are used to ensure that those actions only execute when appropriate.

Authoring tools will represent sequences in different ways, but essentially they are
interpreting a table that simply has the action name and an associated sequence number.
There is a separate table for each sequence. Although a rare occurrence, package
developers can create their own custom sequences if desired.

59

Chapter 3

Properties
Windows Installer uses Properties to store package data before and during package
processing. They are the equivalent of a variable in a scripting or programming language.
Properties are similar to environment variables. As Figure 3.6 illustrates, environment
variables provide system information (such as computer name and OS). They can also be
used to store data in batch file scripts. For instance, a script might prompt the user to
choose a menu item—an environment variable could be used to store that choice for later
use.

Figure 3.6: Set command output.

Properties behave like environment variables and scripting variables in other ways as
well:

• Properties do not have data types, they can store numeric or string data

• Properties do not need to be declared before use—they can be created on the
command line, in transforms or by custom actions

• Properties are used to store data about the system

Properties are used store all kinds of data and control parameters. They store data and
control parameters such as:

• Installation progress

• Data collected by locator tables (such as registry keys)

• Type of installation activity (such as install, uninstall, rollback, and so on)

• Data about the target system (such as OS version and user profile location)

• Current date and time

• Control information for installation activities (such as the list of features to install
or advertise)

60

Chapter 3

0 Properties can be created on the fly, so do not assume that the property table in a package is
a comprehensive list of all properties used or created by the package.

Properties have several classes that determine how they can be manipulated during
package operations. The class of a property is determined by the text case of the property
name and whether it is in the SecureCustomProperties property or one of the built-in
Restricted Public Properties.

• Private Properties can only be changed by transforms and custom actions—they
cannot be changed on the command line. Private Properties must have at least one
lowercase letter.

• Public Properties can be changed on the command line or in the installation UI in
addition to transforms and Custom Actions. Public Properties must contain only
upper-case characters.

• Restricted Public Properties can only be changed by administrators or if the
EnableUserControl policy is turned on. Restricted Public Properties must contain
only upper-case characters AND be either on the list of built-in Restricted Public
Properties or added to the SecureCustomProperties property if they are a custom
property.

Any of these property types can be built into Windows Installer (known as default) or
defined by the developer (known as custom).

Properties are also used by MSIEXEC as command-line arguments. This can be a little
hard to get used to because MSIEXEC also uses switches that start with the forward slash
character. The following command line shows that applying a transform during package
installation is done using the TRANSFORMS property rather than a special command-
line switch:

MSIEXEC /I package.msi TRANSFORMS=custom.mst

In this example, the /I is an MSIEXEC switch and TRANSFORMS is a property.

) When starting out with Windows Installer, it is important to familiarize yourself with all the
built-in properties and the information they communicate or the functions they control.
Consider reading through all the information in the “Properties” section of the Windows
Installer SDK as a good primer.

61

Chapter 3

Notable Properties
There are several notable properties that will be used many, many times. Most of them
control how a package is installed:

• TRANSFORMS—Specifies a list of transforms to apply to an MSI during
package installation.

• ADDLOCAL—Lists features to install on the local computer.

• ALLUSERS—Controls whether installations are performed for all users of the
computer or just the user running the installation.

• ROOTDRIVE—Controls which drive Windows Installer installs packages on—
by default packages are installed on the local drive that has the most free space.

• INSTALLDIR—Controls the exact directory to which a package must be
installed.

• REBOOT—Controls whether the package requests a reboot after installation.

	 When properties are specified in multiple places, Windows Installer has a method for
determining which value should be used. Examine the MSI SDK document titled “Order of
Property Precedence” for more information.

Self-Healing Overview
Self-healing is the ability of Windows Installer to detect and repair any critical resources
that are required for the user to successfully launch and use the application. Every
resource of a package is not checked during self-healing. Because self-healing occurs as
the application is launched, exhaustive checking of every resource would lead to
excessive wait times.

Earlier we discussed how Windows Installer performs basic actions (install, uninstall, and
so on) on lists of Components. We also discussed how these lists of Components were
specified by a list of Features. Self-healing follows this approach as well.

Self-healing, install-on-demand, and user profile fix-up are all variations on the same
functionality provided by Windows Installer. Windows Installer is asked to find the
appropriate software application when an entry point is activated by a user (usually
double-clicking a shortcut or document type). If Windows Installer finds the software is
not yet installed, it will immediately install it. If the software is installed, it will be
verified by self-healing. In both cases, this happens at the Feature level.

As Figure 3.7 illustrates, when an entry point is activated, the Component to which the
entry point belongs is checked for which Feature it is attached to. Every component in
that Feature is checked for non-existence of the keypaths. If any single keypath is
missing, the entire feature is reinstalled.

62

Chapter 3

Figure 3.7: Self-healing component structure.

