
The Definitive Guide To
tm

The Definitive Guide To
tm

Scaling Out
SQL Server 2005

 Don Jones

Chapter 9

i

Chapter 9: Scaling Out at the Application Level ...190

Applications: The Scale-Out Bottleneck ...190

Common Application Problems in a Scale-Out Environment...190

Server-Centric View of the World...192

Intolerance of Longer Data Operations..194

Inflexible Data Access Models ..196

Challenges in Moving to Scale-Out...197

Architecting a Complete Scale-Out Solution...198

The Data Layer ..199

The Middle Tier ...201

The Web Tier ...204

The Client Tier...205

Converting Existing Applications for Scale-Out ...206

Key Weaknesses ..207

Conversion Checklist ...208

Summary ..208

Chapter 9

ii

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 9

190

[Editor’s Note: This eBook was downloaded from Content Central. To download other eBooks
on this topic, please visit http://www.realtimepublishers.com/contentcentral/.]

Chapter 9: Scaling Out at the Application Level

A major step in creating a SQL Server-based scale-out solution is creating the client application
(or applications) that end users will utilize. These applications must be designed to accommodate
your back-end scale-out technique, whatever that is, and it can be one of the most difficult parts
of creating a scale-out solution. This chapter will focus on the client-side (and other application
tier) design techniques that can be used to create an effective scale-out solution.

You need to keep in mind, though, the precise scale-out technique you’ve selected for SQL
Server. For example, if you’ve decided to scale out by creating multiple SQL Server
installations, all containing the same data and using replication to keep one another updated, then
you’ll need to build your client applications in a particular way. If, however, you’re using a
federated database—where each server contains only a portion of the data, and views and other
techniques are used to draw it together—there is a whole different set of client-side techniques.
This chapter will examine them all, but you’ll need to select the ones that are most appropriate
for your particular scale-out solution.

 This chapter won’t address prepackaged applications. For the most part, packaged applications aren’t
subject to your reprogramming or rearchitecture, meaning you’re pretty much stuck with what you get.
Some packaged applications—such as SAP—have tremendous flexibility and can be re-architected
to achieve better scale-out. However, most such applications have very specific and often proprietary
guidelines for doing so, far beyond the scope of what this chapter can cover.

Applications: The Scale-Out Bottleneck
Applications aren’t a scale-out bottleneck in the performance sense of the word, but they can be
a bottleneck in your solution development process. Creating applications that effectively use a
scaled-out back-end requires entirely different development and data access techniques than in a
smaller SQL Server-based solution.

Common Application Problems in a Scale-Out Environment
The overall problem with typical applications is that they’re designed to work with a single SQL
Server computer. When an application finds itself in an environment where multiple SQL Server
computers exist for the same database, all the common data access techniques and development
models become useless. For a few examples, use the simple diagram in Figure 9.1 as a reference.

http://www.realtimepublishers.com/contentcentral/

Chapter 9

Figure 9.1: Scaled-out SQL Server environment.

In the first scenario, suppose you’ve designed your SQL Server database so that each server
maintains a complete copy of the data, and that replication is used to keep the various copies in
sync with one another. So which database server does a given client computer access? Is it a
simple matter of selecting the one closest to it? How does it go about doing so? Would you
prefer that it somehow select the server which is least busy at the time? That’s even more
difficult; while static server selection might be something you could put into the client’s
configuration, being able to dynamically select a server based on server workload is more
difficult. You can’t simply use technologies like Network Load Balancing (NLB), because that
technology assumes that every server has completely identical content. In a replication scenario,
servers won’t have completely identical content—not all the time. Consider how NLB might
work in this scenario:

• Client needs to add a row to a table. NLB directs client to Server1.

• Client immediately needs to retrieve that row (which has probably had some unique
identifier applied, likely through an Identity column). NLB directs client to Server2 this
time, but Server2 doesn’t have the new row, yet, due to replication latency.

