Realtime
publishers

The Definitive Guide To

Quality
Application
Dellvery

Don Jones

Chapter 8
-

Chapter 8: Functional Testing—Verifying QUality........ssssssssessssssssssens 154
Testing t0 REQUITEMENTES ... s 154
BT o D - TP 156

DElIDEIAtE DAta ...ceueeeereeeenreeseesreeseeseeses s s e s s bbbt 159
g 0T b ot 1) o B D - = VTP 161
MaANAGING DALA ..o 162
UNIE TESHING ittt 163
FUNCHIONAL TESTING.iuitiereirereireiseiseissiessesesessessssses st sassssssnesns 167
REthINKING TOSTINGvvueuierereessereesseesse e esessesssesssessesssessessse s s ss e s e ss e s ssses s s sessss s ssssssessneas 169
ThE ROLE Of TOOLS ettt s s s s s s s bbb 170
[t's FUNCLIONAL: WRhA'S NEXE? ...cuceeeeieeeeeeeesseisessessesssessessssssssssssesssssssssss st sssssssssss s sssssssssssssssssneas 177
. o
Realtime 1 CIFochs

Chapter 8

Copyright Statement

© 2009 Realtime Publishers. All rights reserved. This site contains materials that have
been created, developed, or commissioned by, and published with the permission of,
Realtime Publishers (the “Materials”) and this site and any such Materials are protected
by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtime Publishers or its web site
sponsors. In no event shall Realtime Publishers or its web site sponsors be held liable
for technical or editorial errors or omissions contained in the Materials, including without
limitation, for any direct, indirect, incidental, special, exemplary or consequential
damages whatsoever resulting from the use of any information contained in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtime Publishers and the Realtime Publishers logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their respective
owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtime Publishers, please contact us via e-mail at
info@realtimepublishers.com.

T ii MICRO
H{:’dlumt‘ ClFochs

mailto:info@realtimepublishers.com

Chapter 8

[Editor's Note: This eBook was downloaded from Realtime Nexus—The Digital Library for
IT Professionals. All leading technology eBooks and guides from Realtime Publishers can be
found at http://nexus.realtimepublishers.com.]

Chapter 8: Functional Testing—Verifying
Quality

['ve already mentioned—probably several times—that automated testing cannot, by itself,
add more quality to an application. That is, all an automation tool can do is make things
faster and less tedious; it cannot inherently make them better. That’s why this chapter will
focus on testing generally and not specifically on tools. You need to have a solid testing
methodology in place before you begin automating it; in other words, you need to create
the desired level of quality using manual processes, and then you can begin relying on tools
to help automate those processes.

Of course, there is a caveat to the previous statements: Automated testing can allow you to
add more of the same quality to your application than you could add manually. That is, if
you have a good testing plan in place to begin with, then automated tools will allow you to
accomplish more testing than you could do manually. More testing, if it’s the right kind of
testing, does lead naturally to an increase in application quality in most cases. However, it’s
important to understand that the automation tool is simply helping you get more done in a
smaller amount of time—it’s what you do with that time that’s actually important.

Testing to Requirements
First and foremost, remember this important law of software testing:

You cannot begin testing without well-written requirements, and you can
only test what is specifically called out in the requirements.

There’s simply no way around it. Without solid requirements, you're testing blind; your
tests should focus almost entirely on the things which are specifically called out in your
software’s requirements document. In fact, this is an area where tools can immediately
start helping. Requirements-tracking tools allow you to import requirements from
documents (such as those created in Microsoft Word), helping you quickly turn a shared
document into a set of clearly-defined, trackable requirements. Tools can also help
generate test cases based on those requirements, helping to automate the process of
creating a test plan and helping to make sure you don’t miss any requirements in your
testing. Tools also help make requirements more accessible to your entire development
team, often by providing role-based security, which allows specified team members to edit
requirements, others to view requirements, others to contribute comments, and so forth—
and to automatically send notifications when requirements are updated or expanded.

) J P . 154 MICRO
Realtime CIFGEDS

http://nexus.realtimepublishers.com/

Chapter 8
-

Let’s look at exactly how testing should be driven by requirements:

® In creating your requirements, you should be documenting everything you want the
application to eventually do.

e Those requirements should essentially become a checklist for the testing phase.

® You can generate test cases and ensure that each requirement is covered by at least
one test case.

® You then track which test cases have been tested, which are satisfactorily
completed, and so forth.

Risk management comes into play with the requirements. Different organizations have
different ways of assigning risk; some will assign a value of 1 to 3 based on the perceived
likelihood of the risk occurring, and then a value of 1 to 3 based on the severity of the risk if
it does occur. Multiply these two values for a 1 to 9 score of the total risk associated with
any given requirement. Why bother? That same risk value can be carried down to the test
cases that support each requirement, and you can easily identify those test cases that might
need to be run more frequently or in more detail to help prevent the highest-impact, most-
likely risks from ever occurring.