For example, say the Component in Figure 3.7 was installed on a computer. After a
couple of months, someone accidentally deletes the file DV.DLL. The next time the user
launched the shortcut Data Viewer.lnk, the files DV.EXE, DV.DLL, and the registry key
HKEY_CURRENT_USER\Software\DV\Path would be checked for existence. If any of
these three resources were missing, the entire Feature (which is made up of the
Components C1, C2, and C3) would be reinstalled. This is why self-healing results in
much more installation activity than a single component re-installation.

) Self-healing will not repair resources (mainly files and registry keys) if the keypath of the
component they belong to is properly installed on the system. For example, if DV.DAT in
Figure 3.7 was missing, it would not be self-healed if DV.EXE was present on the system. To
compensate for this, users can be taught to use the Repair option in Add/Remove Programs.
This option does a full re-install of the application and will fix problems with missing resources
that are not fixed by self-healing.

Summary of Package Structure Concepts
Windows Installer introduces an entire level of application management meta data that is
fundamental to creating the many new features and capabilities Windows Installer is
famous for. Although it is not a simple task to become familiar with the structure, rules,
and terminology of this meta data, doing so unlocks many secrets!

Here are some of the highlights:

• Windows Installer describes software applications using a set of database tables.

• Major aspects of how the package is processed are also described in this database.

• To accommodate the new paradigm for installations, new logical entities are
defined by Windows Installer to break down the software application into
manageable sub-parts.

63

Chapter 3

• These logical entities are known as Components and Features. Components and
Features allow Windows Installer to map the relationships between specific
software application resources (such as files and registry entries) for use in
management activities such as self-healing, sharing of application resources, and
install-on-demand.

• Windows Installer defines additional entities for managing package processing—
these entities, known as Actions and Sequences, control the behavior of an
installation package while it is performing installation, configuration, and
uninstall activities.

• The design of Windows Installer allows package developers to have a large
degree of control over Windows Installer’s internal functions. This same design
allows administrators the same level of control even after a software vendor has
built its completed installation package—something not possible with previous
setup technologies.

• Variables in Windows Installer are known as properties; they store all types of
control information and data for packages. Custom properties can be created by
package developers.

Figure 3.8 illustrates how all the internals of a package are utilized to accomplish
installations. The numbers correspond to the following discussion.

Figure 3.8: Package processing internals.

Properties are a dominant element because they are used to control installations,
gather information from the target computer and user account, and for custom
functionality. Policies (which are not stored as properties) are read by Windows
Installer as needed; some are enforced before any package processing begins. Policies
control many behaviors of Windows Installer—they are covered later in this chapter. If

64

Chapter 3

transforms exist, they are read and applied to the package file . Windows Installer
processes the actions contained in the relevant sequence(s) to install the package .
Package processing causes the package Features and Components to be installed . This
step includes copying the Feature and Component definitions into the target computer’s
MSI repository. When Features and Components are processed, all changes are made to
the target system, including creating registry entries and copying files . Files are
copied from the source , which can be stored as uncompressed, compressed CAB files,
or internal CAB files (inside the MSI file).

Customizing Packages
One of the most powerful benefits of Windows Installer is the ability for administrators to
customize installation packages regardless of who built them. Previous to Windows
Installer, most software could only be effectively customized through the use of manual
installation or repackaging. The following list highlights some of the difficulties in
software deployment that result from the inability to customize software installation
packages:

• Manual installation of software has very high cost.

• User installation of software creates higher costs due to misconfiguration and end
user self-support.

• Repackaging introduces quality risks due to incorrectly installed software
applications.

• Repackaging might violate some software vendor’s support agreements.

• Enterprise-wide repackaging creates additional costs and requires disciplined
processes.

Fortunately, Windows Installer has been designed with these challenges in mind. The
primary method for customizing an installation package is known as a transform.
Transforms are a separate file with an .MST extension. They are specified during the
installation of a package.

	 We briefly explored transforms in Chapter 1.

After our entire installation is modeled in a database, customization is easily
accomplished by adding, modifying, or eliminating database rows and cells from various
tables. Eliminating a Component from an installation can simply require removal of three
rows from three tables and a change to the value of one cell in a row of a fourth table. To
add a Feature with two existing Components might only require new rows in two tables.

Transforms use a concept called overlay to accomplish customization. Instead of
permanently changing a package file’s database, overlays are done using a temporary
copy of the database created during installation. This allows for many different
customizations to be done from the same MSI file on disk because customizations can be
picked at install time. Overlays are an extremely flexible method of customization
because more than one transform can be used at once.

65

Chapter 3

Transform files are deltas, which cannot be used standalone because they only contain
the changes you want to make to an MSI file. Anytime you want to create, edit, or apply
an MST file, the MSI file it is based on is required to work with the transform.

Because transforms can include changes to the package logic, they cannot be applied to a
package that is already installed on the workstation, but must be specified with the initial
package installation or advertisement.