Clients would instead need some logic of their own to select a server and then stick with it (a
technique referred to as affinity) through a series of operations; that’s not something NLB (which
was designed to work with Web farms) is designed to do.

Consider a second scenario, in which each server contains a portion of the overall database, and
objects like distributed partitioned views (DPVs) are used by clients to access the database as if it
were contained on a single server. As I explained in Chapter 4, the server physically containing
most of the requested data can best handle the query; should the client try to figure that out and
query the DPV from that server? If not, which server—as all of them are technically capable of
handling the query to the DPV—should the client select? If all clients select a single particular
server, you’re going to bottleneck at that server eventually, so you do want some way to spread
them all out.

In the next few sections, I’ll discuss some of the specific components that make client
applications more difficult in a scale-out solution.

191

Chapter 9

Server-Centric View of the World
Figure 9.2 illustrates a common problem with client applications: Connection strings. Many
client applications are designed to connect directly to a SQL Server computer using ActiveX
Data Objects (ADO) or ADO.NET, and use a connection string to identify the server.
Unfortunately, connection strings are, by definition, server-centric. In other words, a single
connection string can connect to only a single server.

 Actually, that’s not completely accurate. Connection strings can provide support for alternate servers
in a failover scenario: "DSN=MyData;
AlternateServers=(Database=DB2:HostName=Server2,Database=DB1:HostName=Server3)" This is
still server-centric, however, as the client will always connect to the first server that’s available.

Figure 9.2: Server-centric connections.

The problem with this technique in a scale-out solution is that it restricts the client to just a single
SQL Server. If the client is expected to connect to different SQL Server computers (if the client
is running in a different office, for example, which has its own server), the client either has to be
changed, or has to be written from the outset to have multiple connection strings to choose from.

And just because you have a multi-tier application doesn’t really change this problem; while
clients in a multi-tier application aren’t usually server-centric from a SQL Server viewpoint, they
do tend to be designed to work with a single middle-tier server, which in turn uses a standard,
server-centric connection string to work with a single SQL Server computer.

In a Web farm—which is the most common model of a scale-out application—this problem
would be solved by using load balancing. Clients—or middle tier servers or whatever—would
connect to a single virtual host name or IP address, which would be handled by some load
balancing component (such as NLB, or a hardware load balancing device). The load balancing
component would then redirect the client to one of the back-end servers, often in a simple round-
robin technique where incoming connections are directed, in order, to the next server in
sequence. I’ve already discussed why this doesn’t work in a SQL Server environment: Clients
often need to perform several tasks with a given server in short order before being redirected.
Sometimes, opening a connection and leaving it open will maintain a connection with the same
server, but that can become difficult to manage in middle-tier servers where dozens or hundreds
of connections are open at once, and where connections are pooled to improve performance.

192

Chapter 9

What’s the solution to server-centric connections? Well, it depends on your SQL Server scale-
out design. Because at some point somebody has to use a connection string—whether it be a
client or a middle-tier—that’s somebody is going to have to incorporate logic to figure out which
connection string to use (or, more accurately, which server to put into the connection string). One
straightforward example of this might work for an environment where multiple SQL Servers
contain the entire database and use replication to stay in sync; as illustrated in Figure 9.3, clients
(or middle-tier servers) might examine their own IP address, match it to a list of server IP
addresses, and thereby connect to the server nearest them (similar to the way in which a
Windows client selects an Active Directory domain controller).

Figure 9.3: Dynamically selecting a server.

Of course, this technique requires that the application have a complete list of servers. To make
the application more robust and longer-lasting, you might have it actually query the list of
servers from a central database, enabling the server lineup itself to change over time without
having to deploy a new application.

A more advanced solution might be to build your own equivalent of a network load balancing
solution, however. Figure 9.4 illustrates this technique.

Figure 9.4: Building a redirector service.