Note

Why didn’t I discuss risk assignment in more detail in the chapter on
requirements? It’s kind of a personal decision on my part. I really believe that
one of the great, main purposes of requirements is to drive your testing;
without testing, assigning risk isn’t as useful. One of the main points of
assigning a risk value to a requirement is to help focus appropriate testing
resources. This is one of the many ways in which requirements development
and testing connect closely to one another.

If you think about it, a close tie between requirements and testing can be an invaluable
management tool. Imagine a table like this:

Requirement TeststoRun Tests Completed TestTime Remaining

3.4 34 100% 0 hours
3.5.1 3 33% 2 hours
3.5.2 14 12% 21 hours

This type of table directly tracks each application’s requirements, the number of tests that
validate the requirements, and how many of those are complete. You can use this to
estimate the remaining test time, which helps tell you how long the project has before it
will be completed.

155 MICRO
|:||=|:||::us

Chapter 8
-

Note

Some of the automated test management tools I'll discuss later in this chapter
help to automate this kind of reporting, making it easier to pull up these and
other useful management views of the project.

Because the application’s requirements should directly communicate the business’
expectations for the application and the business’ view of what will constitute a “quality”
application, testing can also provide a valuable insight into the application’s current level of
quality. Imagine another table like this one:

Requirement Tests Run Successful Tests Quality

34 100% 50% 50%
3.5.1 33% 100% 33%
3.5.2 12% 50% 6%

AVERAGE 30%

Again, having access to this type of information can drive important management decisions.
How far along are we in the project? What level of quality are we at, and how much effort
was required to get there? How much effort is likely to be required to raise our quality to
100%? Can we afford that? If we settle for 90% quality, what will we be losing? That last
question is especially important, because it offers the business the opportunity to
deliberately accept a less-than-perfect application as a tradeoff for using fewer resources
such as time and money. It’s very costly to create a 100%-perfect, 100%-quality
application—so attaching test results and requirements, management can help strike a
desirable balance between resources and quality.

Test Data

I've worked on a number of pretty large-scale applications, and while I don’t have formal
statistics to back it up, my gut tells me that about 75% of the bugs released in production
could have been avoided by having better test data. Imagine making your applications have
three-quarters fewer bugs—surely that would contribute to a perception of increased
quality, no?

156 MICRO
s_l_]'r,_ DFDBUE

Chapter 8
-

There are two phases where I frequently see missed bugs as well as wasted effort:
Developers using poor test data in their unit testing is the first. The basic problem here is
that developers hate managing test data—honestly, who likes doing so?—and so they tend
to perform unit tests with pretty poor data. The result is that they miss what would be
simple bugs to fix in development, and wind up shipping those bugs to formal testing. [do
see organizations who have a formal testing process tend to use slightly better test data,
and they do catch a lot of these simple bugs, but it's wasted effort: The time to test, find the
bugs, ship them back to the developer, fix them, and re-test them is all wasted cycles that
could have been avoided by using better test data in the first place.

So what constitutes good test data? It might be easier to look at what constitutes poor test
data. Take a look at some example data that represents customer records:

ID Name Address City Phone

1 John Doe | 123 Anystreet | City 5551212

2 John2 Street City 5551212

3 John3 Street City 5551212

This is test data I've seen—heck, that ['ve used—in a lot of unit tests. It’s simple data, and
it's fine for doing simple tests to make sure that a Ul is adding data to a database properly,
for example. It's easy to create, and it is simple enough that it won’t require a lot of
complicated management. Now look at the data in the following table:

ID Name Address City Phone
373525 | Abdul Irwin 728-3967 Purus. Avenue Pittsburgh 2-745606-816'
Yoshio P.0. Box 147, 9975 Interdum _ 1-647-941-
220368 Herman Rd. Clovis 7454
810956 | Dieter Shelton | Ap #634-5883 Est Avenue | Fort Wayne 2'7‘;163‘617'
) P.0. Box 663, 9750 Interdum. : 1-154-882-
752662 | Anthony D’ffy Av. Wilkes-Barre 2798
332754 | Curran Decker | 6110 Orci. Rd. High Point éé%352-213_
926816 | Ashton Long | P.0. Box 846, 4959 Odio, Rd. | Flint ;620202'154'

157 MICRO
I:IFEII:LIE

Chapter 8
-

656679 | lan James Ap #219-642 Sollicitudin Ave ‘S";‘Ire‘fgo“ ;3%115'420-
355623 gfs‘g;o“ 248-1121 Ut Rd. Miami ;26105'860'
461819 | Lucius Huff | 8431 Duis St. Fairmont L2707
819085 ;Zz‘:;iil P.0. Box 912, 3564 Risus. Ave | Canton N
674310 | Ulric Dejesus ‘;\53;96-688 Maecenas Catskill 3-6154;0-995-
964383 lltl/ligi‘aorllas 944-9597 Turpis. Rd. Pottsville éé15’28'550'

[generated this test data from www.GenerateData.com, using their example script. This
data has some higher-quality features:

e There are full names with a variety of characters and lengths, including one with an
apostrophe—which is very important in testing the escaping of special characters.
Foreign names with umlauts and accents would be desirable, too.

