
(Sponsor Logo Here)

The Definitive Guide To
tm

Exchange
Disaster Recovery
& Availability

Paul Robichaux

Jim McBee, technical editor

Chapter 3

i

Chapter 3: Availability Building Blocks: High Availability and Business Continuance42

What Is High Availability, Anyway?...42

What Is Business Continuance, Anyway? ...43

High-Availability and Business Continuance Technologies ...44

Redundant Arrays of Inexpensive Disks (RAID) ..44

How RAID works ..44

RAID: Pros and Cons...52

Clustering...52

How Clustering Works ..52

Clustering: Pros and Cons..56

Storage Area Networks ..57

How SANs Work ...57

SANs: Pros and Cons...59

Replication and Failover ..59

Design Choices ..60

To Cluster, Or Not To Cluster?..60

SANs ..61

Failover and Failback Design ..62

Planned vs. Unplanned...63

Summary ..64

Chapter 3

ii

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 3

42

[Editor’s Note: This eBook was downloaded from Content Central. To download other eBooks
on this topic, please visit http://www.realtimepublishers.com/contentcentral/.]

Chapter 3: Availability Building Blocks: High Availability and
Business Continuance

In Chapter 2, you learned about some fundamental technologies that can be used for disaster
recovery. Most businesses are more interested in preventing disasters than in recovering from
them. There are several technologies that can potentially raise the availability and service quality
of your messaging systems, and the infrastructure on which they depend. This chapter will
examine some of these technologies and see how you might apply them in your Exchange
infrastructure.

What Is High Availability, Anyway?
Let’s start the discussion of what high availability and business continuance means with a quote
from Marcus’ and Stern’s Blueprints for High Availability (Wiley):

High availability once referred to a fairly specific range of system configurations, usually
involving two computers that monitor and protect each other. During the last few years,
however, it has lost much of its original meaning; vendors and users have co-opted the
term to mean whatever they want it to mean.

On its face, this sounds about right; different hardware and software vendors have vastly
different definitions of what “high availability” actually means. So do administrators; if you
think back to preceding chapters’ discussions of RTO and RPO, it should be fairly clear that, say,
the New York Stock Exchange and a local doctor’s office probably have different definitions of
how much uptime is required to be “highly available.” For the purposes of this guide, we’re
really more interested in talking about resiliency, or the ability of a system to survive failures or
malfunctions in individual components. In general, you can fairly say that a highly resilient
system will deliver high availability because its resiliency increases its resistance to unplanned
downtime.

For example, suppose that the magic number that defines a high-availability system is an uptime
level, excluding planned downtime, of 99.9 percent or higher. 99.91 percent and you’re in; 99.0
percent and you’re out (after all, there’s almost a 3-day difference between 99.0 percent and 99.9
percent!). This level might seem low, but it’s a realistic starting point. The goal in this chapter,
then, will be to identify technologies that may help you provide at least 99.9 percent of planned
uptime in your environment. Most of the methods that you can use to provide high availability
for your Exchange infrastructure are technical in nature, and we’ll be discussing them in the rest
of this chapter.

http://www.realtimepublishers.com/contentcentral/

Chapter 3

43

What Is Business Continuance, Anyway?
The definition of business continuance is a little less amorphous than the one for high
availability—business continuance is the ability to keep critical business operations going during
an outage or disaster and the ensuing recovery. The variables in this definition involve time and
money: how long does it take you to resume operations, and how much money does it cost to do
so? The preceding chapter talked about RTO and RPO as ways to specify how long recovery
operations may take; you can think of a switch to business continuance-based operations as
another type of RTO. Although it’s not a standard industry term, this chapter will use the term
continuance time objective (CTO) to represent the time it takes to fail over from conventional
operations to business continuance operations.

The methods by which you can implement business continuance span a wide continuum of cost
and effort. They tend to fall into a few distinct categories:

• You can keep offsite backups, then move, carry, or ship them to a remote office where
you already have staff and hardware available. This option is the least costly, but it tends
to have a higher CTO because you can’t resume normal operations until you get your
backups to the remote site and get them loaded.

• You can use software or hardware replication to copy your critical data to an alternative
server at a remote office. Although adding replication costs more (a lot more if you’re
using hardware replication), this method cuts the CTO because the data you need at the
remote site will be up to date already. As a bonus, many replication solutions include
scripts or tools to automate the process of failing operations (and clients) over to the
continuance system.

• You can use either of the previous approaches, but with a third-party business continuance
provider such as SunGard or IBM Global Services. How much does this option cost?
That’s up to you and your sales representative! The prices these firms charge vary widely
according to your CTO and what optional services you want included, so there’s no way
to give even an estimate here—except to say that, as with most other IT outsourcing
services, you may find in the end that the cost outweighs the actual value.

• You can use dispersed clustering (also known as stretched clusters, or by EMC’s
trademarked term “geo-clusters”) to widely separate your cluster nodes. Dispersed clusters
are, technically speaking, very cool. They are also expensive, and they require a great deal
of specialized knowledge to operate.

• You can maintain your own separate parallel operation, using replication to keep multiple
intra-day copies of your data at a fully staffed, ready-to-go remote site. This method is
essentially what some large operations, such as the New York Stock Exchange and the US
Space Command, use to ensure that their CTO is as short as possible. However, as you
might expect, this option is usually the most expensive because it essentially involves
duplicating every aspect of your computing environment and the people who maintain and
operate it.

Chapter 3

44

The missing ingredient in all of these categories is the process you use to implement business
continuance. With high availability, one of the key ideas is that you can buy high-availability
technologies and get their benefits without necessarily changing your processes. With business
continuance, you’re buying into a wholesale set of process changes as part of the entry cost;
without making those changes, you won’t be able to realize the full benefit of your business
continuance investment. As the next chapter will explore, improving your high availability and
business continuance processes can often do more to improve your uptime, and shorten your
CTO, than anything else.