Figure 3.9 shows that a transform is just a delta of information that requires the original
package to form a complete customized installation. It also demonstrates the overlay
concept, whereby loading the transform on top of the MSI file gives the complete picture.

Figure 3.9: How transforms work.

When transforms are applied to a package installation, they are copied locally into a
cache. These cached copies are applied to any subsequent reconfigurations of the
application so that customizations stay intact.

For packages built by administrators, transforms might be less useful because
customizations can be integrated directly into the MSI packages. However, in large
enterprises and for repackaged installs that have many possible configurations,
transforms are an effective means of customizing repackaged software.

Transforms should be used for customizing all MSI packages received from software
vendors—vendor MSI packages should not be directly edited. This is not simply a best
practice, but an expectation and assumption of software vendors, Microsoft, and the
Windows Installer SDK.

66

Chapter 3

Managed Application Settings
Windows Installer was released with the suite of Win2K technologies known as
IntelliMirror. Group Policy is the companion technology that provides deployment and
application settings management by way of dynamic policy settings. Compared with
Windows Installer, Group Policy provides superior capabilities for managing application
settings because they are applied when users log on and at regular intervals afterward.

Since the introduction of Win2K, many organizations have been hampered in deploying
Active Directory (AD). Those who implement it rarely burden the directory with
exhaustive settings management for all applications in the enterprise. This raises some
challenges for package deployment with regard to settings that must be actively managed.

When an application setting is made in a package file or transform, the setting usually
consists of one or more registry entries. After the software is installed, Windows Installer
will ensure that the same settings are made if self-healing is required or if a new user logs
on and uses the application.

A problem arises when one of these registry keys needs to be changed to a different
value. Previous to Windows Installer, most administrators would run a simple script to
fix up the registry keys on all existing machines. This can still be done, but it leaves out
several important scenarios that Group Policies would catch:

• Some self-healing scenarios can set the application setting to the older value
contained in the package file.

• New installations of the package after the fix has been set will use the older value.

• Multi-user machines will not have the older value for all existing users.

• New user logons to multi-user machines will have the older value.

To handle these situations purely with Windows Installer technology would require that
the application setting be updated in a transform. Either all computers would need to
uninstall and re-install the software, or an upgrade package would need to be created and
deployed. The later only works if the package is not from a software vendor because you
should not create upgrade packages for MSI packages received from a software vendor.

The importance of catching every one of the exceptions is relative to how critical the fix
is and how it affects specific user communities. If the problem is blue screening
computers on a stock trading floor, it is essential to eliminate any possibility that the old
setting is put on any computer. If it creates a minor annoyance to users, it might not be as
critical to prevent every case of the old setting being installed. Without some type of
policies mechanism, there is no clear path for how to handle this issue, but it is important
to be knowledgeable of it and discuss it early in the design of application management
and packaging processes.

67

Chapter 3

) This is more of a hack than a tip. Windows Installer does not validate that a cached transform
file is the exact same file that was used during the original install. For computer-based
installations, the location of these files is easy to determine. Administrators can replace the
cached transform with an updated copy and simply trigger a maintenance installation or re-
install to change application settings after deployment. However, there must have been a
transform deployed with the original installation for this hack to work.

If an organization has policy setting capabilities of any type—such as NT or Windows 9x
System Policies or third-party policy management systems—this problem can be resolved
by using the policy mechanism. To prevent overburdening the policy mechanism with
application settings, it is prudent to only use it for settings that absolutely must be
managed.

Creating Transforms for Application Settings
There are essentially three common types of transform-creation tools. In the previous
chapters, we discussed vendor-supplied tools and third-party tools that step through the
user installation interface and essentially automate the choices a user would make during
a package installation.

In many cases, administrators will need to automate settings that are not exposed using
these tools. Detailed settings such as the application data directory or back-end database
server are usually only exposed in the most advanced customization tools such as the
Office Custom Installation Wizard.

Tier-1 packaging tools generally include a lower-level tool for creating transforms. With
this type of tool, the package developer loads the MSI to be customized, then uses the
authoring tool as though editing the MSI itself. All the capabilities of editing an MSI are
available, but the changes are saved in a transform and the original MSI is left changed.

Although these tools are very powerful, they do not assist in discovering the system
changes (registry and INI files) that equate to configuration changes performed from
within the software application. A configuration monitoring tool must be used to actually
discover the required settings. You might be able to use the repackaging portion of your
MSI packaging tool or select any tool that can effectively monitor and report system
changes.

� Wise Package Studio Professional has a very helpful HTML-formatted “change detection
report” that is automatically created in the same directory as the package. The report does
not automatically display, so you have to know its there to use it. This report is a great source
of information for finding which registry keys and INI settings were changed while configuring
a software application.