® Addresses are lengthier and contain common punctuation

e (ity names are longer and includes some with two words and some with
punctuation

® Phone numbers are full-length and suitably random.

In addition, the Web site makes it easy to generate hundreds of rows of data like this,
making it easier to perform a greater variety of tests during unit testing. Random data like
this can be especially useful throughout the testing cycle, but there are some additional
things you can do to make it even better.

.__.
P
F

E 158 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

http://www.generatedata.com/

Chapter 8
-

Deliberate Data

Random data is great, but it's not perfect. Ideally, you should start with random data, but
then massage it a bit to make sure it covers all the possible boundary conditions. Add weird
characters, and add data that should be rejected by the application, such as data fields that
are too short, too long, out of range, and so on. For example, if a database table has 10
columns, there should be at least 20 rows of data that tests for illegal data: For each
column, create one row of data that has legal data in all columns but one. That gives you 10
rows of test data, each one testing the length limitation of a single column, and an
additional 10 rows of test data with each one testing the data type of a single column. For
example, consider a table that has four columns:

Column Name | Data Type and Length

Name Character (100)
Address Character (100)
ID Integer (5)

Postal Character (10)

This would require at least eight rows of test data, such as these:
Name Address ID Postal

Aaaaaaaaaaaaa | 123 Main Street 5 99654
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aAaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaAaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaAaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaa

Don Jones Aaaaaaaaaaaaa |17 23455
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aAaaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaAaaaaaaaaaa

159 MICRO
I:I FOCUS

Chapter 8
-

aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaAaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaa
aaaa
Greg Shields 5252 Providence Rd 666666666666666 | 77342
Chris Gannon 230 Windmill Ln 7394 8888888888888888
7 390 Kelley Ave 7584 74738
Bailey Sory 8 8738 22312
David Knight 300 Elizabeth St ABCDE 9986
Stonna Edelman 8989 Broadway 88 ABCDE

The first four rows each try to place oversized data into a single column; the second four
rows each try to place data of a different type into a single column. There’s still a need to
test a quantity of valid data, of course; this is data you might manually add to your test data
simply to ensure that illegal data doesn’t cause any unhandled errors.

Note

Why not just use a single test row that places illegal data into every column?
Doing so makes debugging more difficult. This way, each row causes only a
single problem, so any bugs which are found must relate to that single
column.

Of course, this is just a simplistic example. The idea is to make sure that your test data is
thorough, and that it tests a variety of legal and illegal conditions.

Note

There are tools out there which can examine your database and produce
illegal test data automatically. This is obviously far easier—and often more
thorough—than producing the data manually, but you should still review the
data to make sure it’s testing every possible condition. Automated tools can’t
interpret your code to produce test data; they can only (in most cases)
analyze your database schema for things like field lengths and data types.

.__.
P
F

E 160 MICRO
'_‘d]l]]]]i;‘ |:||=|:||::|_|s

Chapter 8

Production Data

Another option is to use production data—real, live data from an existing system. This isn’t
practical when you’re building a brand-new application, of course, but it is practical when
building a new system that will replace an existing one, or when building a new version of
an existing application.

Using production data needs to be done with some care. There are three main concerns:

Be aware of any privacy issues related to the data, such as customer information.
This data may need to be “disguised” by replacing random characters and digits, or
it may need to fall under special security measures to protect it and audit access to
it.

Caution

Privacy issues are especially important if your data is covered by industry or
legislative requirements, such as the Health Insurance Portability and
Accountability Act (HIPAA). Check with your organization’s security
organization before utilizing production data, and rely on tools that can
extract the production data and disguise it at the same time. It’s almost
always more practical to disguise data than to try and manage compliance
requirements on test data.

In the event that you do need to use undisguised data that has privacy
implications, you will definitely need a test data management tool that can
secure the data, audit access to and use of the data, produce audit reports for
your organization’s auditors, and so forth.

Be sure that your production data is testing all possible data conditions, including
things like punctuation and so forth in various fields. Don’t just grab a few
production data rows at random; intelligently select rows that will properly and
thoroughly test your application.

Note

Using production data implies that you have an existing application; review
the old bugs that were filed for that application to find scenarios where
unexpected data caused problems. Those same scenarios should become part
of your new application’s tests, and you can create appropriate data to make
sure those scenarios occur during your testing.