193

Chapter 9

194

In this example, the redirector is able to determine which server is least busy, located the closest,
or whatever other criteria you want to use. It then informs the client which server to use. The
client then makes a direct connection to that server, and maintains the connection for however
long it wants, allowing it to complete entire transactions with that server. The redirector service
might provide a timeout value; once the timeout expires, the client would be required to go back
and get a new server reference. This helps ensure that the redirector can continually rebalance
load across servers (for example). If the list of available servers evolves over time, only the
redirector needs to be updated, which helps reduce long-term maintenance.

This redirector service can also be implemented in a scenario where your scale-out solution uses
a federated database. Clients might be designed to submit queries to the redirector first, which
might conduct a brief analysis and direct clients to the server best capable of handling that
particular query. That would require significantly more logic, and you wouldn’t necessarily want
the redirector to try and figure out which server contained the most data (that would reduce
overall solution performance, in most cases), but the redirector might be able to realize that a
client was trying to query a lookup table’s contents, and direct the client to the server or servers
that physically contain that data.

The idea, overall, is to find a way to remove the single-server view of the network, and to give
your solution some intelligence so that it can make smarter decisions about which server to
contact for various tasks. As much as possible, those decisions should be centralized into some
middle-tier component (such as the redirector service I’ve proposed), so that long-term
maintenance of the decision-making logic can be centralized, rather than spread across a widely-
distributed client application.

Intolerance of Longer Data Operations
While the whole point of a scale-out application is to speed things up, especially long-running
operations—such as reports that require large amounts of data to be collated—can still take a
while to complete, especially when several servers must work together to provide the data. Client
applications—and, more frequently, their users—are often intolerant of longer operations,
though. One way to combat this problem—even in a scale-up application—is to implement
asynchronous querying capabilities. Figure 9.5 shows what I’m talking about.

Chapter 9

Figure 9.5: Asynchronous querying.

In this example, clients use message queuing to submit data requests. An application running on
the server (or a middle tier) retrieves the requests and executes them in order, placing the results
back on the queue for the client to retrieve. While this obviously isn’t appropriate for typical
online transaction processing (OLTP) data requests, it’s perfectly appropriate for ad-hoc reports
and other data that isn’t needed instantly. By moving these types of data requests into an
asynchronous model, you can ensure that they don’t consume excessive server resources, and by
building your client applications around this model you can give users an immediate response
(“Your request has been submitted”) and delayed results (“Your report is now ready to view”) in
a more acceptable fashion than simply having users stare at an hourglass.

Even certain OLTP applications can use this technique. For example, in an events-ticketing
application, submitting ticket purchases to a queue helps ensure that tickets are sold in a first-
come, first-served fashion. Customers might not receive instant confirmation of their purchase,
especially if the queue has a lot of requests on it for a popular event, but confirmation wouldn’t
take long. Because the actual processing would be accomplished by a middle-tier application,
rather than the client, the business logic of connecting to the scaled-out back-end could be more
easily centralized, as well.

 My preference, as you’ll see throughout this chapter, is to never have client applications connecting
directly to the scaled-out back-end. Instead, have clients use a middle-tier, and allow that tier to
connect to the back-end for data processing. This model provides much more efficient processing,
eliminates the need for client applications to understand the scaled-out architecture, and helps to
centralize the connectivity logic into a more easily-maintained application tier.

195

Chapter 9

Inflexible Data Access Models
The previous two sections have both illustrated how client applications are traditionally written
with fairly inflexible data access models. Other examples of inflexibility exist, but the single best
solution is to move to a multi-tier application architecture. In fact, any good scale-out solution
will use at least a three-tier model of some kind, simply so that the applications used by end-
users need to have as little hardcoded into them as possible. Client applications should be
insulated (or abstracted) from the database servers, from the selection of what database server
they’ll use, and so forth. This allows the back-end to evolve over time, and requires you to
maintain only the smaller middle-tier servers to keep up with that evolution. Figure 9.6 illustrates
this basic software development concept.

The additional benefits of multi-tier design have been known for years:

• Connection pooling allows SQL Server resources to be used more efficiently, by
aggregating multiple client connections across a smaller number of actual database
connections between the middle tier and SQL Server itself.