High-Availability and Business Continuance Technologies
The technologies available to implement high-availability and business continuance solutions are
pretty fascinating. They also tend to be complex and expensive, which is to be expected given
what they do. This section will examine critical technologies and discuss their applicability to
high availability and business continuance. Chapter 2 covered the basic technologies that you can
use to improve the disaster recovery capabilities of your organization; this section will examine
the technologies that you can apply to provide better high-availability and business continuance
support.

Redundant Arrays of Inexpensive Disks (RAID)
At the time of its invention in the early 1980s, the idea behind RAID was pretty radical: use a
specialized controller and a set of relatively cheap, dumb disks to provide data protection—and
thus higher availability—without the expensive, support-intensive infrastructure then common in
mainframe and minicomputer implementations. As you can imagine, this idea caught on quickly,
and now RAID is common in even low-end server hardware from major server manufacturers. A
variety of third parties sell RAID controller cards that you can add to existing systems, and
server versions of Windows include their own software RAID implementation that you can use
to provide some types of RAID in lieu of, or as a supplement to, additional hardware.

How RAID works
RAID is a familiar acronym to most systems administrators, but a surprising number of people
don’t know how it actually works or where the implementation tradeoffs are. The first important
thing to understand is that there are several different RAID levels, each of which trades off
capacity utilization, performance, resiliency, recoverability, and cost. There is not really a linear
relationship between these tradeoffs and their associated numbers, especially because there are a
number of levels that don’t offer enough performance, cost reduction, or resiliency to make them
worth implementing (heard of RAID-4 on a server lately?) However, some RAID levels are
better suited for Exchange than others. In the following discussion, let’s assume that we’re
talking about a single logical volume built with the RAID level under discussion.

Chapter 3

RAID-0/Striping
Let’s start with the first RAID level, which is also one of the simplest: RAID-0, or striping (see
Figure 3.1). The idea here is simple: the logical volume is built so that a portion of its data is
stored on each physical disk in the volume set. The stripe size (a term you’ll see again
throughout this book) refers to the amount of data written as a chunk on each physical disk. Data
to be written are evenly distributed across the physical disks in the stripe set. You must have at
least two disks to have a RAID-0 volume, but you can add any number of additional disks. Let’s
assume that you have three disks with a 64Kb stripe size (the default for most Windows-based
RAID implementations). A 62Kb chunk of data would be written as a single chunk on one disk.
A 250Kb chunk would be written as a series of six 64Kb chunks, two on each of the disks in the
stripe set. The performance advantage is obvious: as the six writes required are distributed across
three physical disks, writing is (roughly) three times faster than writing to a single disk. In
addition, RAID-0 provides effective utilization, because no space is wasted on parity or
redundancy. Striping is simple to implement, too.

Figure 3.1: RAID-0 distributes data across multiple disks.

45

Chapter 3

46

Of course, there is one glaring problem: RAID-0 doesn’t provide any redundancy or resiliency. If
one of the drives in the stripe set fails, you lose access to all the data in the stripe set. Thus, it’s
best used to provide storage for services that hold data of transient value. In the broader industry,
you’ll often find RAID-0 implementations used for video editing and streaming; for Exchange,
you’re likely to see this configuration used only for SMTP queues, and even then only on fairly
busy servers. Its lack of redundancy makes RAID-0 wildly inappropriate for use with Exchange
mailbox databases, even though the write performance and efficient space utilization would be
most welcome.

RAID-1/Mirroring
Striping doesn’t offer any redundancy, but RAID-1 (better known as mirroring) offers it in
capital letters. As Figure 3.2 shows, RAID-1 mirrors data by taking data written to a primary
volume, or plex, and writing the same data to additional physical volumes. (Windows, and most
hardware RAID implementations, limit you to two plexes, so that is what we’ll discuss here.)
The plexes in the mirror set are treated as a single logical volume. This setup introduces a
performance tradeoff; to write a given block of data, you have to do twice as many writes as with
a single disk (which may or may not make a real performance difference, depending on how fast
the disks are), but you can read it back twice as fast. Thus, at least from a performance
standpoint, mirroring works better for applications with more reads than writes, and for I/O
patterns that involve more sequential than random accesses. (You can mitigate this impact by
putting the two mirror halves on separate disk controllers, provided that your RAID
implementation allows doing so, but that adds expense and complexity.)

Chapter 3

Figure 3.2: RAID-1 mirrors data from a primary volume onto one or more secondary volumes.

Of course, the resiliency benefits of RAID-1 are more often cited as justification for using it. If
you lose one of the disks in a RAID-1 set, you can replace it and easily rebuild the mirror set by
copying data from the remaining disk. Most controllers, and the Windows software RAID
implementation, do so automatically. This action makes RAID-1 well suited for storing
Exchange transaction logs, which are always written to sequentially. In fact, Microsoft
recommends the use of mirroring for transaction logs and the system boot volume.

Mirroring does have a significant drawback: it provides resiliency but not redundancy. If the data
you write to one disk is corrupt or incorrect (say, because you accidentally ran a file-based
antivirus scanner on your transaction logs), the corrupted data will automatically be mirrored to
the other disk. Mirroring systems almost always involve disks in close physical proximity, too,
so if you lose one of the disks, you’re likely to lose the other. That’s why replication-based
solutions are so popular; they give you an easy way to combine the resiliency of mirroring with
remote redundancy.

47

Chapter 3

RAID-5/Striping with Parity
Striping offers great performance, but it’s fragile because the loss of any disk of the stripe set
means you lose access to all the data therein. RAID-5, also known as striping with parity,
attempts to solve this problem by calculating redundancy data when data is written, then
distributing it across the disks in the logical volume, as Figure 3.3 shows.

Figure 3.3: RAID-5 mixes data and parity to provide fast I/O and good recoverability.

RAID-5 sets must have at least three identically sized physical drives. Unlike RAID-0, some of
the space of the physical drives in a RAID-5 set is consumed for redundancy; this consumption
has the effect of reducing the available storage by an amount equivalent to the capacity of a
single disk. For example, if you build a RAID-5 set of 5 400GB drives, the actual usable capacity
is 1.6TB—the other 400GB is used to hold redundancy data. However, the parity data is
distributed across all the disks in the array; there’s no “parity disk” because putting the
redundancy data on a single disk would introduce a single point of failure for the entire array.