Here is a method for creating transforms for advanced settings using the tools and skills
you are already familiar with:

1. Start up the software application you want to customize.

2. Start your configuration change monitoring tool (such as your repackager).

3. Proceed to make the desired configuration changes to your software application.

68

Chapter 3

4. Ensure that these changes are “committed”. This step may require some
experimentation due to the differences in how software applications are
programmed. Many applications will save configuration changes when you click
Apply or OK in the configuration dialog box. Keep an eye out for software
applications that delay the saving of configuration changes until a later time or
until you exit the application.

5. Stop your change monitoring tool.

6. Examine the output of the change monitoring tool.

7. If your transform tool allows importing of registry data directly from the
computer on which it is running, open the transform tool and create a new
transform. Use the output from the configuration monitoring tool to determine
which registry entries to copy from the current workstation into the transform.

� The last step in this procedure is counterintuitive to many packaging processes. This is
because extremely clean packaging processes usually call for the package editing tool to be
run on a separate computer from the repackaging tool due to the changes made to a
workstation by the package editing tool. In this case, the package editing tool is being used to
copy only selected items from the repackaging workstation, not to generate the initial
package as it is with repackaging.

� There are several interesting transform tools and scripts in the Windows Installer SDK:

 Wigenxfm.vbs and Msitran.exe can generate a transform by comparing two MSI files. For
scripting, this is the only way to actually create a transform.

 Wiusexfm.vbs and Msitran.exe can permanently apply the contents of a transform to a
database.

 Wilstxfm.vbs lists the contents of a transform in a command window.

Using Transforms
Transforms must be specified during installation or advertisement of an application. The
switches used for each of these scenarios is quite different. In Chapter 1, we briefly
explored how to apply transforms to an existing MSI package. To review, here is the
command line for applying a transform when installing a package:

MSIEXEC /i mypackage.msi TRANSFORMS=mycust.mst

The special public property TRANSFORMS causes the transform to be applied. Here is
the command line for applying a transform when advertising a package:

MSIEXEC /j[u,m] mypackage.msi /t mycust.mst

For advertising, a special switch and sub-switch are used for transforms. The /j switch
indicates that the package will be advertised. The /j switch is directly followed by a u for
a user-based advertisement or an m for a computer-based advertisement. The /t switch is
a sub-switch of the /j switch, and can only be used in conjunction with the /j switch.

69

Chapter 3

0 It can be easy to get confused and attempt to use the /t switch with the /i switch.

Administrative Installs
Chapter 1 briefly discussed administrative installs. In this section, we will dive a little
deeper. Administrative installs are not really installations of a package, but rather a
special preparation of your package to allow it to be installed from a network. A client
installation must still be done for each computer that needs to run the software
application.

The following is a list of the main uses for an administrative installation. Knowing this
list will help you understand whether they can play a useful role in your environment.

• Pre-setting properties with the AdminProperties property—With normal
installations, double-clicking an MSI file results in the full installation interface
and no special command-line properties are applied. This can result in leaving out
the TRANSFORMS property, which might cause important customizations to be
omitted. Administrative installations allow the administrator to specify a list of
properties (not MSIEXEC switches) to be used when the MSI is double-clicked.
This is useful if you have distribution scenarios in which users are either directed
to run MSIs from the network or they can easily find them on the network.

• Served applications—Windows Installer natively supports running applications
executables from a server rather than from the local hard drive. This is known as
Run from source in Windows Installer. To do this, an administrative installation
must be created. A unique aspect about Windows Installer served applications is
that they can be fault tolerant. If multiple administrative installations are made
available and specified as sources for the applications files, Windows Installer
will check the list of sources until it finds one that is available.

• Pre-activation of Microsoft products—Microsoft Products that require activation
can only be pre-activated if they are setup as an administrative install. There are
other ways to ensure that activation does not require user intervention.

• Reduce back-end replication—In large networks, the amount of data passed over
the network to distribution servers can cause network load problems. Because
administrative installs can be patched, using administrative installs can reduce
back-end (server to server) replication. Patches have the potential to dramatically
reduce the amount of data transfer required because they only contain binary
deltas of files that change between two versions of a package. The benefits of
reduced bandwidth for maintenance must be balanced with the uncompressed
format of administrative installs—which use up to twice as much disk space as an
MSI that has the application files compressed within internal or external CAB
files.

70

Chapter 3

• Extract only needed files from a software CD-ROM—Many software vendors
send out a single, large CD-ROM that has all or most of their software
packages—especially if their software is under site or blanket licenses. Some CD-
ROMs may contain files required to deploy applications in multiple spoken
languages. Such a CD-ROM might contain more than 400MB when all that is
needed is a 10MB application. Performing an administrative installation with the
desired MSI file will extract only the needed files to the network. This approach
only works if the individual applications on the CD-ROM have their own MSI
files rather than one large MSI file.