• More business logic can be encapsulated into the middle tier, reducing overhead on SQL
Server while maintaining fairly centralized business logic code that’s easier to maintain
over the long term.

• Client applications can become simpler and easier to create, and can last longer between
updates since some of the solution’s evolution can be restricted to higher tiers.

Figure 9.6: Three-tier application design.

While it’s obviously possible to build effective, scaled-out, 2-tier (client and SQL Server)
applications, it’s not the most efficient or logical approach.

 Keep in mind that Web servers and Web browsers each represent distinct application tiers; even if
you have a scaled-out Web application where Web servers are directly contacting SQL Server
computers, you’ve still got a three-tier application, with the Web servers acting as a middle tier of
sorts.

196

Chapter 9

Challenges in Moving to Scale-Out
Moving from an existing 2-tier application environment to a scaled-out solution (regardless of
how many application tiers you build) can be painful, depending on how the original client
applications were written to begin with. For example, consider the ASP.NET code shown in
Figure 9.7 (I’m showing this in Notepad to help maximize the amount of code you can see).

Can you spot the problems? There are quite a few. Highlighted in red is the big one from a scale-
out perspective: This application is using a common ASP.NET technique of storing the
connection string in the web.config file, and then connecting directly to the database server.
Under certain scale-out scenarios, as discussed previously, this simply won’t work. Instead, you
might need to create a new class that returns a connection, and design that class to select the
appropriate database server. Or, better yet, create an entirely new tier that can be used to figure
out which server is appropriate, and return the appropriate connection string. Best would be an
entirely new tier that handles the data processing itself, eliminating the need for the ASP.NET
application to connect directly to SQL Server in the first place.

Another problem—highlighted in yellow—is the application’s use of dynamically-generated
SQL statements, which are often subject to SQL insertion attacks. This has no bearing on the
application’s scale-out, but it is a poor practice that should be rectified when the data processing
portion of the application is moved to a middle tier.

Figure 9.7: ASP.NET application – not ready for scale out.

197

Chapter 9

Figure 9.8 illustrates how this application might need to evolve to work well in a scale-out
scenario.

Figure 9.8: Scaling out the Web application.

Unfortunately, this sort of change is definitely nontrivial: Every page in the ASP.NET, based on
the example you saw, will need significant modifications. An entire middle tier will have to be
constructed, as well. Essentially, much of the application will have to be rewritten from scratch.
This is why I refer to client applications as the bottleneck in a scale-out solution: Creating the
scaled-out SQL Server tier can seem easy compared to what you have to do to make a robust
client (and middle) tier that’s compatible with it.

Architecting a Complete Scale-Out Solution
If you have an existing application that you’re converting to scale-out, there may be a tendency
to try and change as little as possible to get there. Similarly, if you’re building an application
solution from scratch, you may be tempted to just start with the data tier—which is the most
interesting, to some folks—and worry about the rest later. Both approaches will land you in
trouble, because scale-out requires a properly thought-out solution¸ from beginning to end,
before you start implementing anything. While most of this book has focused on SQL Server’s
role in scale-out, that doesn’t mean the rest of the solution can be ignored.

Even if you’re starting with an existing application, architect your scaled-out solution from
scratch, and then see what parts of your existing application fit in, and where they fit in. You
may be in for a lot of reprogramming—in most cases I’ve see, that’s what happens—but it’s far
better to have a properly-designed scale-out solution that requires a lot of work than to have one
that didn’t get much work, but also doesn’t work very well.

In the next few sections, then, I’ll discuss from-scratch scale-out architecture, taking it one tier at
a time.

198

Chapter 9

The Data Layer
Most of this book is already focused on the data tier, so at this point I’ll summarize your basic
options. You do need to decide, at this point, what kind of scale-out approach is going to be
appropriate for your situation. For example, Figure 9.9 illustrates a solution where multiple
database servers each have a complete copy of the database, and use replication to keep one
another in sync.

Figure 9.9: Scale-out through replication.