The parity calculation is a simple exclusive-OR (XOR) operation of all the blocks in a stripe set.
The use of XOR allows any single disk block in a group to be reconstructed from the others; for
this reason, RAID-5 arrays can tolerate the loss of a single drive without losing data. It’s
important to remember, though, that during the time that the missing drive’s contents are being
reconstituted, the array’s performance will be significantly slower than usual.

48

Chapter 3

49

Parity is generated when a write occurs. For example, say you’re writing a 300KB chunk of data
on a five-disk RAID-5 array with a 64KB stripe size. Thus, there are 5 blocks of data, so each
drive gets a single chunk, and one drive (chosen by the controller) gets the parity block for that
set of data blocks. If any of the data blocks are lost, the remaining blocks and the parity block
can be combined to reconstruct the bytes in the missing data block. It’s critical that the parity and
data be kept consistent. If the parity block doesn’t match its corresponding data blocks, it won’t
be possible to recover those blocks. For that reason, the parity has to be recalculated any time a
single block in a data set changes—and that means that the existing blocks have to be read so
that the newly written data will have correct parity information. This read-modify-write cycle is
handled invisibly by the controller, which is why server RAID controllers typically include a
battery-backed non-volatile RAM (NVRAM) cache on the controller card.

Of course, the most common reason for a reconstruction is because a disk has failed. Most
hardware RAID-5 implementations make provisions for spare drives (hot spares) that can be
automatically or manually used to replace a failed disk. One thing to watch out for in RAID-5
arrays is that the array data is vulnerable to a second disk failure while the array is rebuilding—
most RAID-5 controllers can only handle failure of a single disk. When are disks most likely to
fail? When they’re being exercised strenuously—which is just what happens during an array
rebuild. To compound the problem, if your array is set to automatically swap in a hot spare disk
to replace a failed one and you don’t notice that this has happened, when you lose a second drive,
you may find your array suddenly useless! Be sure to keep a close eye on the status of your hot
spares.

RAID-0+1/Mirrored Stripes
RAID-0+1 combines mirroring and striping; data on the logical volume is striped across multiple
physical disks to make an ordinary stripe set. That stripe set is then mirrored to another set of
disks, giving a configuration like the one that Figure 3.4 shows. RAID-0+1 has the advantage of
providing terrific I/O throughput, as both reads and writes are distributed across multiple
spindles. In fact, with a suitable controller, reads can be up to twice as fast as a single mirror set
because the controller can simultaneously read from both sides of the mirror.

Chapter 3

Figure 3.4: RAID-0+1 combines mirroring and striping.

However, there’s a problem with RAID-0+1: it offers the same fault tolerance as RAID-5, but
it’s much more expensive. You can lose a single drive from either half of the mirror, at which
point all the data on that side of the mirror becomes unusable. If you lose one drive from side A,
then lose one drive from side B before side A is completely rebuilt, you’ve just lost the whole
array! Worse still, RAID-0+1 is very expensive because you have to build out both sides of the
mirror. It’s commonly found in applications such as prepress imaging servers, where
performance is more important than anything else, but it’s not really suitable for use with
Exchange.

RAID-10/Striped Mirrors
Although it’s easy to do, don’t confuse RAID-0+1 with RAID-1+0 (or RAID-10). The only thing
they have in common is the presence of the numbers “1” and “0” in their names. RAID-0+1 is a
mirrored pair of stripe sets, and RAID-10 is a striped pair of mirrors. Figure 3.5 shows what this
design looks like; admittedly, it’s a bit confusing, but the basic idea is simple enough. Instead of
using individual disks in a stripe set, RAID-10 uses mirrored pairs of disks. This setup provides
the effective I/O performance of striping with the resiliency of mirroring.

50

Chapter 3

Figure 3.5: RAID-10 combines mirroring and striping, but in a different manner than RAID-0+1.

If you lose a single disk from a portion of the stripe set, you’re still OK because the other disk is
protecting you against losing the entire stripe set. In fact, you can lose one disk from each
portion of the stripe set and still continue normal operations; the only event that can cause data
loss is a failure of both disks in a stripe portion, or a failure of the controller itself. Because both
of these are unlikely, RAID-10 gives excellent protection.

There’s an associated cost, of course; let’s say that you wanted to build a 1TB array for your
Exchange data. You could use 5 250GB disks in a RAID-5 array, but to get the same storage in a
RAID-10 array you would need 8 disks, arranged as four pairs. In other words, you would have
to spend 62 percent more on disks to get the same amount of storage. However, because RAID-
10 provides better write and read performance than RAID-5, with equal or better resiliency, it’s
very well suited for Exchange provided you can absorb the extra disk cost. Microsoft
recommends the use of RAID-10 for Exchange databases when the individual disks in use are
larger than 18GB, although I’m not sure where they got the 18GB limit.

51

Chapter 3

52

RAID: Pros and Cons
Most of the time, there are legitimate tradeoffs for high-availability, business continuance, and
disaster recovery technologies. Such is not really the case with RAID; the question isn’t whether
you should be using RAID, but rather which RAID level you should be using. In general, I don’t
recommend the use of low-end RAID with Exchange, which includes Windows’ built-in RAID
software and cheap PCI cards that provide RAID-like mirroring and striping. For a RAID
implementation to be useful and safe, it needs to have a controller with onboard cache, and that
cache needs to have a battery backup. (Bonus points if you can remove the cache SIMM and put
it into another identical controller; that helps insulate you against controller failures.) Table 3.1
summarizes recommendations for the use of various RAID levels.

