
The Administrator
Shortcut Guide Totm

The Administrator
Shortcut Guide Totm

VBScripting for
Windows

Don Jones

Chapter 4

i

Chapter 4: Advanced Scripting..62

Remote Scripting ...62

The WshController Object...63

WScript.ConnectObject ...64

Remote Scripting Limitations ..65

Database Scripting ...66

Making Data Connections..66

Querying and Displaying Data...68

Modifying Data..72

Windows Script Files...75

Signing Scripts ...77

Summary ..78

Chapter 4

ii

Copyright Statement
© 2004 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 4

Chapter 4: Advanced Scripting

Aside from the amazing things you can do with WMI and ADSI, scripting can provide a lot of
additional functionality for making administration easier. For example, you can work with
databases in a script, which gives you the ability to log WMI information into a SQL Server or
Access database. In addition, the ability to run scripts on remote machines lets you extend your
administrative reach and scope across your entire enterprise. In this chapter, I’ll touch on these
and other advanced topics, giving you a head start toward making your scripts more powerful
and flexible.

Remote Scripting
We’ve already explored a form of remote scripting—running a script that affects remote
computers from your computer. WMI and ADSI, in particular, are useful for this type of remote
scripting. As Figure 4.1 illustrates, the script executes on one computer but performs operations
against one or more remote computers. Typically, the script executes under the authority of the
user account running the script. However, some technologies—including WMI—provide the
means to specify alternative credentials, which the script can use when connecting to remote
machines.

Figure 4.1: Basic remote scripting.

Another type of remote scripting is made possible by using the WshController object. As Figure
4.2 shows, this object actually copies a script from your machine to the remote machines, which
execute the script independently. WshController allows you to monitor the remote script
execution for errors and completion.

62

Chapter 4

Figure 4.2: Using the WshController object for remote scripting.

The WshController Object
WshController is created just like any other object: by using the CreateObject() function.
WshController has just one method, CreateScript(). This method returns a WshRemote object,
which allows you to interact with a remote script. Suppose you have a script named C:\Script.vbs
on your local machine that you want to run on a computer named ClientB. You would use a
script similar to the following example:

Dim oController, oRemote

Set oController = WScript.CreateObject(“WSHController”)

Set oRemote = oController.CreateScript(“c:\Script.vbs”, _

 “ClientB”)

oRemote.Execute

� Remote scripting is available only in the latest version of the Windows Script Host (WSH), version
5.6, and on NT 4.0 Service Pack 3 (SP3) and later versions of Windows. In general, you must be a
local administrator on the remote machine, and remote WSH must be enabled in the registry of the
remote machine. You can do so by navigating the registry to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings, and adding a key
named Remote as a REG_SZ (String) value. Set the value to 1 to enable remote WSH and 0 to
disable it. It’s disabled by default for security reasons. WSH 5.6 must be installed on both the
machine sending the script and the machine that is to run it (the remote machine).

Not too difficult. Of course, with just that code, you won’t be able to track the remote script’s
status. Add the following to provide tracking:

Do While oRemote.Status = 0

 WScript.Sleep 100

Loop

MsgBox “Remote execution completed with status “ & oRemote.Status

63

Chapter 4

64

The Status property can be either 0 or 1: 0 means the remote script is still running, and 1 means it
has completed. The WshRemote object has two methods: Execute and Terminate. We’ve explore
how the Execute method is used. The Terminate method can be used to end a still-running script,
and this method requires no parameters.

WshRemote also provides a child object, WshRemoteError. This child object provides access to
errors occurring in remote scripts. Using it is a bit more complicated and requires the use of the
default WScript object’s ConnectObject() method.

WScript.ConnectObject
You’ve already seen how the intrinsic WScript object’s CreateObject() and GetObject() methods
are used. The ConnectObject method is similar to GetObject() in that it deals with a remote
object. Rather than retrieving a reference to a remote object, however, ConnectObject allows you
to synchronize object events. As we’ve previously explored, objects have three basic members:

• Properties, which describe the object and modify its behavior

• Methods, which make the object perform some action

• Collections, which provide access to child objects

There is actually one other type of member: an event. Events provide an object with the means to
inform your script when something occurs. For example, buttons in the Windows user interface
(UI) fire an event when someone clicks them. This event being fired tells the underlying code
that the button was clicked, allowing the underlying code to take whatever action it’s supposed to
take when the button is clicked. The following example demonstrates this concept:

Dim oController, oRemoteScript

Set oController = WScript.CreateObject(“WSHController”)

Set oRemoteScript = oController.CreateScript(“me.vbs”,”Server1”)