This scenario might be appropriate in a solution where the users are geographically distributed.
Each location could have its own server, using WAN-based replication to stay in sync. Benefits
include the ability for users to always access a local database server, and the remainder of the
solution wouldn’t be terribly different from a single-server solution. In fact, this is probably one
of the easiest scale-out solutions to retrofit. However, downsides to this approach can include
significant WAN utilization and high replication latency. That means users at each location have
to be accepting of the fact that any data frequently updated by users at other locations may be out
of date a great deal of the time.

Another possible use for this technique is load balancing. In this example, the servers would all
reside in the same location, and users would be directed between them to help distribute the
workload. This is also relatively easy to retrofit an existing solution into, although changes
obviously need to be made to accommodate the load balancing (I discussed these points earlier in
the chapter). Replication could be conducted over a private, high-speed network between the
servers (a private Gigabit Ethernet connection might be appropriate), although particularly high-
volume applications would still incur noticeable replication latency, meaning each server would
rarely, in practice, be completely up-to-date with the others.

Figure 9.10 illustrates a different approach. Here, each server contains only a portion of the
database. Queries are conducted through DPVs, which exist on each server. As needed, the
server being queried enlists the other servers—through linked servers—to provide the data
necessary to complete the query. This is a federated database.

199

Chapter 9

Figure 9.10: A federated database.

Figure 9.11 shows a minor variation on this them. Here, a fourth server contains the DPVs and
enlists the three servers containing data to complete the queries. The fourth server might not
actually contain any data; its whole function is to serve as kind of an intermediary. The fourth
server might contain tables for primarily static data, such as lookup tables, which are frequently
read but rarely changed. That would help the three main servers focus on the main database
tables. I refer to the fourth server as a query proxy, since, like an Internet proxy server, it appears
to be handling the requests even though it doesn’t contain the data.

Figure 9.11: Using one database server as a query proxy.

Finally, the last scale-out model is a distributed database, as pictured in Figure 9.12. Here, the
database is distributed in some fashion across multiple servers, but the servers don’t work
together to federate, or combine, that data. Instead, anyone accessing the database servers knows
what data is stored where, and simply accesses it directly.

200

Chapter 9

Figure 9.12: Distributed database.

This model has two main permutations. First, the database might be broken up by tables, so that
(for example) customer data resides on one server, while order data lives on another. The second
way is for the data to be manually partitioned in some fashion. Customers “A” through “M”
might be on one server, while the remainder are on another server.

These models don’t necessary stand alone, either. For example, you might create a solution
where customer data is federated between three servers, and uses DPVs to present a single,
combined view of the data. Vendor data, however, might only exist on the second server, while
lookup tables live on the third server. This model would combine a distributed database model
with a federated database model. You can be creative to help your database perform at its best.

The Middle Tier
Scale-out application need a middle tier. Yes, it’s absolutely possible to build a scale-out solution
without a middle tier, but it’ll operate better, and be easier to maintain, with one than without
one. Although they can be simple proxies that help remove the need for client applications to
understand the back-end (as I’ve discussed already in this chapter), middle tiers can provide a
great deal of logic, help to centralize important business rules, and much more.

Figure 9.13 shows a basic middle tier in operation. Here, one middle tier server receives a
request (in blue) that’s filled by a DPV. The middle-tier server could technically contact any
server hosting that DPV to query it, but it might do a few quick ping operations to see which
server is responding fastest, and query the DPV from that one. Or, it might do a quick analysis to
determine which back-end server physically contains the majority of the data being requested,
since that server can complete the DPV query with the least effort. The back-end then does
whatever it’s supposed to, enlisting the other back-end servers to complete the query. All that
time, whatever application was querying the middle tier needs to know nothing about this back-
end work; it simply instantiated some remote object to obtain some data, and it got the data.

201

Chapter 9

Figure 9.13: Using a middle tier.