RAID Level Recommended Use

0 (striping) Use for striping the SMTP queue volume on busy gateway machines; not
appropriate for other Exchange use

1 (mirroring) Microsoft recommends using mirroring for transaction log volumes and the system
boot volume; don’t use it for databases

5 (striping + parity) Commonly used for databases because it provides good resiliency and redundancy;
worse performance than RAID-10, but somewhat cheaper

0+1 (mirrored
stripes)

Don’t use for Exchange, and don’t confuse it with RAID-1+0

1+0 (striped
mirrors)

Great for use with Exchange databases; excellent performance, resiliency, and
redundancy, but costs more than RAID-5

Table 3.1: Recommended use of RAID levels.

Clustering
Before we begin a discussion of clustering, a vocabulary clarification: please don’t confuse a
server cluster, which combines multiple independent computers to provide failover capability,
with a network load-balancing cluster, which distributes incoming traffic between multiple
machines. Microsoft’s network load-balancing team persists in using the term “cluster” to refer
to an aggregate set of NLB machines, and that’s not what we’re talking about here.

How Clustering Works
With that said, what is a cluster? Microsoft defines it as a cooperating group of nodes that share a
group of cluster resources. There are several types of resources, ranging from network names and
addresses to Exchange virtual servers. The cluster software, which runs on each node, takes care
of moving resources between nodes as necessary when a node fails or an administrator requests
failover. The key Exchange resource we’re interested in is called an Exchange Virtual Server
(EVS); you can think of it as a complete bundle of everything clients need to get access to mail
data. Each EVS contains, at a minimum, a network name, an IP address, one or more physical
disks, and an Exchange system attendant resource. Depending on what the server’s doing, the
system attendant may create other resource instances, such as mailbox or public folder databases,
SMTP and HTTP servers, a message transfer agent, and a routing engine.

Chapter 3

Individual resources can move from physical server to physical server, but the primary method
of moving resources is to group them into cluster groups. The EVS is a type of cluster group;
clients connect to an EVS and treat it just like a physical Exchange server, except that at any
time the EVS can be moved to another physical node in the cluster.

Windows implements what’s known as a shared-nothing cluster: any cluster node can potentially
own any of the resources in the cluster group, but each resource can only be owned by one server
at a time. For example, if you’ve created a logical disk volume for a storage group and its
transaction logs, that volume can only be accessed by one cluster node at a time. When a
resource transfers to another node, we call that a failover. Failovers may be triggered by manual
administrator action or via the cluster software when it notices a failure.

Failovers are coordinated by the use of a quorum resource, which is basically a disk volume that
contains state information about which nodes are in the cluster and who owns which resources.
In the event of a failure, a surviving cluster node can take control of the quorum resource and use
it to orchestrate a failover.

Figure 3.6 shows a typical 4-node cluster. Microsoft recommends keeping at least one passive
node in the cluster, so the cluster shown in the figure has active EVSs on nodes 1, 2, and 3. If
any of these nodes fails, its EVS will automatically fail over to node 4. In fact, node 4 could
potentially accept the EVSs from all three of the other nodes, although performance would suffer
quite a bit.

Figure 3.6: A conventional server cluster relies on the shared quorum disk.

53

Chapter 3

This seemingly ordinary design hides a serious problem: if the storage system that maintains the
quorum fails, or if the volume on which the quorum resides is damaged, the entire cluster can fail
because it becomes very difficult for the remaining nodes to determine which node is in charge.
In his landmark book In Search of Clusters, Gregory Pfister dubbed this occurrence “split-brain
syndrome,” and it’s definitely something to be avoided. The best way to solve this problem is to
not have a single quorum. Instead, use majority node set (MNS) clusters decentralize the quorum
so that each cluster node has its own local copy, which is synchronized with other copies, as
Figure 3.7 shows. (MNS clusters are still relatively rare because the addition of quorum
synchronization makes them more complicated than ordinary clusters.)

Figure 3.7: MNS clusters don’t use a single shared quorum.

Both of these configurations require that the OS, and applications running on it, be aware that
they live in a cluster. Of course, Exchange 2000 and Exchange Server 2003 are both cluster-
aware, so if you install them properly on a cluster node, they can take advantage of the cluster’s
existence. Exchange 2000 doesn’t support the use of MNS quorums, and its failover mechanism
is considerably slower than the Exchange Server 2003 version.

54

Chapter 3

55

Cluster Failover

Speaking of failover: here’s how it works. Manual failovers can be initiated by the administrator at any
time via the Windows cluster management MMC snap-in. When you move a resource from one node to
another, that action constitutes a failover. You might do so to allow for planned maintenance or hardware
upgrades, for example. The more interesting situation is that of automatic failover, because that’s the
primary feature that clustering offers in exchange for its complexity and expense.

Each cluster node is connected to the other nodes via a dedicated network interconnect. This
interconnect is used to send (and receive) UDP-based “heartbeat” notifications that indicate that each
cluster node is still powered up and participating in the cluster. If the notifications from a given node stop,
the cluster service assumes that the node has failed, and another node will seize its resources and begin
offering service with them. (You can see the obvious problem if the “failed” node isn’t really dead!) The
allowed targets for a failover are set by a failover policy, so you can specify which individual nodes should
pick up work from other failed nodes.

There is a second layer of failover awareness built-in to Microsoft’s clustering solution. In addition to the
machine-level heartbeat system, which indicates whether a node is awake and connected to the network,
the cluster service provides for a way to monitor the health of an individual resource: the IsAlive call. For
Exchange, individual resources are checked with IsAlive every 10 seconds; if an IsAlive call fails, the
associated resource can be failed over. Different services have their “aliveness” checked in different
ways; for the Exchange system attendant, routing engine, and MTA stack service, the cluster resource
manager queries the Windows service control manager to determine whether the services are running;
for the information store, the resource manager makes an RPC request basically asking “are you alive?”
SMTP, POP, IMAP, and HTTP are tested by making queries to their respective ports. If one of these calls
fails, the resource manager will decide that the associated resource has failed, and it will initiate a failover
of that resource and any resources it owns.

You might find it interesting to know what takes up the largest percentage of time during a failover. In
almost all cases, the most time-consuming part of the EVS failover is replaying the transaction logs for the
storage groups on the EVS that failed over. The actual failover operation itself can be very quick—less
than a minute in some cases—but having to replay large numbers of log files will kill your failover
performance. (To fix this, you can adjust the number of log files kept on the servers, but doing so is only
advisable if you know what you’re doing in great detail).