Be sure to include test data that includes illegal data, which you're (hopefully)
unlikely to obtain from an existing production system.

Typically, you'll extract the desired test data from the production system one time, and
then store that test data elsewhere so that it can be easily accessed and re-used. Which
brings us to the topic of managing your test data.

161 |:|M||:R|:|‘“"
>AltIme FOCUS

| | -::ﬁ."x_ f_ |. | |

Chapter 8
-

Managing Data
There are two simple, easy to understand reasons why developers and even QA testers
tend to use poor production data:

® (Good data is hard to generate

® (Good data is hard to manage (store and re-use)

We've already covered better ways to generate test data, so let’s look at some of the
management issues. In order for your high-quality test data to be valuable, it's got to be
used—both by developers during unit testing and by QA during full-scale functional testing.
In order for the data to be used in these scenarios, it needs to have a few characteristics:

e [t must be centrally stored and easily accessible

e [t must be secured against tampering, so that nobody tries to “dumb down” the data
to make testing easier

e [t must be updatable by the right people, so that the data set can be expanded to
cover newly-discovered boundary conditions

e It must be easy to load the data into a database or other form, or feed it into a user
interface, to set up a test scenario

Nearly all of these things are difficult to do manually—which is where tools come into the
picture. The right test data management tool can perform all of these tasks, and may even
be able to assist with the generation of test data, disguising test data from a production
system, and even extracting data from other systems to use in the test environment. Yes,
you can absolutely handle all of these tasks without having to obtain tools—but your
testing will end up being more thorough, and you’ll end up wasting fewer test-debug-retest
cycles, if test data is managed and easy for everyone on the team to utilize.

Note

One you start shopping for tools, it pays to consider all of the tools you’ll
need. A good test data management tool, for example, might be able to feed
data to an automated testing tool that can enter the data into a graphical user
interface. That’s a desirable feature, but to get it you'll need to make sure
you're selecting tools that fit together in that way. Start by looking at tool
vendors that offer suites of integrated tools, or vendors who make tools
specifically designed to integrate with tools from other leading vendors.

. 162 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 8
-

Unit Testing

Unit testing is a method where individual programmers test the individual units of code
that they are writing. A unit test is generally considered to be the smallest unit of testing
that can be performed against an application: It might be a single function or object
method, for example. Stepping through the code in a debugger may be the only way to
conduct unit tests on some portions of code; in other cases you may have to create a test
harness, a separate set of code that is designed solely to load and test the code you're
actually interested in.

Unit tests should, ideally, be some of the most thorough testing performed against an
individual unit of code. In other words, developers should be testing every single code path
within a module, using appropriate test data, to make sure that the entire unit of code is
completely tested. Other testing later in the project’s lifecycle may be just as thorough, but
limited resources often mean that later “full” or functional testing may not be able to test
every combination of code paths offered by numerous integrated units of code. Figure 8.1 is
a flowchart that illustrates the logic for a given unit of code; having a flowchart like this
helps to ensure that each code path is tested.

. 163 MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 8

I.-" Input customer

\\
ID or name }'.\ Start

AN

i .‘"""‘"--
T

e \‘\
Search database for e N,
all matching names Name "\w

hat was input? b > = ngf mmhatg g}ggalge
\

\
Throw
“not found"
exception

-
“ Exists?

\\r/*

Yt:as
\, //v\\ ____________.
\\ e ™ Instantiate
Return “_ v I,/’ Record ™ No—® record editor
record '\ s " complete? and display
1
Y
A

T

L

Retrieve: updated
record

Figure 8.1: Flowcharts help direct and guide unit testing.

The flowchart not only depicts the conditions necessary to enter each code path, but

provides a sort of checklist. As shown in Figure 8.2, you can highlight each path as you test
it, and even indicate which test data sets you used to test individual paths.

. 164
Realtime
publishers

MICRO
FOCUS

Leading the Evoluti

Chapter 8

2 T UNIT TEST
! } .'/ ‘\\ 15“’“"
[Input customer :_ :_" Start ‘|
/D ormame | \ =)
Il f
/ \
/ .h""h-... ~/
I
Vo Testost #18-
s Ao 1
Search database for i =8 Search database
all matching names Name "\:‘:Vhat was input? D==% tor matching 1D
‘\\\
R - —_
|
\
/ Throw \\
/ ‘"notfound"
| exception ‘-\
No
//'\‘“
-~ \\,“
“~
> Exists? -3
N
\\
A Test ant #18-
Ao 1
Yes
3 X " |
\ e . 7 Instantiate
Return " Record ™ No—® record editor
record ‘\' Yes "'\ complete? and display
\\ \h
/ \ "‘\
§ —

"y

L

Retrigve updated
record

Figure 8.2: Tracking the results of unit testing on a flowchart.