A second request (in red) goes to a second middle-tier server. This request might be for data
which isn’t handled by a DPV, but is rather distributed across two back-end servers. The client
application doesn’t need to understand this at all; it simply instantiates a remote component on
the middle tier server (or accesses a Web service, or something similar), and it gets its data. The
middle tier knows where the data is located, and retrieves it.

202

Chapter 9

203

Using middle tiers offers some distinct advantages:

• Maintaining connections requires resources on SQL Server, which could often be used
better elsewhere. While client applications would require, at minimum, one connection to
SQL Server per client, a middle tier can get by with fewer connections than the number
of clients it services. This is called connection pooling, and it can make the back-end
operate more efficiently.

How Does Connection Pooling Help?

Any application accessing SQL Server has two choices when it comes to connections: Create one (or
more) and leave it open at all times, or just create one when it’s needed.

In the first case, the connection requires resources to maintain even when it isn’t being actively used. If a
client application does this, in fact, the connection will mainly be unused, because client applications
spend far more time waiting for their user to do something than they do querying data.

In the second case, creating and tearing down connections takes processing power, something SQL
Server could be using more efficiently elsewhere.

A middle tier often creates a number of connections and keeps them open. However, it doesn’t create
one per client; instead, as requests come in, the middle tier selects a currently-idle connection to service
the request. This allows connections to remain open, but helps prevent them from being idle, which
derives the maximum benefit from the SQL Server resources diverted to maintaining the connection.

• The middle tier is often easy to scale out. Simply create an identical middle-tier server
and find a way to load-balance clients across it (perhaps hardcoding some clients to use a
particular server, or by using an automated load balancing solution).

• The middle tier can contain business and operational logic that would otherwise require
more complex client applications, or would place unnecessary load on SQL Server. For
example, the middle tier can be designed to understand the back-end data layout,
allowing it to access the data it needs. This removed the need for client applications to
have this logic, and allows the back-end to change and evolve without having to redesign
and redeploy the client. Instead, the middle tier—which is a much smaller installed
base—is reprogrammed. Similarly, operations like basic data validation can take place on
the middle tier, helping to ensure that all data sent to SQL Server is valid. That way, SQL
Server is wasting time validating and rejecting improper data. If business rules change,
the middle tier represents a smaller installed base (than the client tier) that has to be
modified.

• You can get creative with the middle tier to help offload work from SQL Server. For
example, the middle tier might cache certain types of data—such as mainly-static lookup
tables—so that SQL Server doesn’t need to be queried each time. Or, clients could cache
that information, and use middle-tier functionality to determine when the data needed to
be re-queried.

Middle tier applications used to be somewhat complex to write, and involved fairly complicated
technologies such as Distributed COM (DCOM). However, with today’s .NET Framework, Web
services, and other technologies, middle tiers are becoming markedly easier to create and
maintain, giving you all the more reason to utilize them in your scale-out application.

Chapter 9

204

 A middle tier, can, in fact, be an excellent way of migrating to a scale-out solution. If you can take the
time to redesign client applications to use a middle tier, and create the middle tier properly, then the
back-end can be scaled out without having to change the client again.

The Web Tier
days, are incorporating a Web component, even if they aren’t

neral, the Web tier should be treated as a client tier. In other
iddle tier, and then allow Web servers to connect to

ement.

Many application solutions, these
specifically a Web application. In ge
words, you still should consider using a m
that. Figure 9.14 illustrates this arrang

It’s
app

Figure 9.14: Web servers in a multi-tier scale-out solution.

 very important that Web applications follow the same best practices as any other client
lication: Minimizing data queried, no ad-hoc queries, and so forth.

 There are a few Web applications that are special cases. For example, a SQL Server Reporting
Services Web site typically needs direct connectivity to SQL Server, rather than accessing data
through a middle tier. When this is the case, you can typically make the back-end more robust to
accommodate the direct access. For example, reports might be pulled from a static copy of the
database that’s created each night (or each week, or however often), rather than querying the OLTP
servers.