WScript.ConnectObject oRemoteScript, “remote_”

oRemoteScript.Execute

Do While oRemoteScript.Status <> 2

 WScript.Sleep 100

Loop

WScript.DisconnectObject oRemoteScript

Chapter 4

65

This example script closely follows the previous example to create a remote script, execute it,
and wait until it finishes. But this example adds the ConnectObject method to synchronize the
remote script’s events with this script’s events. Any remote events will be fired back to this
script. This script needs to contain a subroutine, or sub, prefixed with “remote_”, because that is
what the script told ConnectObject to look for when events occur. You could add the following:

Sub remote_Error

 Dim oError

 Set oError = oRemoteScript.Error

 WScript.Echo “Error #” & oError.Number

 WScript.Echo “At line “ & oError.Line

 WScript.Echo oError.Description

 WScript.Quit

End Sub

The DisconnectObject method is used when the script is over to cancel the connection between
the remote script and the script shown here.

Remote Scripting Limitations
Remote scripting does have some limitations. Remote scripts shouldn’t use InputBox(),
MsgBox(), or WScript.Echo to produce output because remote scripts aren’t given an interactive
desktop to work with. Any output from a remote script will need to be written to a text file on a
file server or some other central location where you can retrieve it and look it over.

Remote scripts also have some security limitations. Generally speaking, they’ll run under the
context of the LocalSystem account, although that does vary between Windows versions and
may change in service packs for Windows XP and later versions to a less-powerful account.
Also, because scripts run under that context, they may have difficultly accessing anything in the
local profile of a user. For example, accessing registry keys in HKEY_CURRENT_USER won’t
necessarily connect to the currently logged on user (because the script isn’t running under that
user’s context), which can create unexpected results for your scripts. If you absolutely need a
script to run as the logged on user, assign the script as a logon script.

Chapter 4

Database Scripting
Scripting is completely compatible with Microsoft’s universal data access technology, called
ActiveX Data Objects (ADO). As the name implies, ADO utilizes objects, so your scripts will
use CreateObject() to instantiate these objects and assign them to variables.

Making Data Connections
ADO uses a Connection object to provide a connection to data sources, such as Access
databases, SQL Server databases, Excel spreadsheets, and more. Creating the Connection object
is simple:

Set oConn = CreateObject(“ADODB.Connection”)

You have a couple of options, however, for specifying the data to which you want to connect.
The easiest—although, as I’ll explain, not quite the most efficient—is to use an Open Database
Connectivity (ODBC) Data Source Name (DSN). Windows XP and later computers provide an
ODBC Control Panel in the Administrative Tools group; other versions of Windows provide this
option from the Control Panel instead. Figure 4.3 shows the ODBC application and a list of
configured DSNs for the current user (System DSNs are available for all users of the computer).

Figure 4.3: The ODBC panel.

66

Chapter 4

67

For example, to add a DSN for an Access database, click Add, and select the Access driver from
the list. Specify a name for your data source (such as “MyData”), and click Select to specify an
Access MDB database. Once the DSN is created, you add code to open that DSN in your script:

oConn.Open “MyData”

There are a couple of downsides to using DSNs:

• They must be individually configured on each computer on which the script will run

• They access data through the older ODBC software in Windows—although this access
method won’t create a performance problem for most scripts, it isn’t the most efficient
way; you’re effectively asking ADO to access data by using a technology that ADO itself
(actually, the underlying OLE DB technology) was supposed to supersede

An alternative method is to use a native call and tell ADO which driver to use, what data to open,
and so forth, all using a connection string. Sample drivers (or providers, in ADO terminology)
include:

• Microsoft.Jet.OLEDB.4.0 (Access)

• SQLOLEDB (SQL Server)

• ADSDSOObject (Active Directory—AD)

Connection strings look a bit different depending on the driver used, because each driver requires
slightly different information, for example:

• For an Access database: “Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=folder\file.mdb”

• For a SQL Server database: “Provider=SQLOLEDB; Data Source=server; Initial
Catalog=database; User ID=user; Password=password”

• For AD: “Provider=ADSDSOObject; User ID=user; Password=password”

Thus, using this method, you would open the connection as follows for an Access database:
oConn.Open “Provider=Microsoft.Jet.OLEDB.4.0; “ & _

 “Data Source=c:\databases\mydatabase.mdb”

This part of the process is the most difficult part of working with ADO. Once the connection is
open, you can simply start querying and modifying data.

A Quick Database Lesson

Data in a database—whether it’s an Excel spreadsheet or a SQL Server database—is organized into
several logical components. A table is the main logical unit. Databases can consist of multiple tables. In
an Excel file, each worksheet is treated as an individual table.