One additional type of clustering deserves mention: geographically dispersed or “stretched”
clusters. These look like ordinary clusters, except that the distance between nodes can be
kilometers instead of mere meters. These clusters are typically implemented by using dedicated
fiber-optic network links that provide extremely high bandwidths and low latencies (in fact,
there’s a practical limit of about 100Km between cluster nodes, imposed by the time it takes light
to travel that distance). Remarkably enough, Exchange doesn’t have to know, or care, that the
underlying cluster is dispersed; as long as I/O latency stays low enough (that is, as long as disk
writes finish in less than about 500ms) the cluster can operate normally. However, as the
distance increases, so does the latency, which means the number of users you can support per
node decreases. Between that restriction, and the insanely high cost of the communications
infrastructure required, these clusters tend to be the province of organizations with an extremely
large IT budgets and extremely high and well-justified uptime requirements.

Chapter 3

56

Clustering: Pros and Cons
Clustering is often presented as a magic bullet for high availability. It’s not. Having said that,
there are some things that clustering does very well. Appropriately sized, planned, and deployed,
Exchange clusters give you:

• Protection against single points of failure on individual cluster nodes. For example, if the
motherboard fails in one of your cluster nodes, its EVS will fail over to another node and
you’ll continue working normally.

• A good combination of scalability and resiliency. Because you can put as many as 8 nodes
in an Exchange Server 2003 cluster, with the right hardware, you can host thousands of
users with fairly robust protection against failures.

• Seamless failover. In a properly administered cluster, users need never know that anything
untoward has happened when a failover occurs. This benefit is the number one reason
clusters are widely deployed; most administrators love the idea that their users can keep
working during a failure without flooding the Help desk and IT staff with trouble reports.

• Invisible downtime. Combining Outlook 2003’s cached Exchange mode with clustering
gives you more or less invisible downtime—if you have a failover, Outlook insulates
users from noticing the disruption.

• A very useful way to deploy rolling upgrades or patches, even during normal business
hours. This functionality is a very useful capability, not least because it gives you a way to
deploy Windows and Exchange hotfixes and service packs with minimal interruption of
service.

Clustering has some pretty significant negatives, too, that make it inappropriate for many uses.
The following list highlights these drawbacks:

• It’s expensive. A 4-node cluster can cost significantly more than a deployment using
identical hardware as standalone servers. Why? Shared storage is an obvious factor,
because it tends to be considerably more expensive than normal direct-attached storage.
You also need to add on the cost of the cluster interconnects themselves, plus the cost of
cluster-aware versions of whatever antivirus, antispam, and backup tools you’re using.
Then factor in the inconvenient reality: your 4-node cluster can handle only the same
amount of active users as three similarly configured servers, so you’re essentially paying
for an extra server (and its power, and its licenses, and so on) as a protective measure.
That’s not always a good investment.

• It’s demanding. You really have to know your stuff to set up and run an Exchange cluster.
Exchange itself pretty much works the same way on clustered and unclustered systems,
except that some components (such as the Exchange Intelligent Message Filter) aren’t
cluster-aware. In particular, shared storage systems based on Fibre Channel or shared
SCSI tend to be somewhat finicky by comparison to DAS, and the skills and knowledge
needed to manage shared storage take time to develop.

Chapter 3

57

• It’s not perfect protection. Clustering doesn’t protect you against many common failure
modes. For example, it doesn’t do much to protect against administrator errors (the largest
single source of cluster failures, in fact), and—barring the use of geographically dispersed
clusters—it won’t protect you against physical damage to the cluster nodes themselves,
nor does it do anything to protect you against data corruption.

The key to deciding whether clustering is appropriate for your environment is simple. Ask
yourself two questions:

• What does downtime cost you

• How much downtime would clustering prevent in your environment?

A general recommendation is that, unless you can reliably hit 99 percent uptime or higher
without clustering, you should probably work on raising your uptime through other methods
before implementing clustering.

Storage Area Networks
Storage area networks (SANs) are designed to make storage fungible. With DAS, disks are tied
to individual servers, so it’s not feasible to reallocate storage among machines. In addition, the
capacity of individual servers is limited to the number of directly attachable storage devices. For
example, in a typical 2U rack-mount server, you can install four to six internal drives—if you
happen to need more storage than that arrangement gives you, you’ll have to add an external
enclosure. In addition, if you have one server with excess disk space, you can’t easily move it to
another server where you need additional space, and you have to back up and maintain it on each
individual server.

SANs offer a remedy to these shortcomings. Instead of attaching storage to individual
computers, you put lots of physical disks into a SAN, which can then be accessed by multiple
machines at once. The SAN controller and enclosure provide services including hardware RAID
and the ability to reassign logical volumes from one host to another. In theory, by using a SAN,
you can pool all your storage and allocate it to the applications that need it; if you run low on
Exchange storage space, you can easily reallocate physical disks from the storage pool and
dynamically extend the Exchange volume without any downtime. In addition, by their nature,
SANs are intended to be shared, which makes them well-suited for deployment with clustering
technology.

How SANs Work
Storage management requires a fair amount of intelligence; in DAS systems, or even in basic
shared storage systems, this intelligence is embedded in the disk controllers of the local systems.
SANs move that intelligence to a centralized storage controller. Individual computers that attach
to the SAN are actually communicating with the SAN storage controller, and the device (known
as a host bus adapter—HBA) that attaches hosts to the SAN can be thought of as a sort of
specialized network card. The HBA, its BIOS, and its drivers are responsible for presenting SAN
volumes to Windows so that they look like any other kind of disk volume. As far as Windows is
concerned, a SAN volume should look and work just like any other; this seamlessness enables
some interesting capabilities, including the ability to boot servers directly from a SAN volume (a
process known as SAN booting).