Chapter 9

As your Web tier scales out—Web farms being one of the easiest things to create and expand,
thanks to the way Web servers and browsers work—always take into consideration the effect on
the middle and back-end tiers. For example, you might determine that each middle-tier server
can support ten Web servers; so as you scale out the Web tier, scale out the middle tier
appropriately. Always pay attention to the resulting effect on the back-end, which is more
difficult to scale out, so that you can spot performance bottlenecks before they hit, and take
appropriate measures to increase the back-end tier’s capacity.

The Client Tier
The client tier may consist of numerous client applications, but they should all access data
exclusively through a middle tier server, as shown in Figure 9.15.

Figure 9.15: Clients access data through a middle tier.

205

Chapter 9

206

There are a number of pieces of functionality which typically exist in client applications, but
which can and should, whenever possible, be moved to the middle tier:

• Data validation. When possible, move this functionality to the middle-tier. The middle-
tier might provide functionality that allows clients to query data requirements (such as
maximum field lengths, allowed formats, and so forth), so that clients can provide
immediate feedback to their users, but in general try to avoid hardcoding data validation
in the client tier. As the most widely-deployed tier, the client tier is the most difficult to
maintain, so eliminating or reducing data validation—which can change over time—
helps to improve long-term maintenance.

• Business rules. As with data, client-tier maintenance will be easier over the long term if
business logic exists primarily on the middle tier.

• Data access logic. Clients should have no idea what the data tier looks like. Instead, data
access should all be directed through the middle tier, allowing back-end structural
changes to occur without affecting how clients operate.

Client should not use (and the middle tier should not allow the use of) ad-hoc queries. Instead,
clients should be programmed to use middle-tier components (or Web services, which amounts
to the same thing) to query the exact data they require. This helps to ensure that clients are fully
abstracted from the data tier and have no dependencies on anything, including table names,
column names, and so forth. This technique provides the maximum flexibility for the data tier,
and truly makes the middle tier a “wall” between the clients and the data.

Converting Existing Applications for Scale-Out
There’s no question that converting existing applications can actually be more difficult than just
starting from scratch, especially if you’re inheriting an application that you weren’t responsible
for in the first place. Still, sometimes conversion can be more cost-effective, and so in the next
few sections I’ll touch on the key areas you’ll need to pay attention to in converting your
applications.

 It probably goes without saying, but just in case: Applications should use all the best practices that I
discussed in Chapter 2, such as using stored procedures rather than ad-hoc queries, retrieving the
minimum amount of data, and so forth. These practices help applications perform better no matter
what kind of environment you’re working in.

Chapter 9

207

Key Weaknesses
Applications already written for a 3- (or more) tier environment are less likely to have significant
weaknesses with regard to scale-out operations, although the tier which accesses data will likely
need a decent amount of work to accommodate a scaled-out SQL Server solution. However,
many applications are simple, client-server applications that may require extensive work. Here
are some of the key weaknesses usually found in these applications, which you’ll need to address
during your conversion:

• Direct connectivity. Applications connecting directly to a data source will need to have
that connectivity removed or modified, as appropriate, to understand your new solution
architecture.

• Ad-hoc queries. Many client applications make use of ad-hoc queries, which are out of
place in any database application, but especially in a scale-out scenario. Replace these
with calls to stored procedures or to middle-tier components.

• Caching. Client applications rarely cache data, although in a scale-out solution—when
retrieving data might require the participation of multiple servers—doing so can help
improve overall throughput. Clients may be able to cache, for example, relatively static
data used for drop-down lists and other lookups, helping to improve overall throughput of
the solution.

• Poor use of connection objects. Client applications often make poor use of ADO or
ADO.NET connection objects, either leaving them open and idle for too long or too
frequently creating and destroying them. A middle tier, which can help pool connections,
makes connection resources more efficient.

• Intolerance for long-running operations. While scale-out solutions are designed to
improve performance, sometimes long-running operations are inevitable. Client
applications must be designed not to error out, or to use asynchronous processing when
possible.

• Dependence on data tier. Client applications are often highly dependent on specific data
tier attributes, such as the database schema. Clients should be abstracted from the data
tier, especially the database schema, to improve solution flexibility.