) Administrative installations are also required to create patches. Most authoring tools will
automatically create the administrative installations for you if they do not exist before you
start the patch tool.

Building and Using Administrative Installs
During an administrative install, the package is prepared to be installed from the network.
Figure 3.10 illustrate that this process extracts all files into a directory structure and
copies the MSI (without embedded files) to the root of the administrative install location.
If used, the ADMINPROPERTIES value is also embedded as an additional stream at this
time. An administrative install share is created by using the /a command-line switch with
MSIEXEC. When performing an administrative install, there is usually only one dialog
box requesting a network location for the install. Windows Installer does not check
whether the location is actually on the network, so this location can be local if you are
simply testing a package. Here are a couple samples command lines for setting up
administrative install shares:

• MSIEXEC /a mypackage.msi

Prepares the package in the directory specified on the wizard dialog box that
appears after this command line is run.

• MSIEXEC /a mypackage.msi ADMINPROPERTIES =
”TRANSFORMS=mytrans.mst”

Prepares the package in the specified directory and embeds the special property
ADMINPROPERTIES to be used upon client installation.

• MSIEXEC /a mypackage.msi /p myfix.msp

Applies a patch to an existing administrative installation.

71

Chapter 3

Figure 3.10: Creating an administrative install.

Installing from an Administrative Share
Client installations operate the same as installing from any other installation source.
Clients install from the administrative share using the standard command line or by
double-clicking the MSI file located on the administrative share, as Figure 3.11
illustrates.

Figure 3.11: Client install from an administrative install.

72

Chapter 3

Serving Applications
Over time, there have been many terms used for the concept of leaving the software
application files on the server and having the client execute them from there. For our
discussion, we will refer to this as served applications. One of the most notable uses for
served applications is for implementations that require high availability. Having an
application installed on multiple servers allows for fault tolerance when a server fails.
Windows Installer supports fault-tolerant served applications.

0 Some packagers attempt to build Windows Installer packages for legacy served applications
without using Windows Installer’s native support for served applications. The legacy
approach is to point icons to existing binaries located on the network. However, Windows
Installer does not allow a shortcut to point to files that are not contained in the current
package. A popular workaround is to copy traditional .LNK shortcuts to clients. Although this
approach works to a limited degree, the shortcuts will not trigger any Windows Installer
activities such as self-healing and install-on-demand. The native support must be used to
avoid extensive workarounds and enable the full Windows Installer feature set.

Figure 3.12 shows two key properties used to configure Windows Installer packages for
fault-tolerant served applications. The ADDSOURCE property causes the Windows
Installer shortcuts to look for the application files at the administrative install location.
ADDSOURCE takes a list of features as its value, the special value ALL indicates that all
features should remain on the server. The SOURCELIST parameter causes the package
installation to include a list of additional locations at which the software application files
can be found.

Figure 3.12: Served application configuration (fault tolerant).

73

Chapter 3

Here is the basic process for setting up fault-tolerant served applications:

1. Create an administrative installation of the application.

2. Replicate the administrative installation to multiple locations or perform
additional administrative installations with the EXACT same package (package
codes should match).

3. Install clients using the ADDLOCAL and SOURCELIST properties.

Windows Installer does not perform load balancing between the various sources for the
application. If this is desired, a load-balancing file system technology such as Win2K’s
Distributed File System (DFS) should be used. Manual load balancing can be
accomplished by ensuring that an equal number of clients perform the initial install from
each server location.

	 Chapter 5 will contain a more in-depth look at Windows Installer source lists.

Security and Policies
Windows Installer security and policies is an area of great interest to administrators.
Security and policies give some of the flexibility required to design an application
deployment approach that is secure from viruses and end-user abuse. Proper attention to
Windows Installer security and policies helps address the following significant risks:

• Viruses that take advantage of MSI security capabilities

• Security exploits by users, administrators, or hackers

• Unauthorized software installs on corporate machines

• Software piracy

This section will focus on key policies in Windows Installer and new Windows XP
policies for controlling which applications can be installed. As a point of clarification,
this section discusses how to configure Windows Installer service settings using policies,
not how to deploy Windows Installer packages using Group Policy-based application
deployment.

0 If you work in a very large organization, it is important to consider that Help desk and first-
level administrators might have the technical savvy and physical access needed to abuse
elevated privileges. Protecting against these types of exploits requires a different perspective
than just having to consider internal end users and external hackers.

Windows Installer Policies
As with most technologies introduced with Win2K, Windows Installer is configurable
through policies. However, unlike many Win2K Group Policies, Windows Installer
security policies are registry-based. In practical terms this means that AD and special
policy processing agents are not required to manage these polices. Any mechanism
currently used to mass deploy registry tweaks can be used to effectively configure MSI

74

Chapter 3

policies. This includes initial computer build, distribution of .REG files, third-party
policy management systems (such as those provided by NetWare), and Windows 9x and
NT System Policies.