Chapter 3

58

There are two primary interconnect methods used for SANs:

• Fibre Channel is an arbitrated command protocol that can be carried over optical fiber or
copper cabling. Fibre Channel SANs can be constructed using point-to-point, loop, or
fabric topologies; fabrics are the most flexible, but they require the use of specialized
Fibre Channel switches to interconnect SAN hosts and devices. The switch’s job is to
enable any two devices to have a direct connection, in exactly the same way that an
Ethernet switch enables full-speed communications between two devices on a shared
medium.

• iSCSI essentially encapsulates SCSI commands in TCP/IP packets; instead of using Fibre
Channel to interconnect SAN devices and hosts, every device in an iSCSI SAN appears
just to be an ordinary network device. Although in theory you could slap iSCSI devices
on your existing network, for security and performance reasons, all major iSCSI vendors
recommend that you use a dedicated network for iSCSI traffic. Having said that, Gigabit
Ethernet HBAs, switches, and so on tend to be much less expensive than the
corresponding Fibre Channel components.

In either case, the SAN controller is in charge of marshaling data for the disks in the SAN and
presenting those disks as an appropriate set of logical volumes. The controller is also responsible
for accepting arbitration requests to ensure that only one computer at a time is attached to a given
logical volume. This single ownership is absolutely critical to using clustering with SANs
because the ability to safely change the ownership of a logical volume from one host to another
is fundamental to failover.

Of course, the architecture I’ve just described has one important flaw: it doesn’t provide any
additional redundancy beyond what you could implement with an effective RAID controller and
DAS; in fact, it’s less redundant because multiple servers share a common storage pool. The
solution to this problem is fairly straightforward: add more redundancy. Current SAN hardware
has multiple controllers, and it’s common to put multiple HBAs in each host with each HBA
connected to a different switch. This setup eliminates the single points of failure of the HBA and
SAN switch (notice that you can design a topology such as this using either Fibre Channel or
iSCSI). Windows Server 2003 (WS2K3) includes multi-path SAN drivers that can dynamically
fail over work between HBAs in the same machine. For extra protection, you could add a second
SAN and replicate data to it using either hardware or software replication.

It’s important to note some of the differences between Fibre Channel and iSCSI SANs. In brief,
Fibre Channel SANs tend to offer better performance at a higher total cost. Currently, top-of-the-
line Fibre Channel hardware can run at 4Gbps, which is roughly four times faster than Gigabit
Ethernet, the best-performing medium available for iSCSI. As you might expect, this difference
has a significant impact on observed SAN throughput; it doesn’t hurt that many Fibre Channel
SANs use purpose-built disk drives that use integrated Fibre Channel interfaces instead of more
conventional SCSI or ATA flavors.

This is not to say that iSCSI SANs don’t perform well themselves; by dedicating Gigabit
Ethernet connections between each host and the iSCSI SAN device, and by adding an
appropriate number of spindles, you can get excellent performance for considerably less money
than an equivalently sized Fibre Channel array.

Chapter 3

59

SANs: Pros and Cons
SANs offer an exciting potential: put all your storage on a SAN, and any server can access it,
with easy manageability and the ability to quickly reallocate storage resources to wherever
they’re needed. With smart SAN management software, you can even watch the SAN to see
which physical disks are handling the largest volume of disk I/O requests, then spread their data
to other disks to ease the load. Along with that, a properly designed, implemented, and managed
SAN can deliver terrific performance, driven by high disk spindle counts and extremely efficient
disk controllers. In addition, they offer a high degree of redundancy and excellent resiliency.

However, these advantages come at a price. SANs aren’t for the faint of heart or the tight of
purse. If you want the flexibility and redundancy they offer, you’re going to have to pay for it,
one way or another. This cost takes two primary forms. First is acquisition cost. SANs cost much
more than equivalently sized DAS systems. The controllers, enclosures, and so on are just part of
the difference; because HBAs are required (and in many designs, so are switches) there’s a fair
amount of ancillary hardware that you have to budget for. Second, once you’ve bought a SAN
you’ll find that the initial cost is only the beginning. Most SAN vendors either require or
strongly encourage you to purchase support and maintenance contracts. You’ll probably want
SAN management software, and you’ll certainly need to make sure that your administrators are
well-trained on SAN administration tasks—and that often means a smaller version of the SAN
installed for test and training use.

Understand, too, that these additional costs are just for the basic stuff: hooking up hosts to the
SAN so that they can share its disks. If you want to add capabilities such as geographically
dispersed cluster nodes or hardware-based replication, expect the cost and knowledge
requirements of your deployment to escalate significantly. As with clustering, the general
recommendation for SANs for most organizations is that they shouldn’t even be considered for
deployment until the basic high-availability and disaster recovery measures described earlier in
this book have already been taken.

Replication and Failover
Replication itself is a useful way to safeguard the data on a server. However, by itself it doesn’t
provide service availability; once the data’s been replicated, you still have to do something to
make that data useful on the target server. Chapter 2 talked about replication as a disaster
recovery technology. Most Exchange administrators see it in that light, but word is starting to get
out: replication can be a terrific way to implement some advanced business continuance
capability without jumping feet-first into a complete multi-site business continuance deployment.

The goals and design considerations for a business continuance-based replication deployment are
similar to the ones discussed in Chapter 2 for disaster recovery-focused deployments: you have
to ensure that there is sufficient bandwidth to replicate data between the source and target, and
you must take measures to ensure that the replicated data are consistent. This latter requirement
assumes extra importance for business continuance-driven replication. For disaster recovery, you
can always fall back to tape if necessary, but in a situation that calls for your business
continuance procedures to be activated, there may not be a tape backup available.

Chapter 3

60

It’s not necessary to rehash the discussion of how replication works. However, it’s worth talking
about how failover can be implemented. Windows cluster failover can be automatically triggered
by a resource failure or manually triggered by an administrator; thus, it is with
failover/replication solutions. The same basic set of resources needs to fail over: you need
network identification data (a network name and IP address) so that clients can find the correct
server after the failover, you need to update DNS records that point to the failed server so that
mail can be delivered to it, you need the Exchange data itself (which is moved by replication),
and you need a method to let clients and Active Directory (AD) peers (such as other Exchange
servers) know that work has migrated over to the target server.