Of course, this type of flowchart isn’t just useful for manual unit testing—it’s also very
helpful in setting up automated unit tests. The flowchart helps make sure that an

automated test is addressing every code path, and helps document the specific test data
that will be used during various aspects of the test.

. 165 ?
Realtime CIFocts
publishers Leading the Evoluti

Chapter 8
-

It’s often difficult to test a single unit of code such as an object method, because code tends
to rely on other code—and the depended-upon code may not be complete or fully-tested.
Ideally, unit tests should focus on a single unit of code, with no outside dependencies. This
may mean developing test harnesses to instantiate and activate the code, and it may also
mean creating “mock objects” to replace depended-upon code. These mock objects can be
very simple pieces of code that return static results, allowing the unit test to be completely
self-contained and predictable. Again, automated testing tools can help make this overall
process less painful, more consistent, and much faster.

Microsoft’s Visual Studio documentation provides a good definition of unit testing with
regard to isolation:

The primary goal of unit testing is to take the smallest piece of testable software in
the application, isolate it from the remainder of the code, and determine whether it
behaves exactly as you expect. Each unit is tested separately before integrating them
into modules to test the interfaces between modules. Unit testing has proven its
value in that a large percentage of defects are identified during its use.

If you don’t isolate units, you can substantially increase debugging time. For example, suppose
you have two units, 1 and 2, and you decide to test them together. When an error occurs, you’ll
have to determine:

® Isthe errorin unit1?

® Isthe errorin unit 2?

® s the error in both units?

® Isthe error due to the interface between the units?

e [sthe error due to a defect in the test?

By isolating unit 1, and having it depend on a mock object (also called a stub by some
developers) rather than depending on unit 2, you eliminate many of these possibilities.
You're left with only two:

® [stheerrorin unit1?

® [sthe error due to a defect in the test?

This makes tracing the error and fixing it much easier and more efficient.

. 166 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 8
-

Functional Testing

Functional testing—also called integration testing, system testing, and numerous other
terms by developers I've worked with—is the act of testing a complete system, or a
complete subsystem of a larger application. I've also seen it referred to as black box testing,
because it should require little or no knowledge of the application’s inner workings (unlike

unit testing, which may require that knowledge to create test harnesses, stubs, and so
forth).

[have a firm opinion regarding functional testing and bugs: Functional testing will reveal
bugs in your application, but it will not find all of them. The main purpose of functional
testing is to ensure that each and every business requirement is met; finding bugs is an
inevitable side benefit. Why is this so? It’s a question of complexity. A given unit of code
might have a half-dozen code paths, each of which must be tested in order to discover all of
the bugs within that unit. If every unit of code in the application averages six code paths,
and the application consists of two hundred such units, then you have an enormous
number of discrete code paths to test—it’s not practical to think that a functional test, no
matter how well-automated, can catch them all.

Note

[tend to think of unit testing as the bug-catching phase, and functional
testing as the requirements-checking phase, but obviously there’s overlap.
Some business requirements can be checked at the unit level, depending on
the unit, and as I've said you’ll almost always uncover bugs during functional
testing, even if that’s not your specific goal.

There are many goals for functional testing; the article at
http://en.wikipedia.org/wiki/System testing lists a nice set:

e (GUI software testing

e Usability testing

e Performance testing

e (Compatibility testing
e Error handling testing
e Load testing

e Volume testing

® Stress testing

e User help testing

e Security testing

e Scalability testing

. 167 MICRO
H{:’dlumt‘ ClFochs

http://en.wikipedia.org/wiki/System_testing

Chapter 8
-

e (apacity testing

e Reliability testing

® Recovery testing

e Installation testing

e Idempotency testing
e Maintenance testing

® Accessibility testing

Yes, that’s a lot of work—but most of these things actually relate to specific business
requirements that are common to most applications.

Note

[tend to use this list of functional tests as a sanity check. If I've created all the
test cases for all of my business requirements, and I'm not seeing test cases
for one of these bulleted items, then I have a problem. If, for example, my
complete list of functional tests don’t include some load testing, then I start
to wonder why my business requirements don’t specifically state any
capacity or load requirements.

Another article I like, at http://www.devbistro.com/articles/Testing/Requirements-Based-
Functional-Testing, has a very succinct definition for functional testing:

The objective of function test is to measure the quality of the functional (business)
components of the system. Tests verify that the system behaves correctly from the
user / business perspective and functions according to the requirements, models,
storyboards, or any other design paradigm used to specify the application. The
function test must determine if each component or business event: performs in
accordance to the specifications, responds correctly to all conditions that may be
presented by incoming events / data, moves data correctly from one business event
to the next (including data stores), and that business events are initiated in the
order required to meet the business objectives of the system.