� An updated System Policy template (.ADM file) is available for download at
WindowsInstallerTraining.com. This .ADM file includes two new MSI 2.0 policies as well as
the debug policy. This updated policy file can be downloaded from
http://windowsinstallertraining.com/msiebook.

The following discussion will focus on the essential Windows Installer policies that
should be considered by administrators. These policies generally deal with securing
Windows Installer’s elevated privileges capabilities.

	 For an exhaustive list of Windows Installer Policies, refer to the Windows Installer SDK
document titled “System Policy” and all its sub-documents.

Elevated Privileges Implementation
There are some basic concepts of elevated privileges that should be understood before
diving into the policies that configure them. Whenever an MSI package is installed, an
instance of MSIEXEC.EXE is started in the user’s context. This occurs, as Figure 3.13
shows, whether the package is started by double-clicking an MSI or if MSIEXEC.EXE is
called via a batch file, logon script, or software distribution system.

	 We will be discussing elevated privileges and software distribution systems in more detail in
Chapter 5.

Figure 3.13: Elevated privileges implementation.

An elevated installation is one that uses administrative rights for a portion of the
installation. If elevated privileges are requested and approved, an inter-process
communication occurs between the instance of msiexec.exe that is started in the user
context and the instance running as a Windows service. If elevated privileges are granted,
the security rights of the system account are utilized for the activities performed by the
service. Windows Installer enforces strict rules about the data that is allowed to cross the

75

http://windowsinstallertraining.com/msiebook

Chapter 3

IPC connection and what types of commands can be performed on the service instance of
MSIEXEC.EXE. This approach is more secure than the user context switching approach
provided by tools such as the NT Switch User utility or Windows XP’s RunAs
functionality.

0 It might be tempting to change the account used by the Windows Installer service as a
method of preventing abuse of the System Account. This is likely to create difficulties for your
installations and should be unnecessary given the built-in and policy-based security controls
in MSI.

Managed Applications
Windows Installer gives selected applications Managed Application status depending on
how they are installed. Packages that come from any of the following sources are
considered Managed:

• Assigned through Group Policy to users (Advertised) or computers (Full Install)

• Assigned using the MSIEXEC command line by an account that has local
administrative privileges on the target computer (Advertised or Installed).

• Deployed through SMS 2003 (beta name was Topaz)

Managed Application status gives a software installation elevated privileges during the
initial installation and for all subsequent installer operations such as self-heal, install-on-
demand, maintenance installs (adding/removing features), and uninstalls. That is to say,
packages that are tagged as Managed on a specific computer continue to have elevated
privileges for subsequent installation activities on that computer. These elevated
privileges continue to operate independent of the original reason that granted the package
Managed status.

) Unlike traditional setup.exe installers, the Windows Installer engine is not only used during
initial installation of a package. The Windows Installer engine is active in all phases of the
application management lifecycle, including deployment, installation, configuration
(adding/removing portions of a software application), self-healing, upgrades, and uninstalls.

Always Install with Elevated Privileges (AlwaysInstallElevated) Policy
The AlwaysInstallElevated policy is the most permissive configuration of elevated
privileges and should be used sparingly. This policy must be set to 1 (Enabled) for the
computer AND the user to be completely enabled. This policy allows all packages and
installation activities to occur with elevated privileges regardless of their source or the
user account that starts them. This policy is intended to permit all installation activities to
complete normally for non-administrative users (as they would under Windows 9x) but
do so without giving away local administrators rights that grant many more capabilities
than application installation.

76

Chapter 3

0 Managed Application status is NOT given by using the AlwaysInstallElevated policy settings.
If packages are installed with this policy turned on, and the policy is subsequently turned off,
subsequent install activities are limited by user rights. This can hamper self-healing,
application upgrades, and uninstalls.

AlwaysInstallElevated Hacking
Some organizations have used the two AlwaysInstallElevated keys as a method of
programmatically controlling elevated privileges. Under this approach, security on these
policy keys is configured to allow them to be changed by a wrapper script. The wrapper
script will toggle the policy keys on, perform an MSI installation, then turn them off.
Although this functionality is convenient, it has a couple downsides that should be taken
into account. First, this approach might cause problems for self-healing or when the user
attempts to reconfigure the application through Add/Remove Programs because the user
will no longer have administrative rights to perform installation activities. Second,
security exploits and viruses generally test for “security by ignorance” techniques such as
these. There are probably valid scenarios in which using this method is acceptable—just
make sure you are aware of the risks if you are considering it.

Disable Windows Installer (DisableMSI) Policy
The DisableMSI policy has three settings:

• 0 (Default) = Always Enabled

• 1 = For Non-Managed Packages

• 2 = Always Disabled

The value 0 means MSI is always enabled. The value 2 means that it is always disabled.
There are very few circumstances in which completely disabling MSI is desirable. The
value 1 restricts package installs to only be allowed from three sources: Group Policy,
SMS 2003, or assignment by an administrator.