In general, the best way to make this happen is to update AD and DNS to indicate the presence
of the new server, then update the clients so that they point to the new server, much as they
would during a mailbox move. One of the primary differentiators between replication products
for Exchange is how easy they make this process. Some products require you to write and run
your own failover scripts; others can handle the server failover automatically, but require you to
manually update client information to “notice” the new server. The best products can
automatically update everything required for a client to find a given user’s mailbox server.
Updating the homeMDB attribute for each user whose mailbox was on the failed server will
automatically point MAPI clients to the correct server when they connect, so that’s the preferred
solution. Outlook 2002 and later are smart enough to handle the sudden disappearance and
reappearance of a failed Exchange server, whether you’re using clustering or replication. With
earlier Outlook versions, you’ll probably have to quit and relaunch every client—but you’d have
to do that with a Windows cluster solution, too.

Design Choices
Once you make the decision to implement business continuance and high-availability features,
the design aspects of your solution take on great importance because the amount of capacity you
design in will directly affect the purchase and maintenance cost of your deployed solution.

To Cluster, Or Not To Cluster?
As I mentioned earlier, clustering offers some key advantages in the right circumstances. The
trick to determining whether clustering makes sense for you is to dispassionately assess your
environment to determine whether clustering is appropriate, or if you should be spending your
money on more basic technologies first. The basic questions I recommend asking include:

• What downtime causes are we trying to protect against? Clustering helps protect against
some specific single points of failure, and it makes rolling updates easier. However, there
are other, more basic, single points of failure that you need protection from before you
spend money on clustering.

• What are my actual uptime requirements? If you only need 10 × 5 operations, there’s not
much point in paying for clustering’s 24 × 7 level of availability.

Chapter 3

61

• What is our organization’s level of knowledge? If, as an organization, you’re not already
comfortable administering Exchange and Windows, clustering is only going to bring you
heartbreak.

• Should I combine clustering with other technologies? Many sites find that the one-two
punch of clusters and SANs gives them superior flexibility in their disaster recovery and
business continuance environments; others find that the ideal mix for their circumstances
includes replication too.

For most organizations, the answers to these questions argue against using clustering. For them,
the entry cost is too high for the benefits to be gained. If you have high uptime requirements that
you can justify based on your business requirements, and if you have (or can get) the necessary
skills to keep your cluster healthy and happy, it can be a very useful addition to your
environment.

SANs
The argument in favor of SAN technology is less ambiguous than for clustering, even though the
two technologies share some common difficulties. Both are relatively expensive, and both
require a good deal of specialized knowledge to use effectively (and safely!). Compared with
clustering, though, the benefits of SANs are clearer. A properly designed SAN will give you:

• Better performance. Assuming that you put enough physical disks in your SAN and that
you allocate them properly, SANs can put up some eye-popping performance numbers. Of
course, you must be very careful when designing and implementing your SAN to follow
good design principles (which Chapter 5 will talk about in more detail). For example, if
you put your transaction logs and databases onto a single logical SAN volume, don’t
expect the same throughput that you would get if you separate them.

• Multi-node cluster support. Conventional 2-node clusters can use shared SCSI, and many
do. However, for 3-node (or larger) clusters, SANs are preferable because they provide
more stability and better performance.

• More flexibility. The ability to quickly add or reallocate storage without interrupting
normal operations is a real blessing, as is the ability to move SAN volumes between
servers. Depending on the kind of SAN you buy, you can choose between the vendor’s
hardware replication solution and host-based software replication, and most SANs now
provide some degree of support for Microsoft’s Volume Shadowcopy Service (VSS).

• Better high-availability and business continuity capability. SANs offer the promise of
significantly better availability than DAS installations, along with support for technologies
(such as VSS) that give you a better platform for building highly available Exchange
solutions. Even without third-party products, SANs give you more options. To cite one
example, if a server fails but your data’s on the SAN, you can just move the data volume
to another host and import it into a recovery storage group.

• SAN booting. One very useful SAN feature is being able to put everything the server
needs—including the OS—onto SAN volumes. Thus, individual servers essentially
become disposable; if one fails, just pop another one in its spot and let it boot from the
SAN.

Chapter 3

62

Of course, SANs have their drawbacks, chief among them being expense. A good RAID
controller with a set of six 400GB drives gives you 1.2TB of RAID-1+0 storage—certainly
adequate for most servers—for around $3000. That same money wouldn’t buy you very much
Fibre Channel SAN hardware, although it would make a nice start on an iSCSI SAN enclosure.
In addition, deploying a SAN requires you to perform due diligence beforehand to ensure that
you have an adequate number of physical disks, suitably configured; the only real way to do so is
with the Jetstress and Loadsim performance-testing tools from Microsoft, which means you have
to commit to a certain degree of SAN deployment just to determine whether the planned
deployment will support the desired numbers of users.

 Don’t take a vendor’s performance numbers at face value; there are too many ways to get incorrect
performance data to make unaudited generic benchmarks trustworthy.

Failover and Failback Design
Whether you’re using clustering or a replication solution that provides failover/failback support,
there are some design issues to consider before you put a solution into production. The idea of
fully automatic, seamless failover is awfully attractive, but to get there, you need to do some
preliminary work.

First, think of what you’re going to fail over to. For replication solutions, one common mistake is
to use an underpowered machine as the replication target just because it’s available at the time.
This setup usually works fine right up until that little uniprocessor server you tucked away in a
remote location gets hammered flat by the sudden arrival of 2000 mailboxes’ worth of user
requests. Clusters have the same problem, but to a lesser extent; you can always add more cluster
nodes. However, those nodes have to be appropriately sized. This area is one in which many sites
got into trouble with Exchange 2000 clustering—they sized each node in the cluster to handle its
own workload, so when a failover took place, the surviving node was suddenly staggering under
double its normal workload. A better solution is to plan not to exceed 40 percent workloads: if
you have two nodes, that means that neither node should run at more than 40 percent of its actual
capacity so that the survivor will be able to handle the combined load, plus enough headroom for
unexpected spikes in load. In clusters, you can fix this potential problem by either adding more
nodes or by juggling the failover priority list.