This stresses that the focus of functional testing is not on bugs, but on functionality (that’s
actually why I prefer the term functional test over something like integration test or system
test).

Functional testing should be regarded as a distinct entity that is not necessarily related to
unit testing. Unit testing must often be planned and implemented as developers write code,
since things like test harnesses and stubs often can’t be fully defined in advance. Functional
testing, however, can be fully planned in advance, because it's driven solely by the business
requirements for the application. Functional testing doesn’t care about the code; it only
cares whether the finished code is meeting the requirements.

) J P . 168 MICRO
Realtime CIFGEDS

http://www.devbistro.com/articles/Testing/Requirements-Based-Functional-Testing
http://www.devbistro.com/articles/Testing/Requirements-Based-Functional-Testing

Chapter 8
-

That said, planning for functional testing isn’t always as simple as creating one test case for
each business requirement (in fact, it's rarely that simple). Partitioning is often necessary
to break complex requirements down into testable units; this is a process also referred to
as functional decomposition. The idea is to break down the specific functional areas of the
application so that they can be tested—perhaps before the entire application is complete—
against the relevant business requirements.

Rethinking Testing

It’s time to completely re-think the way you test. Even if you're already using automated
testing tools—which, by themselves, are not a guarantee of quality—you can probably
improve your testing processes and bring a great deal of additional quality to your
applications. Here are some things to consider:

(1 Are your tests mapping directly to the original application requirements? Tests
should give management an idea of the application’s overall quality, as well as an
idea of the application’s progress—based on the business requirements that have
been met.

(] Do you have metrics in place which can be easily viewed? In other words, can
project managers track the project’s overall quality, overall completeness, and so
forth?

'] Are metrics in place to help balance risk and resources? Can management quickly
target riskier elements of the application to have more testing, thus avoiding risk,
and see which elements of the application are meeting or failing their tests?

[J Are you using production-quality, varied test data that is centrally accessible and
easily usable? Are you also using deliberately illegal data to test boundary
conditions and the application’s handling of errors?

] Do you have a thorough set of test cases? In other words, do you have test cases that
test every possible code path, and test for compliance with every relevant business
requirement? Can you quickly identify business requirements which are not being
tested by a specific test case?

Can any developer or tester quickly access the necessary test data?

Are developers conducting thorough unit tests that are self-contained, and
documenting the results of those tests?

7] Have you planned for functional tests that address every single business
requirement?

If this seems like a lot of work—well, that’s because it is. My experience is that testing—
including test case development, creation of test harnesses and stubs, and so forth—can
easily be as much effort as the programming itself. However, unlike programming—which
pretty much has to be done by human beings—testing involves a lot more repetition and
management, which opens an opportunity for tools to help reduce the amount of human
effort required.

169 MICRO
lai-_dllml&: |:||=|:||:us

Chapter 8

The Role of Tools

['ve already described some of the ways in which tools can help make testing and
requirements tracking easier. There are other features which are commonly available in
requirements-tracking tools which you may find desirable in your environment—use this
list to help construct a sort of “shopping list” when you’re comparing solutions:

e Integration with project management tools, such as Microsoft Project, Microsoft
Excel, and so forth; you may also opt for a solution which has its own built-in project
management capabilities

e Automated generation of test cases based on requirements

e Analysis tools that help you prioritize work and manage trade-offs between
workload and resources

e Role-based security that allows the entire team to participate and have access to
requirements

e Notifications to keep the entire team informed of changes (especially if you are
using an Agile-based development framework, which relies heavily on constant
communications for success)

e The ability to create (or store externally-created) visual models from your
requirements, including process models, flow charts, data flows, and so on

e Reporting to help maintain compliance with industry or legislative requirements

e Change control, so that changes to requirements can be reviewed and rolled back at
any time

You may wonder why I'm discussing these features in this chapter, rather than in the
chapter where I first discussed requirements. The reason is simple: Tools with these
features help automate a process that you generally must master manually. In other words,
you shouldn’t immediately turn to tools to start improving quality. As ['ve written earlier,
you should master the process manually, and then use tools to automate it. There’s another
reason, too: Testing is where requirements sort of meet reality. Yes, requirements should
drive the development process, the design process, and any other phases of the application
lifecycle. But testing is where you prove that those processes have (or have not) been doing
so. Testing essentially represents the end of the software development lifecycle (from
there, the application moves to deployment in most cases), and so testing “closes the loop”
and is your opportunity to make sure you've met your requirements. In my mind,
requirements development and requirements testing are two faces of the same thing; it
makes sense for me to discuss testing tools and requirements management tools because I
truly think they’re just about the same thing.