• Multi-query operations. Clients typically perform interrelated queries, requiring them to
remain connected to a single server while each successive query completes. This creates a
connectivity dependence and eliminates the possibility of the client being load-balanced
to multiple servers throughout its run time.

Chapter 9

208

Conversion Checklist
Here’s a short checklist of things you’ll need to change when converting an existing application
to work in a scaled-out environment:

 I’m not assuming, in this checklist, that you’ll be using a multi-tier application, although I strongly
recommend that you consider it.

• Remove all direct connections to servers and implement logic to connect to the proper
server in the back-end. In a multi-tier application, all database connectivity will need to
be replaced by use of remote middle-tier components.

• Examine the application for data which can be locally cached and updated on demand.
Implement components that check for updated data (such as lookup data) and re-query it
as necessary.

• Redesign applications to use asynchronous processing whenever possible and practical.
This provides the middle- and back-end tiers with the most flexibility, and allows you to
maximize performance.

• Remove schema-specific references. For example, references to specific column names
or column ordinals should be removed, or rewritten so that the column names and
ordinals are created by a middle tier, stored procedure, or other abstraction. The
underlying database schema should be changeable without affecting client applications.

• Make operations as short and atomic as possible. If a client needs to execute a series of
interrelated queries, try to make that a single operation on the client, and move more of
the logic to the back-end or middle tier. By making every major client operation a “one
and done” operation, you make it easier to re-load balance clients to a different middle-
tier or SQL Server computer (if that’s how your scale-out solution is architected).

Summary
This chapter focused on the last topics needed in a scale-out solution—the actual applications
that will use your data. In general, a good practice is to apply a multi-tier approach to help isolate
clients from the data, thus providing the maximum flexibility for the back-end data tier.
Although the remainder of this book has focused primarily on SQL Server itself, you can’t
ignore the fact that SQL Server is only part of an application solution, and the design of the
remainder of the solution plays an equally important role in the solution’s overall scalability.

Throughout this book, the focus has been on scalability and flexibility. This guide has presented
you with options for scaling out the back end, explained technologies that can help SQL Server
perform better and more consistently, and introduced you to techniques that can help in both
scale-up and scale-out scenarios. You’ve learned a bit about how high availability can be
maintained in a scale-out solution, and about how critical subsystems—particularly storage—
lend themselves to a better-performing solution. Although building a scale-out solution is never
easy, hopefully, this guide has given you some pointers in the right direction, and as SQL Server
continues to evolve as a product, we’ll doubtless see new technologies and techniques dedicated
to making scale-out easier and more efficient. In the meantime, the very best of luck with your
scale-out efforts.

Chapter 9

209

Content Central
Content Central is your complete source for IT learning. Whether you need the most current
information for managing your Windows enterprise, implementing security measures on your
network, learning about new development tools for Windows and Linux, or deploying new
enterprise software solutions, Content Central offers the latest instruction on the topics that are
most important to the IT professional. Browse our extensive collection of eBooks and video
guides and start building your own personal IT library today!

Download Additional eBooks!
If you found this eBook to be informative, then please visit Content Central and download other
eBooks on this topic. If you are not already a registered user of Content Central, please take a
moment to register in order to gain free access to other great IT eBooks and video guides. Please
visit: http://www.realtimepublishers.com/contentcentral/.

http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/

	Chapter 9: Scaling Out at the Application Level
	Applications: The Scale-Out Bottleneck
	Common Application Problems in a Scale-Out Environment
	Server-Centric View of the World
	Intolerance of Longer Data Operations
	Inflexible Data Access Models

	Challenges in Moving to Scale-Out

	Architecting a Complete Scale-Out Solution
	The Data Layer
	The Middle Tier
	The Web Tier
	The Client Tier

	Converting Existing Applications for Scale-Out
	Key Weaknesses
	Conversion Checklist

	Summary
	Content Central
	Download Additional eBooks!