Failover design is really more interesting from a non-clustering point of view because, depending
on the solution you choose, there can be many more variables. Take a simple example: how do
clients find the IP address of the server after a failover occurs? Normally, Outlook will use either
DNS or WINS to find the IP address of the mailbox server specified in the user’s profile. When
the failover happens, clients need a way to get the updated IP address of the target server. To do
so, you can change the IP address of the target server itself or update the DNS and WINS records
for the server. These changes can be accomplished automatically, via scripts or tools that you
start manually, or completely manually. Which is the best route? It depends on factors such as
whether your remote server is attended (for example, is there someone there who can initiate
failover if necessary?), how many DNS or WINS servers you have, replication delays attendant
on any DNS updates that were necessary, and whether the group within your company that
controls those servers will allow changes to be made when necessary.

Chapter 3

63

There are other design considerations as well:

• How is failover initiated? Manual failover is obviously the most basic method, but
automatic failover can shorten the interval that elapses before operations get back to
normal after a failure. However, you might not want to automatically fail over normal
operations so that you don’t accidentally cause a failover during transient problem
conditions.

• How hard is it to fail back to the original node after a failover? A solution that offers
easy failover but only complicated failback is probably not going to be very useful for
anything other than catastrophic failures.

• How often can you replicate? Depending on how much bandwidth you have, and what
kind of replication solution you use, you may not be able to replicate all that often. For
example, let’s say that you replicate once every 4 hours—in between those 4-hour
replication updates, a failure will cause data loss. That’s acceptable if your SLA allows it,
but you should be aware of the possibility as part of your planning.

• How long does failover actually take? If your failover solution uses replication, there will
probably be an interval between the start of a failover operation and its completion, just
as there is with clustering; you obviously want to keep this interval as short as possible.
It’s equally important to assess how long failback takes, particularly if failback can’t be
completed until you’ve replicated changes from the failover server back to the original
source server.

• How seamless are failover and failback operations to the client? Windows clustering can
make the failover completely transparent to Outlook 2002 and later because they’re smart
enough to retry failed connection requests. However, failover solutions that require
updates to user objects in AD will probably require users to quit Outlook and relaunch it
(and they may even require users to log off and back on again). This is no big deal as
long as your users know about it ahead of time.

Planned vs. Unplanned
As mentioned in preceding chapters, it’s worth examining how the technologies described in this
chapter can help with both planned and unplanned downtime. After all, the whole idea behind
high availability is to minimize unplanned downtime while simultaneously helping to shorten the
amount of time required for planned maintenance. How do these technologies measure up?

First, clustering. Clearly, properly implemented clusters can help reduce the amount of
unplanned downtime by providing automatic failover; the less obvious, but perhaps more
important, benefit they offer is their ability to make planned maintenance much simpler by
hiding it from users. For example, let’s say that you want to install an Exchange service pack.
Without clusters, you need to back up each server, stop its Exchange services, install the service
pack, and restart the Exchange services. Of course, during this process, you might find that you
have to fix problems that crop up. With clustering, the process is much simpler: you fail one
node’s resources over to another, install the service pack on that node, then fail the resources
back. (You probably still want to take a back up!) This process helps transform Exchange and
Windows service pack installation from work that must be done during periods of low user
demand to work that can be accomplished when it’s most convenient for your staff.

Chapter 3

64

The value of this benefit has declined somewhat as Microsoft has gotten better about not
requiring reboots for many security fixes, but bear in mind that you also need to use planned
maintenance time to install updates to other software on your Exchange server, such as antivirus
scanners, replication software, and backup tools. These add-ons may require patches, reboots, or
other unwelcome intrusions that clustering can help mitigate.

SANs don’t offer much help with planned downtime; if anything, they require more maintenance
than DAS solutions. However a well-built SAN can make a huge difference in your unplanned
downtime numbers by insulating you against many types of storage subsystem failure. Of course,
SAN technology isn’t a silver bullet that magically protects against everything, but it can
definitely help.

Replication and failover technologies have a role to play here too. Their application to unplanned
downtime is obvious; for planned downtime periods, the ability to fail over work to a remote
node gives you many of the benefits of a cluster without the burden of actually implementing and
maintaining one. This benefit is quite attractive.

Summary
Planning and implementing capability for high availability and business continuance is quite a
bit different from planning pure disaster recovery capabilities. Clustering, SANs, and replication
and failover technologies all have their uses, and understanding which options to implement
where is an important part of your overall system design.

Content Central
Content Central is your complete source for IT learning. Whether you need the most current
information for managing your Windows enterprise, implementing security measures on your
network, learning about new development tools for Windows and Linux, or deploying new
enterprise software solutions, Content Central offers the latest instruction on the topics that are
most important to the IT professional. Browse our extensive collection of eBooks and video
guides and start building your own personal IT library today!

Download Additional eBooks!
If you found this eBook to be informative, then please visit Content Central and download other
eBooks on this topic. If you are not already a registered user of Content Central, please take a
moment to register in order to gain free access to other great IT eBooks and video guides. Please
visit: http://www.realtimepublishers.com/contentcentral/.

http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/

	Chapter 3: Availability Building Blocks: High Availability a
	What Is High Availability, Anyway?
	What Is Business Continuance, Anyway?
	High-Availability and Business Continuance Technologies
	Redundant Arrays of Inexpensive Disks (RAID)
	How RAID works
	RAID: Pros and Cons

	Clustering
	How Clustering Works
	Clustering: Pros and Cons

	Storage Area Networks
	How SANs Work
	SANs: Pros and Cons

	Replication and Failover

	Design Choices
	To Cluster, Or Not To Cluster?
	SANs
	Failover and Failback Design
	Planned vs. Unplanned

	Summary
	Content Central
	Download Additional eBooks!