A row or entity or record contains a single entry in a table (for example, rows in an Excel spreadsheet or
rows in an Access database table). A column or domain or field represents a single piece of information.
For example, a column in an Excel spreadsheet might contain user names, and another column contains
domain names for those users. ADO works with rows and columns to provide you with access to the data
in a database.

Chapter 4

Querying and Displaying Data
You’ll probably find it easier to query data by using SQL-style queries, even when you’re not
accessing a SQL Server database; ADO understands the SQL query language and makes it pretty
easy to use SQL with any type of data source. The basic syntax for a query looks like this:

SELECT column, column, column

FROM table
WHERE comparison

For example, suppose you have an Excel spreadsheet like the one that Figure 4.4 shows.

Figure 4.4: Example Excel spreadsheet.

68

Chapter 4

69

The table name in this case is Sheet1$ (Excel adds a dollar sign to the end of the worksheet
name). There are three columns: UserID, FullName, and Description.

) In general, it’s easiest to have table and column names that don’t contain spaces or punctuation.
However, if they do, you need to surround them in square brackets: [User ID], for example.

Suppose you wanted to query the UserID for every row in the table:
SELECT UserID FROM [Sheet1$]

If you only wanted the UserID of users whose description was “Writer,” you would use this:
SELECT UserID FROM [Sheet1$] WHERE Description = ‘Writer’

The results of your query are a set of rows—or as database people like to say, a set of records. In
ADO parlance, that is a recordset, and it’s represented by a Recordset object. To implement your
query in VBScript, assuming a Connection object named oConn had been created and opened:

Set oRS = oConn.Execute(“SELECT UserID FROM [Sheet1$]”)

That leaves you with a Recordset object containing the specified rows and columns; in this case,
it would contain seven rows and one column (assuming we’re querying the Excel spreadsheet I
showed you).

You should first determine whether your recordset contains anything. Recordset objects contain
an internal pointer, which points to the current record. The objects also provide methods for
moving the pointer to the next record, and properties for telling you when you’ve moved the
pointer to the beginning of the file (recordset) or the end of the file (recordset). Those two
properties, BOF (for the beginning of the file) and EOF (for the end of the file), will both be
True for an empty recordset. So you can use the following comparison:

If oRS.EOF and oRS.BOF Then

 ‘no records

Else

 ‘records

End If

You can access the data in the recordset by simply referring to the column names. For example,
the following will display the User ID for the current record:

WScript.Echo oRS(“UserID”)

Finally, you can move to the next record with this:
oRS.MoveNext

� In case you’re wondering, there is a MovePrevious method. However, the default type of recordset
returned by the Connection object’s Execute() method is an efficient forward-only recordset, meaning
that once you’ve used MoveNext to advance to the next record, you can’t move back.

 Covering the vast complexity and flexibility of the entire set of ADO objects is a bit beyond the scope
of this guide. However, you can check out the ADO documentation in the MSDN Library at
http://www.microsoft.com/msdn; just look for the Data Access category.

http://www.microsoft.com/msdn

Chapter 4

70

Thus, w tputs all of the user IDs by using a DSN named “Excel,” might look
like thi

D FROM [Sheet1$]”)

.EOF and oRS.BOF Then

ecords returned”

F

pt.Echo “UserID: “ & oRS(“UserID”)

veNext

oop

e the recordset and connection when the script

h

serID, FullName, and
earlier. The script creates passwords for the

s to a text file for distribution.

riting a script that ou
s:
Dim oConn, oRS

Set oConn = CreateObject(“ADODB.Connection”)

oConn.Open “Excel”

Set oRS = oConn.Execute(“SELECT UserI

If oRS

 WScript.Echo “No r

Else

 Do Until oRS.EO

 WScri

 oRS.Mo

 L

End If

oRS.Close

oConn.Close

Notice that I threw in two lines of code to clos
ends. You don’t strictly need to do so because VBScript will more or less do it automatically
when the script ends, but it’s a good practice.

As an extended example, the script that Listing 4.1 shows queries a DSN named “Excel” (whic
is assumed to be an Excel spreadsheet) and creates new users in an NT or AD domain. This
script assumes that the Excel spreadsheet contains columns named U
Description, much like the example I showed you
new users, and writes those password
‘ PART 1: Open up the Excel spreadsheet
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)

Chapter 4

71

Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,
‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to file
 oTS.Write sUserID & “,” & sPassword & vbCrLf

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to c:\passwords.txt.”

Listing 4.1: An example script that queries a DSN named “Excel.”

Chapter 4

72

� Note that you’ll need to insert the correct domain name, which I’ve boldfaced, in order for the script to
work. In an AD domain, users will be created in the default Users container.