- 170 MICRO
1€ I:IFEIE:LIE

—

Real

Chapter 8

My students and consulting clients often give me a little push-back about that, often stating
that testing is making sure the application works—and that testing tools, therefore, are
primarily about test data management, testing automation, and so forth. They’re absolutely
correct in that those things are part of what testing is all about—but they’re revealing some
weaknesses in their quality maturity by not more solidly linking testing and requirements.

Of course, testing automation is still extremely valuable in terms of making it easier to go
through all of your test cases, and plenty of vendors offer tools to fill this space. I tend to
organize these into four major feature sets:

Requirements management, which I've already discussed, is responsible for tracking
requirements and (generally) generating and tracking the test cases which will tell
us if the application meets the requirements or not.

Test management, which is responsible for centralizing test plans, test design, and
test execution, often involving a library of re-usable test assets like scripts, data, and
so forth.

Test automation, which actually executes tests against your application’s code. Tools
in this category offer a variety of visual metaphors and workflows to help make
automation easier, because it is in effect a type of programming all on its own.

Test data management, which helps manage sets of test data that can feed
automated test execution.

Note

My goal with the screen shots here are to help you visualize what a tool
might offer. To help remove any vendor-specific focus, I'm cropping these to
focus tightly on the specific element I'm discussing; you'll find that many
vendors adopt similar visuals for specific key features.

In most cases, a given vendor will offer some mix of these capabilities within a single
solution or within a solution suite.

Real

. 171 MICRO
1€ I:IFEIE:LIE

—

Chapter 8
-

In the category of test management, I tend to look for features like these:

e Requirements-driven. Tools should integrate with your requirements management
tools so that you can generate test plans that derive directly from your
requirements. This is an excellent way to help validate the completeness of your
requirements, too: If there are conspicuously-missing test plans, you need to ensure
there are actually requirements to drive them. Figure 8.3 shows how requirements
can be managed, and how you can use the tool to track completion percentages and
other details.

Name |Cnverage (3e) |R|'5k | Te5t5| Passed| Fal'led| Defectsl
= f_§| Requirements Center (2) 100% lgnore 200 189 11 4
& Layout (3) 100% Above Avg 7 7 0 1]
% Help (2) 100% Above Avg i 4 0 0
|5 Detail View Actions Menu 100% Above Avg 12 12 0 0
% Detail View Attachments Actions 100% Above Avg 12 12 0 0
E Detail View Creating Requirements 100% Above Avg 26 25 1 0
[=l I:ﬂ Detail View Deleting Requirements 100% Above Avg 2 2 i] 0

E MT_REQMODO0510 Main Menu and ... 100% High 1 1 0 0

ﬁ MT_REQMOO00530 Project Explore... 100% High 1 i 0

|| Detail View Links Actions 100% Above Avg 10 7 3 0
“| Detail View Right Click Menu 100% Above Avg 7 f 1 0

Figure 8.3: Tracking requirements for an application.

e Risk-driven. Frankly, you can’t ever afford to test as much as you’d like. Good
management tools help you focus on high-risk elements of your application,
concentrating your resources where they’ll do the most good. Figure 8.4 shows how
a tool can help. Here, tests are being allocated by time, with different test loads
scheduled for different categories of risk. At the bottom, the tool indicates how
much coverage this plan offers in terms of hitting all the requirements, helping you
decide where to focus your resources and showing you the potential consequences.

. 172
Realtime CIFochs
PUDISNETS [eadin olution

Chapter 8
-

Optimize: J Risk By Time " Risk By Requirement]
Risk Category # of Tests Selected # of Tests Time (hrs)
Hizh = i {+ 22 7.50
Above fuwg @—@ i @ 2z 6.25
Average @ [1 @ 156 40.50
Bel o d g @@ i @ 0 0.00
Lo = | {+ 0 0.00
lgnare (=3 | {+) 0 0.00
Al Risks =7 = {* 200 54.25
Analyze: J Statistics " Summary " Coverage]
Total # of tests: 4374 Selected # of tests: 200
Rizk index:

Requirementzh T ezt coverage:

- f A

Projected Rizk :Average

Current Rizk :Average Testz erecuted [467% run):

TF'ass rate = 32%

Figure 8.4: Managing requirements based on priority, risk, and other factors.

e Dashboards. A good management tool should provide high-level management views
that help reveal the application’s quality level, what requirements have been tested
and met, what requirements haven’t yet been tested, how much testing is left (and
how long it will take), and so forth.

. 173 i
Realtime CIFochs

publishers

Chapter 8

When it comes to the more detailed task of testing automation, I look for features like
these:

e Test-building should involve as little programming as possible. Visual metaphors like
storyboarding and visual workflow generators should help minimize scripting; they
can rarely eliminate it entirely, but the best tools may be able to test certain
applications without any kind of actual programming. Figure 8.5 shows how a
testing automation tool can help automate information entry and testing by using a
visual test design interface.