The For Non-Managed Packages value is usually of interest to organizations that want to
restrict users from installing unauthorized software packages. This can be an effective
approach for LAN-based environments, but it does create limiting situations for offline
package deployment. If you have the luxury of deploying Windows XP you might want
to consider software restriction policies (which will be discussed shortly).

) The Disable MSI policy overrides the more permissive AlwaysInstallElevated policy. If both
are turned on, AlwaysInstallElevated is effectively disabled.

77

Chapter 3

Cache Transforms in Secure Location on Workstation (TransformsSecure)
Whenever transforms are used for an installation, Windows Installer caches them on the
local computer. This allows them to be applied to all subsequent installation activities. If
a transform can be replaced by an end-user or IT personnel, their copy will be executed
during any subsequent installation activities. If the application has Managed Application
status, replacing cached transforms can allow malicious code to take advantage of local
administrative rights.

For packages that are installed for users, transforms are cached in the user profile to
support roaming profiles. When the TransformsSecure policy is used, it ensures that
transforms are always cached in a secure location regardless of whether a user or
computer installation is performed. For security sensitive implementations, this policy
should be enabled.

Other Security-Oriented Policies
Most of the remaining security-oriented policies have their most restrictive setting by
default. If an organization is deploying a new version of Windows, deploying software
distribution or re-engineering application management, a full study of the security
focused policies of Windows Installer will provide the background necessary to make
wise design choices.

Non-Security Policies
There are several useful non-security policies in Windows Installer. The following
section discusses these policies.

Excess Recovery Options
There are two policies that deal with how Windows Installer ensures that failed
installation changes are backed out completely. Windows Installer has built-in support
called rollback. This support is built-in to Windows Installer and works on all versions of
Windows. Windows Installer also interfaces with system restore services on OS versions
that have system restore (Windows XP and ME). When system restore is present,
Windows Installer requests a restore point before performing installation activities.

There is one key difference between these two recovery technologies: The native rollback
support is only used during an installation; if an installation completes normally, all roll
back data is deleted. System restore allows the system to be arbitrarily returned to any
restore point that is still in the system restore cache—this could be days after an
installation.

For many organizations, having both of these options active just consumes extra disk
space and extends package processing time. For production use, Windows Installer’s
built-in support should generally be left on. Windows Installer’s usage of system restore
could be turned off if desired. Each organization should test install and uninstall times
with system restore both on and off and decide whether the impact is significant for
typical software installation scenarios in their company.

78

Chapter 3

Windows Installer’s use of system restore is disabled using the
LimitSystemRestoreCheckpointing computer policy. Setting it to 1 prevents Windows
Installer from requesting a system restore checkpoint during installations.

0 The LimitSystemRestoreCheckpointing policy only affects Windows Installer’s usage of
system restore. System restore will continue to be leveraged by the OS for all other non-
Windows Installer activities.

Windows Installer rollback is disabled using the DisableRollback policy. It is
configurable for both the computer or user—setting it to 1 in either location will cause
rollback to be disabled.

) There is one situation in which you might want to disable both Windows Installer rollback and
system restore for package installations. In some large scale deployments of Windows, an
extra hour of workstation build time can be a critical cost and project management factor. In
deployment scenarios in which computers are formatted and rebuilt, turning off these policies
can reduce build time. Because a failed workstation build can be easily restarted, there are
no risks to eliminating rollback capabilities.

Logging Policy
Windows Installer always logs information to the Windows event logs. In many cases,
this information is sufficient for routine problem analysis. If more detailed data is
required, the logging policy can provide it. To say that Windows Installer logging is
exhaustive would be an understatement.

	 The SDK document titled “Event Logging” lists all the messages that Windows Installer might
record in the event log.

The logging policy is used to cause Windows Installer to create log files for all of its
activities. Although the command-line logging options trigger logging for a specific
package installation, the policy covers all installation activities, including self-healing,
maintenance installs, and so on. There are 11 single-character switches that can be used
to configure logging. Each of them logs specific types of information about the
installation. When troubleshooting difficult packaging problems, it is a good idea to put
the log in complete verbose mode so that no helpful information is missed.

) When configuring verbose logging, the 11 switches can be arranged to spell voicewarmup—
this is an easy way to remember the switches, and they can be entered directly in this order.

When the logging policy is used to configure logging, no file location can be specified.
All Windows Installer log file names have the following naming convention:

“MSI<randomcharacters>.LOG”

For user-initiated installs, the log is placed in the user’s TEMP directory. For automated
installs (such as GPO deployment), the log is written to the system TEMP directory.

	 We will be discussing more details about logging in Chapter 4.