Modifying Data
ADO isn’t limited to pulling data from a database; it can modify and add information, too. There
are a couple of ways to do so. The most straightforward, perhaps, is to issue a data modification
query, me method that
returns ELEC with a data
doesn’t return anything. Here’s how it works:

ia”

 let’s take the previous example, which creates user accounts and writes their
 additional column named Password, we

sswords right into the spreadsheet instead of into a separate
ed in strikethrough

using the Connection object’s Execute method. This method is the sa
Recordset object when used with a S T query; modification query, it a

‘Delete rows

oConn.Execute “DELETE FROM table WHERE criteria”

‘Change rows

oConn.Execute “UPDATE table SET column=value WHERE criter

‘Add rows

oConn.Execute “INSERT INTO table (column, column) “ & _

 “VALUES (‘value’, ‘value’)”

For example,
passwords to a file. If the Excel spreadsheet had an
could modify the script to save the pa
file. Listing 4.2 shows the lines of code that get remov , and the changed lines

 Open up the Excel spreadsheet

in boldface.
‘ PART 1:
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,

Chapter 4

73

‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to database
 oCN.Execute “UPDATE [Sheet1$] SET Password = ‘“ & _
 sPassword & “‘ WHERE UserID = ‘“ & sUserID & “‘“

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to the database.”

Listing 4.2: Example script that writes passwords to an existing Excel spreadsheet rather than a separate file.

sing a Recordset object: Simply change the
 them. When you’re finished, use the Recordset’s

in, modified to use this new method.

There is another way to change data
milar to the way you read data from

 when you’re u
columns si
Update method. Listing 4.3 shows the entire script aga

Chapter 4

74

‘ PART 1: Open up the Excel spreadsheet
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,
‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to database
 oRS(“Password”) = sPassword

Chapter 4

75

 oRS.Update

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to the database.”

Listing 4.3: Example script that uses the Recordset object.

The Recordset object also supports an AddNew method for adding new rows, and a Delete
k out the ADO documentation for details on using these methods

s and run more
or less vides another file type, WSF (for Windows Script File), which is a more
powerf L-formatted and provide better capabilities for
creating e parameters. Here’s a brief example:

guage=“VBScript”>

.Echo “This is VBScript”

guage=“JScript”>

Script.Echo(“This is JScript”);

ript>

 </job>

</package>

method for deleting rows; chec
in your scripts.

Windows Script Files
So far, all the scripts I’ve used in this guide are designed to be put into VBS file

as-is. WSH pro
ul and flexible format. WSF files are XM
 scripts that accept command-lin
<package>

 <job id=“VBS”>

 <?job debug=“true”?>

 <script lan

 WScript

 </script>

 </job>

 <job id=“JS”>

 <?job debug=“true”?>

 <script lan

 W

 </sc

Chapter 4

76

Notice that the script contains several distinct elements:

• The entire script is contained in a <package>.

• Multiple <job> elements can exist, each with its own ID.

• Each <job> can contain a <script>, which can be in VBScript or JScript (or any other
installed scripting language).

• The script itself is contained between the <script> tag and the </script> tag.

This example doesn’t provide much beyond what a plain text file could do. The real fun of the
WSF format comes with additional sections. Consider the example that Listing 4.4 shows.
<job>
 <runtime>
 <named
 name=“server”
 helpstring=“The server to run the script on”
 type=“string”
 required=“true”
 />

 <description>
 This script connects to a remote server and restarts it
 </description>

 <example>
 Example: Restart.wsf /server:servername
 </example>

 </runtime>
<script language=“VBScript”>
 ‘insert script here
</script>
</job>

Listing 4.4: Example WSF script.

This script defines a new <runtime> section, which contains several helpful sub-elements. The
first is <named>. This element defines a named command-line argument. In this case, the name
of the argument is “server,” and it is intended to be a string value. It is required; if the script is
executed without this argument, WSH won’t allow the script to run. If this script were named
“restart.wsf,” you would execute it by running

restart.wsf /server:servername

from a command-line. The type can be “string,” “Boolean,” or “simple.” In the case of “simple,”
the argument doesn’t take a value.

Within your script, you can use the following code to display an automatically-generated “help
file” for your script based on its arguments’ “helptext” parameters and the <example> and
<description> elements:

WScript.Arguments.ShowUsage

Chapter 4

77

� The <example> and <description> elements are just text and should be self-explanatory.

Users can also display the help text by running the script with the standard /? argument.