34 @ Repeat this loop 2 timeis)
s

&
fe

=3 Enter '‘Purchase TestPartner'

36
a7
38
39
40
41
42
43
44
45

Enter ‘Joe'

Enter ‘Qualityguy’

Enter "ACME Inc'

Enter 'Quality Assurance Manager'
Enter ‘27334 Perry!

Enter Rosevills'

=5

Select Michigan'
Enter '43066"

Select ‘United States'
Enter '313-227=7300"

I B] 2

~SwePramce -

Figure 8.5: Visually designing a test: The application’s GUI is on the left, and the test
steps on the right.

e Support for sophisticated test cases. These should include the ability to make logical
decisions to help test various code paths, to examine the state of the application and
data, and so forth.

e Easy maintenance of test assets. Most testing tools rely on an understanding of
things like database layout, application screen layouts, and so forth. Tools that can
help automatically update this information to accommodate a changing, under-
development application, help these test assets remain viable and usable for longer,
with less ongoing work.

e Scripting support. While you want to minimize the amount of programming you
have to do in order to run tests—programming invariably introduces bugs, and
having bugs in your test suites creates a lot of complexity to worry about—you do
want the ability to manually script tests when needed. This feature is often provided
through proprietary scripting languages, or through more widely-used standards
like Visual Basic.

. 174 MICRO
Ht"(llumt‘ CIFochs

Chapter 8
-

Finally, in the last category of tools we have data management. I discussed the importance
of this earlier in this chapter, and of course it’s an area where good tools can make all the
difference in terms of consistently implementing your data management plans. Good tools
should support major features like these:

e Complete data-level security, so that you can maintain compliance with legislative
or industry requirements that may relate to your test data

e The ability to extract, transform, and load data on demand to set up databases and
other data stores for specific testing scenarios

e The ability to work across many types of data store, including different brands of
database software, different file formats, and so forth

e The ability to generate specific types of common test data, such as customer names
or random ID numbers

e Analyze test data and report on invalid values, uniqueness, and so forth

e Data modification, offering the ability to de-personalize personal information which
may have been taken from a production database, while still maintaining the proper
data formats. Figure 8.6 shows an example of how an application might do this: It
shows potentially sensitive information like customer IDs and names, and specific
“disguise” methods that de-personalize the data.

. 175 MICRO
Realtime CIFGEDS
yublishers e, _

Chapter 8

Field and Disquise Type Selection

Select the fislds to disguase, Next, select the disguise tppe from the drop-down list. Press Next
to procesd.

Record Layout Type Encoding Size
i__l—'._ﬂh' demo customer | .
=< Customerld String Display VAR

I—.E" Field Encryption | | -

& Pazsword String Display VAR
= * NMame ;
— & Address String Display 32

& City String Display 124
—& State String Display

¢ PostalCode String Display M2

- —% BmailAddress String %Disphf '
Disguise Type: " Algortthmic Transiation v
Description:

.:f Exasting Disguise
Status: i-E" Field Encryption
1% Field Decryption
0% |_nokup Translation

Figure 8.6: Disguising data to maintain privacy.

e Data aging, giving you the ability to increment values, dates, and other data
automatically

[tend to find that data management tools fall into two categories: Those which provide a
good feature set across a very broad range of databases and formats, and those which
provide excellent features for perhaps a single relational database management product. In
other words, as you get more specific with the database platform, the data management
tool can offer more specific features. You'll have to look at your data environment and
decide where the right tradeoff is for you.

. 176 P
Realtime sl it

publishers Leading the Evolution

Chapter 8
-

It’s Functional: What’s Next?

Once you've verified the function of your software, and made sure that it has all the
capabilities required, do you need to test anything else?

Absolutely. If you recall from Chapter 5, there are numerous “non-functional”
requirements, chief of which are performance and security. These don’t necessarily impact
what the software does, but they most certainly impact how the software does it, and
performance and security are, in particular, major contributors to what end-users and the
business as a whole perceive as “quality” in an application. We’ll make non-functional
testing the subject of our next chapter.

Download Additional eBooks from Realtime Nexus!

Realtime Nexus—The Digital Library provides world-class expert resources that IT
professionals depend on to learn about the newest technologies. If you found this eBook to
be informative, we encourage you to download more of our industry-leading technology
eBooks and video guides at Realtime Nexus. Please visit
http://nexus.realtimepublishers.com.

. 177
Realtime CIFochs

http://nexus.realtimepublishers.com/

	Chapter 8: Functional Testing—Verifying Quality
	Testing to Requirements
	Test Data
	Deliberate Data
	Production Data
	Managing Data

	Unit Testing
	Functional Testing
	Rethinking Testing
	The Role of Tools
	It’s Functional: What’s Next?
	Download Additional eBooks from Realtime Nexus!