79

Chapter 3

Software Restriction Policies
Software restriction policies are a new addition for Windows XP and .NET Server.
Software restriction policies can enable or prevent execution of many types of files in
Windows, including .MSIs and .MSTs. Because these policies are processed before
Windows Installer is started, they are a very effective way of preventing unauthorized
software installations. Software restriction policies are not a complete substitute for
managing Windows Installer policies.

	 Microsoft has a good white paper that summarizes software restriction policies at
http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.as
p.

Software restriction policies have four types of rules, discussed in the following sections.
Each of these has different implementation considerations when used with Windows
Installer.

Certificate Rules
Certificate rules allow restriction of software installations by requiring that MSI files and
MST files are code signed with the specified certificate. If they are not signed, Windows
will not allow them to be passed to Windows Installer for processing. Code signing is
extremely powerful, but the following considerations should be taken into account when
considering its usage:

• Administrative installs can change structure of the MSI file, so code signing must
occur after the administrative install is made. In addition, the “master”
administrative install needs to be replicated to preserve the code signing.

• Vendors might code sign their own installations. Removal of vendor code signing
can cause problems if the vendor validates their own signing. The vendor’s
certificate can be added to your software restriction policies if need be.

• Any changes to the package require that it be re-signed.

• Signing certificates are usually accessible by a very few people in the IT
organization, which can inadvertently become a bottleneck to the packaging
process if a large volume of packages and transforms are expected.

Hash Rules
Hash rules are very similar to certificate rules, except that hash rules do not alter the
original file and they do not require a certificate to generate the cryptographic key used
by the policies. Hashes can make it easier for administrators to restrict MSI execution
without the elaboration of certificates and they may be just as effective at preventing
users from installing unauthorized software. The MD5 hashes required for this type of
restriction can be easily generated within the Group Policy interface. Hash rules would
have the same limitations as certificate rules, except for the possible process
bottlenecking. Hash rules would also leave vendor signed packages unchanged.

80

http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.asp
http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.asp

Chapter 3

81

Path Rules
Path rules allow restriction of software installations by requiring that MSIs and MSTs run
only from specific path locations. At first, this sounds limiting, however, path rules can
be defined using wildcard characters, environment variables, and DFS share names,
making this rule type very flexible. Here are some planning considerations if path rules
sound like they will work for you:

• The repository strategy must be well defined to ensure that paths are consistent.

• A strategy for offline installs must be worked out to ensure that it fits with the use
of path rules.

• Path rules that are too flexible may allow users or administrators to create a path
that mimics the path rule and execute their own package from that location.

Zone Rules
Zone rules are only used for MSI files. They permit or restrict browser-based software
installations from occurring based on the Internet zones in IE. The default zones include
Internet, Intranet, Restricted Sites, Trusted Sites, and My Computer. These rules can be
helpful for building a Web-based, self-service installation system.

Combining Rules
Multiple rules of all four types can be used in combination to create fine-grained control
over software installations. Rules that are the most specific to the file being assessed take
precedence over rules that are more general.

0 If you are using Windows XP with Win2K domain controllers, you must load the Windows
Server Administration Tools from the Windows .NET Server CD-ROM onto a Windows XP
workstation to configure software restriction policies in AD.

Summary
This chapter has laid the foundation for delving into the next level of Windows Installer
technology. In addition to covering the basics of the internal structure of a package, we
brought out some unique ways of building and utilizing transforms, administrative
installs, and policies. Hopefully, the techniques you have learned will help you build
more effective and secure packages.

In the next chapter, we will be discussing best practices for building packages. Get set to
learn about repackaging, upgrades, and building processes!

	Application Management Meta Data
	MSI File Format
	Three Streams
	The Database
	“Open” File Format

	How Packages Describe Software Applications and Installation Procedures
	Software Application Information
	Identification in Windows Installer

	Component Structure and Attributes
	Component Name
	Component Codes
	Keypaths
	Entry Points and Advertisements
	Typical Components

	Features
	Package Execution Information
	Standard Actions
	Custom Actions
	Sequences
	Properties
	Notable Properties

	Self-Healing Overview
	Summary of Package Structure Concepts
	Customizing Packages
	Managed Application Settings
	Creating Transforms for Application Settings
	Using Transforms
	Administrative Installs
	Building and Using Administrative Installs
	Installing from an Administrative Share
	Serving Applications

	Security and Policies
	Windows Installer Policies
	Elevated Privileges Implementation
	Managed Applications
	Always Install with Elevated Privileges (AlwaysInstallElevated) Policy
	AlwaysInstallElevated Hacking
	Disable Windows Installer (DisableMSI) Policy
	Cache Transforms in Secure Location on Workstation (TransformsSecure)

	Other Security-Oriented Policies
	Non-Security Policies
	Excess Recovery Options
	Logging Policy

	Software Restriction Policies
	Certificate Rules
	Hash Rules
	Path Rules
	Zone Rules
	Combining Rules

	Summary