Within your script, you would access these arguments by using the WshArguments object. Using
the above WSF file as an example, you might do something like the following in the main body
of the script:

oArgs = WScript.Arguments.Named

sServerName = oArgs.Item(“server”)

The variable sServerName would now contain the value specified for the “server” argument.
Because WSF files provide this great functionality for defining arguments, and because they can
automatically produce a “help file” screen, it’s a great format for using VBScript to create your
own command-line utilities.

Signing Scripts
I recommend enabling WSH 5.6’s script signature verification policies on all computers in your
environment (read more about this feature on the Windows Scripting home page at
http://www.microsoft.com/scripting and at http://www.ScriptingAnswers.com). This feature,
when used properly, will prevent all unsigned scripts from executing, helping to prevent script-
based viruses.

In general, you enable the feature by editing the registry. Navigate to
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows Script Host\Settings, and add a
REG_DWORD value named “TrustPolicy.” Set the value to 2 to fully enable signature
verification.

� There are also HKEY_LOCAL_MACHINE-related registry keys that affect verification policy, and you
may need to modify these in Windows XP and WS2K3 machines in order to fully enable the
verification policy. I provide an ADM template in the Downloads section of
http://www.ScriptingAnswers.com; use this template to centrally configure and manage the signature
verification policy settings via Group Policy objects (GPOs). Simply import the ADM template into a
GPO and configure it as desired in the User and Computer configuration sections of the GPO.

However, in order to make sure your scripts run, you will need to sign them using a digital
certificate issued for the purposes of code signing. You can purchase such a certificate from
commercial certification authorities (CAs) such as VeriSign (http://www.verisign.com) and
Equifax (http://www.equifax.com), or issue one from an internal CA, if your organization has
one.

0 Your client and server computers must be configured to trust the publisher of the certificate you use.
Consult the Windows documentation for information about importing a new trusted certificate
publisher, if necessary; most commercial CAs are trusted by default.

http://www.microsoft.com/scripting
http://www.scriptinganswers.com/
http://www.scriptinganswers.com/
http://www.verisign.com/
http://www.equifax.com/

Chapter 4

78

Microsoft provides an object called Scripting.Signer that can take a certificate and sign a script.
Note that signing a script marks the script with the signature, meaning you can’t change the
script without invalidating the signature (and preventing the script from running). If you need to
modify the script, you will need to re-sign it.

The following code sample shows how to write a script that signs other scripts:
Set oSigner = CreateObject(“Scripting.Signer”)

sFile = InputBox(“Path and filename of script to sign?”)

sCert = InputBOx(“Name of certificate to use?”)

sStore = InputBox(“Name of certificate store?”)

oSigner.SignFile(sFile, sCert, sStore)

You’ll simply need to know the name of your certificate and the certificate store in which the
certificate is installed.

Summary
In this chapter, I’ve introduced you to some advanced VBScript topics, including script signing
and security, flexible WSF files, remote scripting and script events, and ADO. Combined with
what you’ve learned about VBScript’s basics, WMI, and ADSI, you should be able to start
producing some useful scripts on your own.

I’ll leave you with some links to additional online resources that are designed specifically for
Windows administrative scripting:

• My Web site at http://www.ScriptingAnswers.com

• The Microsoft TechNet Script Center at
http://www.microsoft.com/technet/community/scriptcenter/default.mspx

• Clarence Washington’s excellent Win32 Script Repository at
http://cwashington.netreach.net/

• The Desktop Engineer’s Junk Drawer at http://desktopengineer.com/

• Windows Scripting on MSN Groups at
http://groups.msn.com/windowsscript/_homepage.msnw?pgmarket=en-us

• Windows & .NET Magazine’s Windows Scripting Solutions at
http://www.winnetmag.com/WindowsScripting/

• Chris Brooke’s Scripting for MCSEs column at
http://www.mcpmag.com/columns/columnist.asp?ColumnistsID=7

I think you’ll find that the interest in administrative scripting is growing and that there is a
constantly expanding set of resources for you to take advantage of. Good luck, and enjoy!

http://www.scriptinganswers.com/
http://www.microsoft.com/technet/community/scriptcenter/default.mspx
http://cwashington.netreach.net/
http://desktopengineer.com/
http://groups.msn.com/windowsscript/_homepage.msnw?pgmarket=en-us
http://www.winnetmag.com/WindowsScripting/
http://www.mcpmag.com/columns/columnist.asp?ColumnistsID=7

	Chapter 4: Advanced Scripting
	Remote Scripting
	The WshController Object
	WScript.ConnectObject
	Remote Scripting Limitations

	Database Scripting
	Making Data Connections
	Querying and Displaying Data
	Modifying Data

	Windows Script Files
	Signing Scripts
	Summary

